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Séminaire BOURBAKI 
64e année, 2011-2012, n° 1049, p. 187 à 204 

Janvier 2012 

AVERAGE RANK OF ELLIPTIC CURVES 
[after Manjul Bhargava and Arul Shankar] 

by Bjorn POONEN 

1. INTRODUCTION 

1.1. Elliptic curves 

An elliptic curve E over Q is the projective closure of a curve y2 = x3 + Ax -f B 
for some fixed A, B G Q satisfying 4A3 4- 27B2 ^ 0 (the inequality is the condition 
for the curve to be smooth). Such curves are interesting because 

1. they are the simplest algebraic varieties whose rational points are not completely 
understood, and 

2. they are the simplest examples of projective algebraic groups of positive dimen
sion. 

The abelian group E(Q) of rational points on E is finitely generated [37]. Hence 
E(Q) ~ 17 © T for some nonnegative integer r (the rank) and some finite abelian 
group T (the torsion subgroup). The torsion subgroup is well understood, thanks to 
B. Mazur [33], but the rank remains a mystery. Already in 1901, H. Poincaré [39, 
p. 173] asked what is the range of possibilities for the minimum number of generators 
of E(Q), but it is not known even whether r is bounded. There are algorithms that 
compute r successfully in practice, given integers A and B of moderate size, but to 
know that the algorithms terminate in general, it seems that one needs a conjecture: 
either the finiteness of the Shafarevich-Tate group III (or of its p-primary part for 
some prime p), or the Birch and Swinnerton-Dyer conjecture that r equals the analytic 
rank ran := ords=i L(E,s) [8]. 

The main results of Bhargava and Shankar (Section 1.4) concern the average value 
of r as E ranges over all elliptic curves over Q. 
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188 B. POONEN 

1.2. Selmer groups 

There is essentially only one known proof that E(Q) is finitely generated. The 
hardest step involves proving the finiteness of E(Q)/nE(Q) for some n > 2. This is 
done by embedding E(Q)/nE(Q) into the n-Selmer group Seln(E)1 which we now 
define. 

For each prime p, let Qp be the field of p-adic numbers; also define Qoo := R. Let Q 
be an algebraic closure of Q. We write H1(Q, E), for example, to denote the profinite 
group cohomology H^Gal(Q/Q), E(Q)). 

Fix n > 2. For any abelian group or group scheme G, let G[n] be the kernel of 
multiplication-by-n on G. Taking cohomology of 

0 —> E[n] —* E E — 0 

over Q and Qp leads to the exact rows in the commutative diagram 

(1) 

0 -
d++dddd+ 
nE(Q) 

Rl(Q,E[n})- mQ, E)\n]- •0 

0 

0 
p<oo 

E(QP) 
nE(Qp) 

a 

P<OG 
Kl(Qp, E[n]) 

p<oo 
K\®p,E)[n}- ^0. 

The group H1(Q, E[n]) turns out to be infinite, and it is difficult to determine which 
of its elements are in the image of E(Q)/nE(Q). But because arithmetic over Qp is 
easier than arithmetic over Q, one can determine which elements are locally in the 
image. With this in mind, define 

SeUE) := {x G R\Q,E[n}) : /3(x) G image(a)}. 

Diagram (1) shows that the subgroup Seln(E) Ç H1(Q, E[n]) is an upper bound for 
the image of E(Q)/nE(Q). In fact, if we define also the Shafarevich-Tate group 

III = 111(E) := ker K'iQiE) 
p<oo 

n\®p,E) 

then diagram (1) yields an exact sequence 

(2) 0 -
E(Q) 

nE(Q) 
Se\n(E) —> Ul[n} — 0. 

Moreover, it turns out that Sel„(2?) is finite and computable. 
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1.3. Averaging over all elliptic curves 

The average of an infinite sequence of real numbers a i , a2 , . . . is defined as 

limn_,00(ai + • • • + an)/n, if the limit exists. This may depend on the ordering of the 

terms. Hence, to define the average rank of elliptic curves, we should first decide how 

to order them. 

Tables such as [6, 14, 15, 44] order elliptic curves by their conductor N. But 

it is not known even how many elliptic curves have conductor < X asymptotically 

as X —> oo, so we cannot hope to prove anything nontrivial about averages for this 

ordering. Ordering by minimal discriminant runs into the same difficulty. 

Therefore we order by height, which we now define. Elliptic curves y2 = x3+Ax+B 

and y2 = x3 + A'x + B' over Q are isomorphic if and only if there exists q € Qx 
such that (Af, B') = (q4A,q6B). Therefore each isomorphism class contains a unique 

representative EAB with (A, B) G 1? minimal in the sense that there is no prime 

p with p4\A and p6\B. Let S be the set of all such EAB- Define the (naïve) height 

H (EAB) = H(A,B) := max{|4A3|, 27B2}. (Other authors replace 4 and 27 by other 

positive constants; it is only the exponents that matter in the proofs.) For X G M, 
define £<X {E G S : H(E) < X}. For any </>: S -> R, define its average by 

Average (6) := lim 
X->oc 

(6) := limx+x+ 

d+r+d+r+d 

if the limit exists. Define Average(</>) and Average(0) similarly, but using lim sup or 

liminf, respectively. 

We may speak also of the probability or density of the set of elliptic curves satisfying 

a given property. Namely, the property P can be identified with its characteristic func

tion XP'- $ —> {0> 1}; then define Prob(P) = Average(xp). Similarly define Prob(P) 

and Prob(P). 

Example 1.1. — B. Mazur's theorem [33] bounds the possibilities for the torsion 
subgroup T. The Hilbert irreducibility theorem shows that each nonzero possibility 
for T occurs rarely. Together, they show that Prob(T ^ 0) is 0. 

