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Mars 2012 

Q U A N T U M GRAVITY A N D THE KPZ FORMULA 
[after Duplantier-Sheffield] 

by Christophe G A R B A N 

1. INTRODUCTION

The study of statistical physics models in two dimensions (d = 2) at their critical
point is in general a significantly hard problem (not to mention the d = 3 case). In the 
eighties, three physicists, Knizhnik, Polyakov and Zamolodchikov (KPZ) came up in 
[14] with a novel and far-reaching approach in order to understand the critical behav
ior of these models. Among these, one finds for example random walks, percolation as
well as the Ising model. The main underlying idea of their approach is to study these
models along a two-step procedure as follows:

— First of all, instead of considering the model on some regular lattice of the plane 
(such as Z2 for example), one defines it instead on a well-chosen "random planar 
lattice". Doing so corresponds to studying the model in its quantum gravity form. 
In the case of percolation, the appropriate choice of random lattice matches with 
the so-called planar maps which are currently the subject of an intense activity 
(see for example [22]). 

— Then it remains to get back to the actual Euclidean setup. This is done thanks to 
the celebrated KPZ formula which gives a very precise correspondence between 
the geometric properties of models in their quantum gravity formulation and 
their analogs in the Euclidean case. 

It is fair to say that the nature and the origin of such a powerful correspondence 
remained rather mysterious for a long time. In fact, the KPZ formula is still not rig
orously established and remains a conjectural correspondence. The purpose of this 
survey is to explain how the recent work of Duplantier and Sheffield enables to ex
plain some of the mystery hidden behind this KPZ formula. To summarize their 

(*) Research partially supported by ANR grant MAC2. 
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316 C. G ARB AN

contribution in one sentence, their work implies a beautiful interpretation of the KPZ 
correspondence through a uniformization of the random lattice, seen as a Riemann 
surface. 

To fully appreciate the results by Duplantier-Sheffield, we will need to introduce 
beforehand several related concepts and objects. More precisely, the rest of this in
troduction is divided as follows: first we give a short and informal discussion about 
quantum gravity, then we introduce two universality classes of random lattices. Then 
we will come to the KPZ formula through a specific example (boundary of Random 
Walks hulls), and finally after stating the main Theorem by Duplantier-Sheffield, we 
will state a beautiful conjecture they made. 

1.1. A first glance into quantum gravity 

Quantum gravity is intimately concerned with the following naive question: 

QUESTION 1.1. — How does a "uniformly distributed" random metric on the sphere 
S2 typically look ? 

What is naive in this question is the fact that one would first need to specify what 
we mean by "a uniform probability measure" on the space of metrics on S2. It turns 
out that defining a natural model of random metric on the sphere S2 already is a 
difficult and interesting problem. To illustrate this, let us ask a similar naive question 
in a one-dimensional setting: 

QUESTION 1.2. — For any a,b G Rd, how does a "uniformly distributed" path 
7 : [0,1] —» Rd going from a to b typically look ? 

This naive question was of crucial importance at the time Feynman developed the 
so-called path integral formulation of quantum mechanics. 

Already in this case, defining properly a "uniform measure" on paths was not an 
easy task. Yet, it had been mathematically settled prior to Feynman's work and 
corresponds to the well-known Brownian motion. 

In some sense, the purpose of quantum gravity is to extend Feynman path integrals 
to Feynman integrals over surfaces. Physicists are particularly interested in such an 
extension, since this would provide a powerful tool to deal with the quantization of 
gravitation field theory, a notoriously hard problem. (1) With this background in mind, 
the problem of defining a proper mathematical object for a "uniformly chosen random 
metric on S2" thus corresponds to defining a two-dimensional analog of Brownian 
motion, i.e. a kind of Brownian surface. 

W This approach towards the quantization of gravitation is called loop quantum gravity. 

ASTÉRISQUE 352 



(1052) QUANTUM GRAVITY AND THE KPZ FORMULA 317 

Even though physicists are primarily interested in the above continuum formulation 
of Question 1.1, a natural and very fruitful approach is to study an appropriate 
discretization of it and then to pass to the limit. This brings us to the next subsection. 

1.2. Discretization of Question 1.1 and planar maps 

In the one-dimensional setting, if one asks Question 1.2, it is not straightforward 
to come up right away with Brownian motion. But, if instead we start by discretizing 
Question 1.2, say by allowing random 1/n-steps, then we end up with the model of 
random walks. Brownian motion is then obtained as the scaling limit (as n —• oo) of 
these rescaled random walks. 

It is thus tempting to apply the same strategy to Question 1.1, namely to find an 
appropriate discretization. Let us explain below a possible discretization which was 
used initially in the physics literature and was studied extensively recently among 
the mathematical community. See for example [22] and references therein. We will 
see in Subsection 1.3 that there are other ways to discretize Question 1.1 which lead 
to different universality classes (2), but the discretization below is in some sense the 
simplest and most natural one regarding the statement of Question 1.1. 