1.4. Main results of Bhargava and Shankar 

THEOREM 1.2 ([4, Theorem 1.1]). — Average(#Sel2) = 3. 

If one averages not over all of £ , but over a subset defined by finitely many congruence 

conditions on A and B (e.g., A = 5 (mod 7) and B = 3 (mod 4)), then the average is 

still 3 [4, Theorem 1.3]. This is interesting, given that one of the successful techniques 

for constructing elliptic curves of moderately large rank has been to restrict attention 

to congruence classes so as to maximize #E(FP) for the first few primes p [34]. 
A similar argument leads to 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



190 B. POONEN 

THEOREM 1.3 ([5, Theorem 1]). — Average(#Sel3) < 4. 

Again one can obtain the same bound for elliptic curves satisfying finitely many 

congruence conditions. One can even impose congruence conditions at infinitely many 

primes as long as one can show that the conditions at large primes together are sieving 

out a negligible subset. 

It is still not known whether Average(r) exists, but Theorems 1.2 and 1.3 yield 

upper bounds on Average(r): 

COROLLARY 1.4 ([5, Corollary 2]). — Average(r) < 7/6. 

Proof. — Let s = dimSel3. The injection E(Q)/SE(Q) ^ Se\3(E) yields r < s. 

Combining this with 6s — 3 < 3s bounds r in terms of # Sel3 ; then apply Average and 

use Theorem 1.3. (Why 6s — 3? Since 3s is a convex function, it suffices to connect 

the points (s, 3s) for s = 0 , 1 , . . . in order by line segments, and to take the equation 

of the line segment that crosses the horizontal line y = 4.) • 

Further consequences of Theorem 1.3 make use of results of Dokchitser-Dokchitser 

and Skinner-Urban, whose context can be best understood if we introduce a few 

more quantities. Taking the direct limit of (2) as n ranges through powers of a prime 

p yields the p°°-Selmer group Selpoo(E) fitting in an exact sequence 

(3) 0 —> E(Q) <g QP 
d+r+d 

Selpoo (E) — > ni[p°°] — > 0. 

Each term in (3) has the form (Qp/Zp)c 0 (finite) for some nonnegative integer c called 

the corank. Let rpoo := corankSelpoo (E). Let s'p := dimSelp(£') — dim2£[p](Q). If III' 

is the quotient of III by its maximal divisible subgroup, then s'p — rp°o = dim III'[p], 

which is even since Ill'fp00] is a finite group with a nondegenerate alternating pair

ing [12]. By (3), rpoo — r = corank III[p°°], which is 0 if and only if HI[p°°] is finite. 

To summarize, 

(4) sp = rpoo ST BSD 
*̂ — ân 5 

where the congruence is modulo 2, and the equalities labeled with the initials of 

Shafarevich-Tate and Birch-Swinnerton-Dyer are conjectural. Also, 

(5) dimSelp > sf > rp°o > r. 

In the direction of the conjectural equality rpoo — ran, we have two recent theorems: 

THEOREM 1.5 ([18, Theorem 1.4]). — For every elliptic curve E over Q , we have 

rpoo = ran (mod 2). 
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The root number w G {±1} of an elliptic curve E over Q may be defined as the sign 
of the functional equation for the L-function L(E, s), so the conclusion of Theorem 1.5 
may also be written (—l)Sp = w. 

THEOREM 1.6 ([43, Theorem 2(b)]). — For any odd prime p and elliptic curve E 
over Q satisfying mild technical hypotheses, if rp°o = 0, then ran = 0. 

Combining Theorems 1.3 (with congruence conditions), 1.5, and 1.6 leads to 

THEOREM 1.7 ([5, §4.1,4.2]). — 

(a) Probfdim Sel3 = s'3 = r3oo = r = ran = 0) is positive. 

(b) Probfdim Sels = s's = r^ao = 1) is positive. 

Sketch of proof — First one constructs a positive-density subset & C S such that 
whenever E G its (—l)-twist is in j ^ * and has the opposite root number. By 
Example 1.1, one can assume that i£(Q)[3] = 0 for every E G &. Then, by the 
sentence after Theorem 1.5, the parity of dimSels = sf3 for E G & is equidistributed. 
Moreover, & can be chosen so that Theorem 1.6 applies to every E G Ĵ ", and so that 
the conclusion of Theorem 1.3 holds for &'. For large X, let po be the proportion 
of curves in & with dim Sel3 = 0; define p\ similarly. Our bound on the average of 
#Sel3 yields 

Po • 1 + pi • 3 -+ 
'1 
,2 - Pn •9 + 

d+r 
2 -Pi •27 < 4 + o(l) 

This, with p0,Pi < 1/2 + o(l), implies p0 > 1/4 - o(l) and px > 5/12 - o(l). This 
proves the bounds for dimSels = sf3. For E G &\ if S3 = 0, then r^ = r = ran = 0 
too by (5) and Theorem 1.6. If s'3 = 1, then r3oo = 1 too since sf3 — r$°o G 2Z>Q. • 

Theorem 1.7(a) implies in particular that a positive proportion of elliptic curves 
over Q have both rank 0 and analytic rank 0 and hence satisfy the Birch and 
Swinnerton-Dyer conjecture that r = ran. Theorem 1.7(b) implies a conditional 
statement for rank 1: 

COROLLARY 1.8 ([5, §4.1]). — IfUl(E) (or at least its 3-primary part) is finite for 

every elliptic curve E over Q, then Probfr = 1) is positive. 

2. PREVIOUS WORK OF OTHER AUTHORS 

This section exists only to put the theorems above in context. Readers impatient 
to understand the proof of Theorem 1.2 may jump to Section 3. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



192 B. POONEN 

2.1. Average analytic rank 

Using analogues of Weil's "explicit formula", many authors have given conditional 
bounds on the average analytic rank, both for the family of quadratic twists of a 
fixed elliptic curve over Q, and for the family S of all elliptic curves over Q. All these 

analytic results over Q are conditional on the Riemann hypothesis for the L-functions 

of the elliptic curves involved. At the time that some of these results were proved, the 
assertion that the L-function admits an analytic continuation to C was an assumption 
too, but today this is a consequence of the theorem that all elliptic curves over Q are 
modular [9]. 

D. Goldfeld [21] proved the conditional bound Average(ran) < 3.25 for the family 
of quadratic twists of a fixed elliptic curve E over Q, and conjectured that the cor
rect constant was 1/2. The constant 3.25 was later improved to 1.5 by D. R. Heath-
Brown [26, Theorem 3]. 

For the family of all elliptic curves over Q, A. Brumer proved the conditional bound 
Average(ran) < 2.3 [10]. He also proved the same bound for elliptic curves over ¥q(t) 
unconditionally. In the case of Fg(£), the inequality r < ran is known, so one deduces 
Average(r) < 2.3 in this setting. Over Q, the constant 2.3 was improved to 2 by 
Heath-Brown [26, Theorem 1] and to 25/14 by M. Young [48]. The latter implied the 
(conditional) positivity of Prob(ran < 1), and then also of Probfr = ran < 1), because 
ran < 1 implies r = ran ([31, 32, 23] with [11] or [38]). 

Conditional bounds on Average(ran) for other algebraic families of elliptic 
curves and abelian varieties have been given by É. Fouvry and J. Pomykala [20], 
P. Michel [35, 36], J. Silverman [42], and R. Wazir [46]. 

2.2. Distribution of Selmer groups 

For the family of elliptic curves y2 = x3 + k over Q, É. Fouvry proved 
Average(3r/2) <oo, by bounding the average size of the Selmer group associated 
to a 3-isogeny (a slight generalization of the Selmer groups we have considered so 
far) [19]. This implies that Average(r) < oo in this family. 

Recall our notation s'p := dimSelp(2?) — dimi£(Q)[p]. For the family of quadratic 

twists of y2 = xs — x over Q, Heath-Brown proved not only that Average^) = 3 but 

also that 

(6) Prob ( 4 = d) = 

d+r+d 
(1 + 2^'r1 

d 

^3 = 1 

2 
23 - 1 

for each d G Z > 0 [24, 25]. P. Swinnerton-Dyer [45] and D. Kane [28] generalized this 
by obtaining the same distribution for the family of quadratic twists of any E over Q 
with E[2] C E(Q) but no rational cyclic 4-isogeny. Heath-Brown's approach was used 
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also by G. Yu [50] to prove finiteness of Average(# Se^) for the family of all elliptic 
curves with E[2] C E(Q). In certain subfamilies of this, surprises occur: see [49]. 

A probabilistic model predicting the distribution of s'p for any prime p was proposed 
in [41]; for p = 2 the prediction is consistent with (6). 

Earlier, C. Delaunay [17] proposed a heuristic for the distribution of #111, in 
analogy with the Cohen-Lenstra heuristics [13]. 

Finally, there is a conjecture that elliptic curves tend to have the smallest rank 
compatible with the root number, which is expected to be equidistributed. This was 
proposed in [21] for the case of quadratic twists of a fixed curve, but it is probably 
true more generally. In other words, it is expected that Prob(r = 0) and Prob(r = 1) 
are both 1/2. See also [30, §5] and [29]. 

The three predictions above are compatible with the equation s'p = dim III [p] + r 

arising from (2): see [41, §5]. 

2.3. Average size of Selmer groups over function fields 

The closest parallel to the work of Bhargava and Shankar is a 2002 article by 
A. J. de Jong proving the analogue of Theorem 1.3 for function fields, with a slightly 
weaker bound [27]. Namely, for any finite field ¥q of characteristic not 3, de Jong 
proved Average(# Sel3) < 4 + e(q) for the family of all elliptic curves over ¥q(i), 
where e(q) is an explicit rational function of q tending to 0 as q —» oo. This implies a 
corresponding bound for Average(r) for such ¥q(t). Moreover, de Jong gave heuristics 
that in hindsight hint that Average(# Sela) = 4 not only for ¥q(t) but also for Q. 

The approaches of de Jong and Bhargava-Shankar are similar. Namely, both count 
integral models of geometric objects representing elements of Se\n(E). (For n = 3, 
these objects are plane cubic curves.) But the more delicate estimates, essential for ob
taining an asymptotically sharp upper bound on Y^Eeg<x & ^e^2 or 3(^) an(^ a ma-tch-
ing lower bound (for Sel2), are unique to Bhargava-Shankar. 

3. BACKGROUND: n-DIAGRAMS A N D BINARY QUARTIC 
FORMS 

Each element of H1(Q, E[n]) has a geometric avatar, called an n-diagram. To count 
Selmer group elements, we will count the possibilities for the coefficients of the poly
nomial equations defining their avatars. We follow [16, §1.3] in Sections 3.1-3.3, and 
[7] in Section 3.5. The goal of this section is (10). 
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3.1. Diagrams 

Fix a field k, a separable closure k, and an elliptic curve E over k. A diagram for E 
is a morphism of varieties from an £"-torsor C to a variety S. An isomorphism of 
diagrams is given by an isomorphism of E'-torsors C —> C and an isomorphism of 
varieties S —» Sf making the obvious square commute. 