The idea of the discretization we wish to introduce is to consider discrete graphs, 
with say n faces, which have the topology of a sphere S2 and for which the metric 
pn will correspond (up to a rescaling factor) to the graph distance, i.e. pn := n~adgr 
for some exponent a > 0. The exponent a will need to be well chosen as in the 
case of Random Walks, where space needs to be rescaled by yfn in order to obtain 
a limit. If we define our discretization in such a way that for each n > 1, there are 
finitely many such graphs, we can pick one uniformly at random (in the spirit of 
Question 1.1) which thus gives us a random metric space (Mn,pn). We can then ask 
the question of the scaling limit of these random variables (Mn,pn) as n —> oo in 
the space (K, dcii) of all isometry classes of compact metric spaces, endowed with 
the Gromov-Hausdorff distance do H (3)- The advantage of this setup is that (K, dcii) 
is a complete, separable, metric space (a Polish space) and is thus suitable to the 
analysis of convergences in law and so on. Note here, that even if one could prove 
that (Mn, pn) converges to a limiting random object (Moo, Poo), it is not clear a priori 
that the topology is preserved at the scaling limit or in other words, it needs to be 
proved whether (Mo^poo) a.s. has the topology of a sphere or not. If all these steps 

(2) Similarly as Random Walks with non-L2 steps converge to other Levy processes than Brownian
Motion.
(3) Informally, if (E\, d\) and (E2, cfc) are two compact metric spaces, then de H (El, E2) is computed
as follows: we embed E\ and E2 isometrically into some larger metric space (E,d) and we compute
using the common distance d the distance in the Hausdorff sense between the two embeddings. Then
we take the infimum over the possible such embeddings. See [22].
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318 C. GARBAN 

can be carried on, then this would give us a good candidate (Moo, Poo) for the random 
object used in Question 1.1. 

Let us now introduce one specific discretization. 

Definition 1.3 (planar map, following [20]). — A planar map M is a proper embed
ding of a finite and connected graph into the two-dimensional sphere §2, which is 
viewed up to orientation preserving homeomorphisms of S2 (i.e. up to "deformations"). 
Loops and multiple edges are allowed. The faces of M are identified with the con
nected components of §2 \ M and the degree of a face f is defined as the number of 
edges incident to f, with the additional rule that if both sides of an edge belong to 
the same face, this edge is counted twice. 

Finally, for combinatorial reasons, it is often convenient to consider rooted planar 
maps, meaning that one particular oriented edge ~e is distinguished. The origin of 
that root edge e is called the root vertex 0. See Figure 1 for an instance of a planar 
map where all faces happen to be squares. 

~e 

FIGURE 1. This is a planar map of the sphere S2 with exactly 1 7 squares 
(this includes the exterior square which is also in the sphere). 

Definition 1.4 (p-angulations of the sphere). — For any integer p > 3, let M£ be the 
set of all rooted planar maps with n faces, where each face has degree p. The elements 
of M£ are called rooted planar p-angulations, (p = 3 corresponds to triangulations 
and p = 4 to quadrangulations). 
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Since planar maps are defined up to deformations, there are finitely many rooted 
planar maps in M^, for any n > 1. For example, one has 

d+r+d+r 
2 

n + 2 
"3 Catn — 

2-3n f2n\ 
(n + 2)(n + l) \n ) 

The appearance of the n-th Catalan number here is explained through the celebrated 
Cori- Vauquelin-Schaeffer bijection, which gives a one-to-one correspondence between 
labelled plane trees and rooted quadrangulations of the sphere (see for example [22]). 

For a fixed integer p > 3, we will denote by mn G a sample of a planar 
map uniformly distributed over M£. Since in Question 1.1, we were interested in a 
uniformly distributed random metric on §2, it makes sense to consider the random 
variable (mn, n~adgr) seen as a random point in the above space (K, doti)-

The study of these random planar maps has now a long history (see for example 
[22, 23, 19, 24]) and has culminated in the following breakthrough result proved 
independently by Le Gall ([20]) and Miermont ([25]) <4>: 

THEOREM 1.5 (Uniqueness of the scaling limit). — There exists a (unique) random 
compact metric space (irioo, D*) with values in K such that for any p G 3 U (2N + 4), 
there is a positive constant Xp such that as n —> oo, 

(mn 
Xp 

nV4 igr) 
(d) 

(moo,Z?*) 

in the Gromov-Hausdorff sense. This random compact metric space is called the 
Brownian map. 

Furthermore the following property holds. (It was first established in [23]. See also 
[24] for a different proof.) 