3.2. n-diagrams 

Let O G E(k) be the identity. Fix an integer n > 2 with char/. \ n. The trivial 

n-diagram is the diagram E —> Pn_1 determined by the linear system |raO|, where i£ 
is viewed as trivial 12-torsor. More generally, an n-diagram is a twist C —> 5 of the 
trivial n-diagram, i.e., a diagram that becomes isomorphic to the trivial n-diagram 
after base extension of both to k. In particular, S must be a Brauer-Severi variety, 

a twist of projective space. (For this reason, n-diagrams are called Brauer-Severi 
diagrams in [16, §1.3].) 

The automorphism group of the trivial n-diagram over k is given by E[n] acting as 
translations on E and acting compatibly on Pn_1. Galois descent theory then yields 
a bijection 

(7) 
{n-diagrams for E} 

isomorphism 
E1(k,E[n]). 

Remark 3.1. — Elements of H1(fc, E[n]) are in bijection also with geometric objects 
called n-coverings [16, §1.2]. But it is the n-diagrams that are easiest to count. 

Remark 3.2. — The action of E[n] on Pn_1 is given by an injective homomorphism 
E[n] -» PGLn. 

3.3. Solvable and locally solvable n-diagrams 

The homomorphism H1(fc,E[n]) —> H1 (&,£") corresponds to sending an n-diagram 
C -> S to the torsor C. Its kernel, which is isomorphic to E(k)/nE(k) (cf. (1)), cor
responds to the set of n-diagrams C —> S for which C has a Appoint; such n-diagrams 
are called solvable: 

(8) 
{solvable n-diagrams for E} 

isomorphism 
Elk) 

nElk) 

An n-diagram C —• S over Q is locally solvable if C has a Qp-point for all p < oo. 
In this case, 5 too has a Q^-point for all p < oo, and hence S ~ Pn_1, by the local-
global principle for the Brauer group. (Not every n-diagram with S ~ pn_1 is locally 
solvable, however.) By (1), we have a bijection 

(9) 
{locally solvable n-diagrams for E} 

isomorphism 
Se\n(E). 
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3.4. Binary quartic forms 

With an eye towards Section 3.5, we consider the space Q[x, y]4 of binary quartic 
forms. There is a left action of GL2(Q) on Q[x,?/]4 given by (7 • f)(x,y) := f((x,y)i) 

(we view (x,y) as a row vector). This induces an action of GL2(Q) on the algebra 
Q[a,b, c, d, e] of polynomial functions in the coefficients of 

/ := ax4 + bx3y + cx2y2 + dxy3 H- ey4. 

The subalgebra of SL2-invariants is Q[a, 6, c, d, e]SL2 = Q[I, J] = Q[A, J3], where 

I := 12ae - 3bd + c2 

J := 72ace + 9bcd - 27ad2 - 27eb2 - 2c3 

A := - 7 / 3 

B := - J/27. 

(Why —1/3 and —1/27? To make the Jacobian statement in Section 3.5 true.) 

A quartic form is separable if and only if its discriminant A := —(4A3 + 27B2) 

is nonzero. If 7 G GL2(Q) and / G Q[x,y]4, then A(j • / ) = (det7)4A(/) and 

5 ( 7 . / ) = (det7)6£(/). Thus the twisted GL2-action 7 * / := (det7)~2(7 • / ) 
induces a PGL2-action preserving A and B. 

3.5. Locally solvable 2-diagrams and binary quartic forms 

Let / G Q[x,y]4. Let C be the curve z2 = f(x,y) in the weighted projective 

plane P( l , l , 2 ) . Let JacC be its Jacobian. Then there is an isomorphism between 

JacC and the elliptic curve y2 = x3 + A(f)x + B(f), and the isomorphism depends 

algebraically on the coefficients of / . In fact, this makes C ^ > P1 a 2-diagram. 

There is an approximate converse: any locally solvable 2-diagram for E is a degree 

2 morphism C —• P1 equipped with an isomorphism JacC —• E such that C has a 

Qp-point for all p < 00; such a curve C is given by z2 = f(x,y) in P(l , 1, 2), for some 

f(x,y) eQ[x,y}4. 

Two locally solvable 2-diagrams are isomorphic if and only if the associated mor-

phisms C —> P1 and C —> P1 are isomorphic forgetting the torsor structures (if there 

exists an isomorphism of such morphisms, there is also an isomorphism respecting 

the torsor structures, because the automorphism group of E over Q is never larger 

than {±1}). And two such morphisms are isomorphic if and only if corresponding 

quartic forms are PGL2(Q)-equivalent after multiplying one by an element of Qx2. 

If the quartic forms already have the same invariants, then the element of Qx2 is 

unnecessary. 

Let V = Spec Q[a, 6, c, d, e] be the moduli space of quartic forms, and let 

^ = SpecQ[A, B]. Let V c V and / C 0 be the open subvarieties defined by A ^ 0. 

There is a morphism V —> <̂f taking a quartic form to its pair of invariants. Let VAB 
be the fiber above (A,B) G </(Q). Define the locally solvable subset V(Q)ls C V'(Q) 

as the set of / G Q[x,y]4 with A ^ 0 such that z2 = f(x,y) has a Qp-point for all 
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p < oo. Define VAB(Q)1s similarly. For each (A, B) G ç / ( Q ) , combining the previous 
paragraph with (9) for n = 2 and i£ = EAB yields a bijection 

(10) P G L 2 ( Q ) \ ^ ( W S > Sel2(EAB). 

Which quartic forms on the left side correspond to the identity in Se^C^Ae)? Those 
with a linear factor over Q. 

Remark 3.3. — Similarly, S e ^ E ^ e ) can be related to PGL3(Q)-orbits of ternary 
cubic forms; this is what is used to prove Theorem 1.3. 

4. PROOF OF THE THEOREM ON 2-SELMER GROUPS 

Our goal is to sketch the proof of Theorem 1.2. For lack of space, our presentation 
will necessarily omit many details, so the actual proof is more difficult than we might 
make it seem. Also, in contrast to [4], we will phrase the proof in adelic terms. This 
has advantages and disadvantages as far as exposition is concerned, but does not 
really change any of the key arguments. 

4.1. Strategy of the proof 

For I G R , define 

(11 ) ^ Z ) < x := { (A'B>> e Z2 : A ^ ° ' (A>B) is minimal and H (A, B) < X } 

v(Q)<x := the subset of V(Q)ls mapping into 0(Z)<X. 

Summing the sizes of the sets in (10) over (A,B) € 0(Z)<x yields 

(12) #(PGL2(Q) 
d+r+ss+w+ 

d+r+d+d 
#Se\2(E). 

From now on, we forget about Selmer groups and estimate the left side of (12) . 

If our job were to estimate the number of integral points in a region î] C MN, we 
would compute the volume of and argue that it is a good estimate provided that the 
shape of is reasonable. But according to (12) , we need to count (orbits of) rational 

points. So instead of viewing Z as a lattice in R, we view Q as a lattice in the ring of 
adeles 

A := (xn) G 

p<oo 

Qp : xp G ZP for all but finitely many p 
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How do we define an adelic region V(A)<X whose set of rational points is V(Q)<x? 

Inspired by (11), we define 

^(R)<x := { (A,B) e / ( R ) : H(A,B)<X) 

^(Zp)min := ((ZP x Zp) - ( p % x p6Zp)) - (zeros of A) 

<J{A)<X := <J(R)<x x 

finite p 

<J(Zv)min 

V(Qpfs := { / € V{QP) : A ^ 0 and z2 = f(x, y) has a Qp-point } 

V(A)ls := V(A) n 

p<oo 
^(QP)1S 

V(A)<X := the subset of V(A)ls mapping into <^(A)<x. 

One might expect the rest of the proof to proceed as follows: 

1. Define an adelic measure on P G L 2 ( Q ) \ ^ ^ ^ < X an<̂  compute its volume. 

2. Show that # ( p G L 2 ( Q ) \ ^ ( ® < X ) *s wen approximated by that adelic volume. 

But Statement 2 turns out to be false! It will be salvaged by excluding the quartic 

forms with a linear factor, i.e., those corresponding to the identity in a Selmer group. 

In other words, it is Y^EeS<x (#Sel2(£) — 1) that is approximated by the adelic 

volume. 

4.2. Computing the adelic volume 

The space Qp has the usual Haar measure \iv (Lebesgue measure if p = oo). The 

adelic measure on A is the product of these. The product Infinite P /-^(^(^P)"1111) CON-
verges, so <^(A)<x inherits an adelic measure from A2. In fact, /ioo(<^W<x) = 

4 • 4~i /327-1/2x5/6 (area of a rectangle) and M^(QP)MIN) = 1 ~ P~4P~6> and the 

product is nW(A)<x) = cX5/6, where c := 24/33"3/2C(10)-1. 

Although V(A)ls C A5 is a restricted direct product and not a direct product, it is 

a union of direct products that can be given an adelic measure as above. The action 

of PGL2(Q) is measure-preserving, so the quotient P G L 2 ( Q ) \ ^ ^ ) < ^ inherits the 

measure. 

Let & —» be the universal elliptic curve in short Weierstrass form. Let W 

be the moduli space of pairs (/, P) where / is a quartic form of nonzero discrim

inant and P is a point on z2 = f(x,y). The group scheme PGL2^ acts on W 

(transforming both / and P). The forgetful ^'-morphism F: W —» V is an 5-tor-

sor, and is PGL2j(^-equivariant. In fact, W —• <fl is a homogeneous space under 

& x PGL2 a>. The stabilizer of (x3y + Axy3 + By4, (1 : 0 : 0)) is <S[2] embedded diago-

nally (see Remark 3.2), so W ~ & x PGLo « 
d+rd 

Ç[2] • The quotient ç/-morphism 
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q: W —» PGL2^' \W ~ S/S[2] ~ (5 is a PGL2-torsor, and it turns out to admit a 

rational section. 

We obtain a commutative (but not cartesian) diagram 

W - q 6 

F 

V - S-

Let W(A)<X be the subset of W (UP<oo QP) (not of W^A)!) mapping into ^ ( A ) 1 ^ . 

Let (5(A)<x be the subset of S (rip<oo Qp) mapping into <^(A)<x-

We define the measure of a subset of VR(A)<x by integrating over V(A)%X the 

measure of the fibers of F, where each full fiber, an E^B(A)-torsor, is assigned the 

mass 1 Haar measure. Define a measure on 5(A)<x in the same way by integrating 

over <^(A)<x. It turns out that the fibers of W(A)<x S(A)<x outside a measure-

zero subset are PGL2(A)-torsors, and that the Tamagawa measure /iTam on these 

torsors is compatible with the measures on W(A)<x and 6(A) <x-

Now consider 

PGL2(Q; KW(A)<X Q 
S(A)<X 

F 

PGL2(Q)N 
d+r+d+r+d 

V ( A ) < x . 

Working counterclockwise from ^f(A)<x, we have 

IM(S(A)<x) = M\)<x) 

M ( P G L 2 ( Q ) ' W(A)<X) = MTam ( PGL2(A)/pGL2(Q)) I(<S(A)<x) 

M ( P G L 2 ( Q W(A)<X' = ^ ( P G L 2 ( Q ] V(A)*X) 

and the Tamagawa number 

r(PGL2) := /iTam ' PGL2(A) /PGL2(Q)) 

is known to be 2, so 

(13 ) M ( P G L 2 ( Q ) V(A)%X = 2u(MA),Y) = 2cX5/6. 