THEOREM 1.6 (Sphericity of the Brownian map). — Almost surely, the random 
metric space (moo,£**) is homeomorphic to the sphere S2. 

This last theorem thus ensures that in some sense the Brownian map (moo, D*) is 
a good candidate for the "uniform" random metric on S2 considered in Question 1.1. 
The only drawback being that the metric space (moo, D*) which is a.s. homeomorphic 
to (S2, || • 11̂ 3) is not provided with a "canonical" embedding into the sphere (5). We 
will come back to this question of embedding later. 

(4) To be more precise, Miermont's proof is restricted to the case p = 4 but gives slightly stronger 
estimates on the structure of the geodesies while Le Gall's proof is more general in the sense that it 
proves the result also for p = 3 and all even p greater than 4. 
(5) This would be the case for example if (raoo,D*) happened to be a nice Riemann surface, but it 
is not. 
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1.3. Quantum gravity coupled with "matter" 

Coming back to our earlier motivation, i.e. the study of statistical physics models on 
regular lattices, we will now introduce models of random lattices which are naturally 
associated with statistical physics models. The first one will be associated to the Ising 
model and will fall into a different quantum gravity universality class than the above 
planar maps. 

1.3.1. Quantum gravity coupled with Ising model. — The standard and simplest way 
in statistical physics to model ferromagnetic matter (like a piece of iron for instance) 
is through the so-called Ising model It is defined on a graph G = (V,E) which is 
supposed to represent the metallic structure of our ferromagnet. For a flat piece of 
iron, one might choose 1? for example. On a finite graph G = (V, E), it is defined as 
a probability measure on spin configurations a G {—1, l}y, where if x G V, crx = -fl 
means that the spin of the atom at site x is oriented in the upward direction. The 
probability measure P = P j is such that each spin configuration a has a probability 
proportional to 

P j a oc exp J 
e=(x,y 

d+e+e+v+r 

where the parameter J represents the strength of the electromagnetic interaction 
between atoms (6) . Note that the higher J is, the greater the tendency is for the spins 
to align in the same direction. In order to express the probability measure P more 
explicitly, it is natural to introduce the partition function of the graph G 

Zj = Zj(G) := 

<re{-iA}v 
exp J 

e=(x,y) 
0-X0~y) , 

so that 
d+r+d+rd 1 

Zj 
exp i J 

e=(x,y) 
0~X0~y) • 

The Ising model has been studied extensively in the physics and mathematical 
community over the last 70 years. See for example [32] and references therein for a 
recent breakthrough paper on the subject. 

Now the idea of studying such a model from a quantum gravity perspective is to 
sample a spin configuration a together with a random base-graph G. This is what 
one calls coupling quantum gravity with the Ising model (i.e. we are looking for a 
probability measure on pairs {G = (V, £?), a G {—1,1}V} ). One way to proceed would 
be to first sample the random lattice G, using the above planar maps mn uniformly 

(6) Often, instead of the parameter J, one uses the inverse temperature (3 := fc^T and the Ising 

model is defined so that [<J] oc e ^ ^e=(x,v) ax<Ty ^ mainly for notational reasons, we will not 
use this point of view here. 
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chosen among and then to sample an Ising configuration a on the graph mn 
according to the above model P = Pj,mn • Doing so would not correspond so much to 
coupling quantum gravity with the Ising model, since the marginal of (mn,cr) on the 
graph-component would just be the above model of planar graphs. So we will use a 
more intricate way of coupling the graph with its spin-configuration. 

If we restrict ourselves to the case of planar graphs, the standard quantum grav
ity/Ising coupling works as follows: fix p > 3 and some large n > 1. For integrability 
reasons, the spins will be indexed by the faces of the planar maps m G M£ instead of 
the vertices. (In other words, we will consider our Ising model on the dual graphs m* 
which are no longer in M^). With this slight change, a natural idea is to define a 
measure F = Pj>n on couplings (mn,<r) G x {—1,1 }n (recall that planar maps 
in have exactly n faces) so that 

Pj>n [m, cr] oc exp (j 

ssusus 
af(Tf, 1 , 

where the sum is over pairs of adjacent faces in m. See Figure 2. 

+ 

+ 
+ \ 

FIGURE 2. This is an Ising spin configuration on the same quadrangulation 
as in Figure 1 (were we removed the inside edges for convenience). 