4.3. Counting rational points in adelic regions 

PROPOSITION 4 . 1 (Denominator for Average(# Sel2 - 1 ) ) . — As X —» oo 

£<€<?<x 

1 = #^(Z)<X = (1 + o(l)) /x W(A)<X) • 
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Proof. — The first equality is trivial. Now, #^ (Z)<x is the number of integral points 

(A, B) in a large rectangle that remain after sieving out those satisfyingp4\A and p6\B 

for some prime p and discarding those with 4A3+27B2 = 0. The sieving is elementary, 

and can be handled either by a Môbius inversion argument [10, Lemma 4.3], or by 

sieving at the first few primes with the Chinese remainder theorem and then arguing 

that the number of points removed by sieving at all the remaining large primes is 

negligible. This leaves (1 + o(l))cX5/6 points. The (A,B) with 4A3 + 27B2 = 0 

have the form (—3n2,2n3); there are only 0(X1^6) such points of height up to X, 

so discarding them does not affect the asymptotics. (For related calculations over 

number fields, see [1].) • 

Let V(Q)<'£tt<!gf be the set of / G ^(Q)<x that have no rational linear factor. 
Most of the rest of the section will be devoted to the proof of the following: 

PROPOSITION 4.2 (Numerator for Average(# Sel2 -1) ) . — As X ^ oo, 

d+r+d+ 
( # S E L 2 ( £ ) - L ) = # ( p G L 2 ( Q ) 

+d+r+d+ss+s 

= (I + 0 ( I ) ) M ( P G L 2 ( Q ) V ( A ) < X ) . 

Ideally, we could choose a fundamental domain £7 for the action of PGL2(Q) on 

V(A)<x and simply count the rational points of V(Q)1^^**^ in it. In an attempt to 

construct such an £7 we use the theory of integral models of binary quartic forms. 

LEMMA 4.3 (Existence of integral models [7, Lemmas 3, 4, and 5]) 

Any quartic form f G Q[x, y] with A G 24Z and B G 26Z is PGL2(Q)-equivalent to 

a quartic form in Z[x,y]. 

To avoid some inconsequential technicalities, we ignore the 24 and 26 in the rest of 

our exposition. We also ignore the points in V(Q)l^^ft€S^ with a nontrivial stabilizer 

in PGL2(Q): one can show that the contribution from these is negligible. 

Define Z := Ilfinitep^P' and define V(Z)ls in the obvious way. The proof of 
Lemma 4.3 shows also that every quartic form in V(A)<X is PGL2(Q)-equivalent 
to one in V(R)^X x V(Z)ls (if we ignore 24 and 26). 

An explicit fundamental domain £7M for PGL2(Z)\^W1S can be obtained by com

bining Gauss's fundamental domain for P G L 2 ( Z ) \ ^ ^ 2 W with an easily described 

fundamental domain for PGL2(E)\^W1S • By the previous paragraph, if £7<X : = 

{ / G &R : H(f) < X}, then every quartic form in V(A)l^x is PGL2(Q)-equivalent to 

one in the subset 57 : = 57^X x V(Z)ls (if we ignore 24 and 26). Rational points in £7 

now are integral points in 9<x satisfying local solvability. 

There are two problems with £7: 
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1. The region £F <x has a narrow cusp stretching to infinity, which makes it hard 
to approximate its number of integral points by its volume. 

2. The set £7 is not a fundamental domain! (Although integral points in J7<x 
cannot be PGL2(Z)-equivalent, they can still be PGL2(Q)-equivalent. This phe
nomenon can happen only for quartic forms whose discriminant is divisible by 
p2 for some prime p. For instance, 

p2x4 + px3y + x2y2 + xy3 + y4 and x4 + x3y + x2y2 + pxy3 + p2y4 

are PGL2(Q)-equivalent.) 

Problem 1 is solved by an idea from [3, §2.2], namely to average over a "compact 
continuum" of PGL,2(]R)-translates of £7"<x- This fattens the cusp enough that the 
volume estimate applies to the "main body" obtained by cutting off most of the 
cusp. It turns out that the severed part contains a disproportionately large number of 
integral points, but they are all from the quartic forms with a rational linear factor; on 
the other hand, the main body contains few quartic forms with a rational linear factor; 
this explains why we exclude them to obtain a count approximated by a volume. 

Problem 2 is more serious. One solution might be to find some way to select one 
PGL2(Z)-orbit of integral quartic forms within each PGL2(Q)-equivalence class. A 
more elegant solution is to select them all, but to weight each one by 1/n where 
n is the number of possibilities. By an argument involving the class number of PGL2 
being 1, this weight turns out to be expressible as a product over all primes p of local 
weights defined analogously in terms of the number of PGL2(Zp)-orbits of quartic 
form over Zp within a PGL2(Qp)-equivalence class. (Strictly speaking, one also needs 
to take into account the orders of stabilizers in defining these weights.) The situation 
is now similar to that in the proof of Proposition 4.1, in which we counted integral 
points with a weight that was 1 or 0 according to whether it was minimal (at every 
prime p) or not. If we approximate the actual weights by the product of the local 
weights at the first few primes, then the weighted count of integral points can be 
approximated by a weighted volume. It remains to show that the number of points at 
which the actual weight differs from the approximate weight is negligible. The local 
weight turns out to be 1 whenever p2 \ A, so it suffices to sum the following bound 
over all primes p beyond a large number: 

LEMMA 4.4 ([4]). — The number of PGL2(Z)-or&zte of integral quartic forms of 

height less than X such that A ^ 0 and p2\A is 0(p~4/3X5/6). 

The proof of Lemma 4.4 is the trickiest part of the whole argument. The observation 
that A is a polynomial in a, 6, c, d, e is enough to prove Lemma 4.4 for primes p up 
to a small fractional power of X, but it is not known for an arbitrary polynomial 
how to obtain suitable bounds on the number of values divisible by the square of a 
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larger prime [22, 40]. Bhargava and Shankar resolve the difficulty in a surprising way: 
using [47, Theorem 4.1.1], they identify the set of quartic forms with the set of quartic 
rings with monogenized cubic resolvent, which admits an (at most 12)-to-l map to 
the much larger set of quartic rings with cubic resolvent, which is in bijection with 
(GL2(Z) x SL3(Z))-orbits of pairs of ternary quadratic forms [2, Theorem 1]. Then 
they do the counting in this larger set, whose size was calculated in [3, Theorem 7]. 

This concludes the sketch of the proof of Proposition 4.2. 

Remark — The role of Lemma 4.4 is to ensure that we are not overcounting 

orbits. Without Lemma 4.4, we could still deduce Average ( # Sel2) < 3. 

Remark — Calculations related to Lemma 4.4 are used in [4] to compute not only 
Aver age ( # Sel2), but also other averages, such as the average size of the 2-torsion 
subgroup of the class group of a maximal cubic order equipped with an element 
generating it as a ring. 

4.4. End of proof 

Dividing Proposition 4.2 by Proposition 4.1 and using the volume relation (13) 
yields 

Average(#Sel2 -1 ) = T(PGL2) = 2. 

Add 1. 

ACKNOWLEDGEMENTS 

I thank Manjul Bhargava for explaining to me many details of his work with 
Arul Shankar. I thank also Kçstutis Cesnavicius, Jean-Louis Colliot-Thélène, John 
Cremona, Etienne Fouvry, Benedict Gross, Jennifer Park, Joseph H. Silverman, and 
Jeanine Van Order for comments. 

REFERENCES 

[1] E. BEKYEL - "The density of elliptic curves having a global minimal Weierstrass 

equation", J. Number Theory 109 (2004), p. 41-58. 

[2] M. BHARGAVA - "Higher composition laws. III. The parametrization of quartic 

rings", Ann. of Math. 159 (2004), p. 1329-1360. 

[3] , "The density of discriminants of quartic rings and fields", Ann. of Math. 
162 (2005), p. 1031-1063. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



202 B. POONEN 

[4] M. BHARGAVA & A. SHANKAR - "Binary quartic forms having bounded invari
ants, and the boundedness of the average rank of elliptic curves", to appear in 
Annals of Math. 

[5] , "Ternary cubic forms having bounded invariants, and the existence of a 
positive proportion of elliptic curves having rank 0", preprint arXiv:1007.0052vl. 

[6] B. J . BIRCH & W . KUYK (eds.) - Modular functions of one variable. IV, Lecture 
Notes in Math., vol. 476, Springer, 1975. 

[7] B. J. BIRCH & H. P. F . SWINNERTON-DYER - "Notes on elliptic curves. I", 

J. reine angew. Math. 212 (1963), p. 7-25. 
[8] , "Notes on elliptic curves. II", J. reine angew. Math. 218 (1965), p. 79-

108. 
[9] C. BREUIL, B. CONRAD, F . DIAMOND & R. TAYLOR - "On the modularity 

of elliptic curves over Q: wild 3-adic exercises", J. Amer. Math. Soc. 14 (2001), 
p. 843-939. 

[10] A. BRUMER - "The average rank of elliptic curves. I", Invent. Math. 109 (1992), 
p. 445-472. 

[11] D. BUMP , S. FRIEDBERG & J. HOFFSTEIN -"Nonvanishing theorems for L-func-
tions of modular forms and their derivatives", Invent. Math. 102 (1990), p. 543-
618. 

[12] J. W. S. CASSELS - "Arithmetic on curves of genus 1. IV. Proof of the Hauptver-
mutung", J. reine angew. Math. 211 (1962), p. 95-112. 

[13] H. COHEN & H. W. LENSTRA Jr. - "Heuristics on class groups of number fields", 
Lecture Notes in Math. 1068 (1984), p. 33-62. 

[14] J. E. CREMONA - Algorithms for modular elliptic curves, Cambridge Univ. Press, 
1997. 

[15] , "Elliptic curve data", http://www.warwick.ac.Uk/staff/J.E. 
Cremona/ftp/data/INDEX.html. 

[16] J. E. CREMONA, T. A. FISHER, C. O'NEIL , D. SIMON & M. STOLL - "Ex

plicit n-descent on elliptic curves. I. Algebra", J. reine angew. Math. 615 (2008), 
p. 121-155. 

[17] C. DELAUNAY - "Heuristics on Tate-Shafarevitch groups of elliptic curves defined 
over $$", Experiment. Math. 10 (2001), p. 191-196. 

[18] T. DOKCHITSER & V . DOKCHITSER - "On the Birch-Swinnerton-Dyer quotients 

modulo squares", Ann. of Math. 172 (2010), p. 567-596. 
[19] É. FOUVRY - "Sur le comportement en moyenne du rang des courbes y2 = x3+k", 

in Séminaire de théorie de nombres, Paris, 1990-91, Progr. Math., vol. 108, 
Birkhäuser, 1993, p. 61-84. 

ASTÉRISQUE 352 

http://www.warwick.ac.Uk/staff/J.E


(1049) AVERAGE RANK OF ELLIPTIC CURVES 203 

[20] É . FOUVRY & J. POMYKA$$A - "Rang des courbes elliptiques et sommes 
d'exponentielles", Monatsh. Math. 116 (1993), p. 111-125. 

[21] D. GOLDFELD - "Conjectures on elliptic curves over quadratic fields", Lecture 
Notes in Math. 751 (1979), p. 108-118. 

[22] A. GRANVILLE - "ABC allows us to count squarefrees", Internat. Math. Res. 
Notices 1998 (1998). 

[23] B. H. GROSS & D. B. ZAGIER - "Heegner points and derivatives of L-series", 
Invent. Math. 84 (1986), p. 225-320. 

[24] D. R. HEATH-BROWN - "The size of Selmer groups for the congruent number 
problem", Invent. Math. 111 (1993), p. 171-195. 

[25] , "The size of Selmer groups for the congruent number problem. II", Invent. 
Math. 118 (1994), p. 331-370. 

[26] , "The average analytic rank of elliptic curves", Duke Math. J. 122 (2004), 
p. 591-623. 

[27] A. J . DE JONG - "Counting elliptic surfaces over finite fields", Mosc. Math. J. 2 
(2002), p. 281-311. 

[28] D. M. KANE - "On the ranks of the 2-Selmer groups of twists of a given elliptic 
curve", preprint arXiv:1009.1365v3. 

[29] N. M. KATZ & P . SARNAK - Random matrices, Frobenius eigenvalues, and 
monodromy, American Mathematical Society Colloquium Publications, vol. 45, 
Amer. Math. Soc, 1999. 

[30] , "Zeroes of zeta functions and symmetry", Bull. Amer. Math. Soc. 36 
(1999), p. 1-26. 

[31] V. A. KOLYVAGIN - "Finiteness of E(Q) and SH(E, Q) for a subclass of Weil 
curves", Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), p. 522-540, 670-671. 

[32] , "Euler systems", in The Grothendieck Festschrift, Vol. II, Progr. Math., 
vol. 87, Birkhäuser, 1990, p. 435-483. 

[33] B. MAZUR - "Modular curves and the Eisenstein ideal", Publ. Math. IHÉS 47 
(1977), p. 33-186. 

[34] J . -F . MESTRE - "Construction d'une courbe elliptique de rang $$ 12", C. R. Acad. 
Sci. Paris 295 (1982), p. 643-644. 

[35] P . MICHEL - "Rang moyen de familles de courbes elliptiques et lois de Sato-Tate", 
Monatsh. Math. 120 (1995), p. 127-136. 

[36] , "Le rang de familles de variétés abéliennes", J. Algebraic Geom. 6 (1997), 
p. 201-234. 

[37] L. J . MORDELL - "On the rational solutions of the indeterminate equations of 
the third and fourth degrees", Proc. Cambridge Phil Soc. 21 (1922), p. 179-192. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



204 B. POONEN 

[38] M. R. MURTY & V. K. MURTY - "Mean values of derivatives of modular L-se-
ries", Ann. of Math. 133 (1991) , p. 4 4 7 - 4 7 5 . 

[39] H. PoiNCARÉ - "Sur les propriétés arithmétiques des courbes algébriques", 
J. Pures Appl. Math. 7 (1901) , p. 1 6 1 - 2 3 4 . 

[40] B. POONEN - "Squarefree values of multivariable polynomials", Duke Math. J. 
118 (2003) , p. 3 5 3 - 3 7 3 . 

[41] B. POONEN & E. RAINS - "Random maximal isotropic subspaces and Selmer 
groups", J. Amer. Math. Soc. 25 (2012) , p. 2 4 5 - 2 6 9 . 

[42] J. H. SILVERMAN - "The average rank of an algebraic family of elliptic curves", 
J. reine angew. Math. 504 (1998) , p. 2 2 7 - 2 3 6 . 

[43] C. SKINNER & E. URBAN - "The Iwasawa main conjectures for GL 2", preprint 
http://www.math.Columbia.edu/~urban/eurp/MC.pdf, 2010-11 . 

[44] W. A. STEIN - "Modular forms database", http : //modular. math. Washington. 
edu/Tables/index.html. 

[45] P . SWINNERTON-DYER - "The effect of twisting on the 2-Selmer group", Math. 
Proc. Cambridge Philos. Soc. 145 (2008) , p. 5 1 3 - 5 2 6 . 

[46] R. WAZIR - "A bound for the average rank of a family of Abelian varieties", Boll. 
Unione Mat. Ital. Sez. B Artie. Ric. Mat. 7 (2004) , p. 2 4 1 - 2 5 2 . 

[47] M. E. M. WOOD - "Moduli spaces for rings and ideals", Ph .D. Thesis, Princeton 
University, 2009. 

[48] M. P. YOUNG - "Low-lying zeros of families of elliptic curves", J. Amer. Math. 
Soc. 19 (2006) , p. 2 0 5 - 2 5 0 . 

[49] G. Yu - "Average size of 2-Selmer groups of elliptic curves. II", Acta Arith. 117 
(2005) , p. 1 -33 . 

[50] , "Average size of 2-Selmer groups of elliptic curves. I", Trans. Amer. 
Math. Soc. 358 (2006) , p. 1 5 6 3 - 1 5 8 4 . 

Bjorn POONEN 

Department of Mathematics 
Massachusetts Institute of Technology 
77 Massachusetts Avenue 
Cambridge, MA 02139-4307 , U.S.A. 
E-mail : poonen@math.mit.edu 

ASTÉRISQUE 352 

http://www.math.Columbia.edu/~urban/eurp/MC.pdf
mailto:poonen@math.mit.edu