Note that, unless J = 0, the marginal on m (the graph-component) is no longer 
uniformly chosen among M£, but follows a law which highly depends on the magnetic 
strength J . In probabilistic terms, the marginal on mn corresponds to weighting mn 
by its Ising partition function Zj(mn). As in the case of a fixed graph G, it is natural 
to define the following annealed partition function 

Zn(J) := 
meM£,CTE{-l,l}m 

exp ( J JfCTfA = 
mEM£ 

Zj{mn). 
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Now, recall the KPZ formula is supposed to relate a critical Euclidean Ising model 
(say on Z2) with a critical Ising model defined together with a random planar map 
m G |Jn in the above fashion. Therefore, we need a way to detect a phase transi
tion in each model, Euclidean and quantum gravity. Among the many ways to "detect" 
phase transitions, one is to notice a failure of analyticity for certain thermodynamic 
quantities. In our case, partition functions enable us to detect a phase transition. 
More precisely, for the Euclidean Ising model on Z2, for each n > 1, let Zn(J) be the 
above partition function for the graph Gn = [—n, n]2DZ2. Then, from the work of On-
sager [26], it can be shown that as n goes to infinity, the functions J H > ^ log Zn(J) 
converge to a limiting function / ( J ) , called the free energy which is analytic for all 
values of J > 0 except at J = J^ucl = \ log(l + y/2). On the quantum gravity side, 
the natural quantity to look at is the so called grand canonical ensemble partition 
function defined as 

Z(/3,J) := 
i>l meM£,<r€{-l,l}n 

c-/9 |m |eJ£/~/' 

dr 

n>l 

d+r+d+r+d+d+r 

The reason why such an annealed partition function is considered is because it was 
computed exactly by Kazakov ([13]) in the case of quadrangulations (p = 4). His 
computation relied on a deep relationship with some (random) matrix models. This 
type of exact computation occurs for what one calls exactly solvable models and is the 
reason why we changed slightly the definition of Ising model from vertices to faces. 
The exact computation by Kazakov enables to detect a bi-critical point (/?c, Jc) (7) 
around which the analyticity of Z({3, J) is broken. The analysis of Z around its bi-
critical point gives detailed information on the critical behavior of the system in its 
quantum gravity formulation. See [21] and Appendix B in [9] for thorough discussions 
of this. 

As mentioned above, the scaling limit as n —> oo of these planar maps mn G 
weighted by ZjC=\N2(mn) will fall in a different universality class than the "uniform" 
(or unweighted) planar maps. We will come back to this later. 

1.3.2. Quantum gravity coupled with random walks, self avoiding walks or percolation. 

— If one wants to study statistical models such as random walk, percolation or self-
avoiding walks (SAW), it turns out that all of them are naturally coupled with the 
planar maps introduced in Subsection 1.2. This regime corresponds to what one calls 
the pure gravity regime. It means in some sense that the random geometry of the 
planar map is insensitive to the model it is coupled to (as opposed to what happens 

(?) When p = 4, one has Jc = J®G = In 2. 
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with Ising model). We will describe this pure gravity case in more details in the next 
subsection through the example of random walk. 

1.4. The KPZ formula in the special case of random walk and Brownian 
motion 

Let us start by the Euclidean case. Consider a random walk Xt on the domain 
AJV : = [—N, N]2 starting at the origin until it reaches the boundary <9A;v. One can 
look at several subsets of interest about this random walk among which: 

(i) The range 91^ of Xt, i.e. 01^ := {Xt}. 

(ii) The set of cut-points of Xt, i.e. the set of points x G AJV so that removing 
x disconnects the range into 2 disjoint components. 

(iii) The set of frontier points £7^, i.e. all the points on the range that are connected 
to 8AN in the complement AN\&N> 

See Figure 3. One way to measure the typical size of a random subset of AJV is via 
the following notion of scaling exponent. If K = (if/v)jv>i is a certain sequence of 
random subsets of A^v, then its Euclidean scaling exponent is denned as 

( I ) x = x(K) := lim 
i\ —>oo 

\ogE[\KN\/N2] 

logl/N2 

Note that we are being informal here since it might be that this limit does not exist. 
To be more rigorous, one should define instead upper and (lower) scaling exponents 
by using lim sup (and liminf) instead. Nevertheless, to simplify the exposition we will 
neglect this issue in the remaining of this text and will assume that the random sets 
we will consider are such that these limits always exist (proving such a convergence 
can be very hard for some models and remains in many cases an open problem, for 
example scaling exponents for critical percolation on Z2). Note also that the greater 
the exponent x = x{K) G [0,1] is, the "smaller" the random sets KN are since having 
scaling exponent x means that asymptotically, KN is of size « 7V2-2a\ 

The scaling exponents for the above subsets of random walk paths have been the fo
cus of an intense activity over the last 20 years or so. In fact the road which culminated 
in their evaluation is quite an interesting story. Their values were first conjectured 
by Duplantier and Kwon in [10] based on conformai invariance and numerical simu
lations. Somewhat surprisingly, the powerful machinery of conformai field theory was 
unable at giving theoretical predictions for these exponents. In 1998, Bertrand Du
plantier obtained in [8] (on a non-rigorous basis) these exponents with a completely 
different approach: his idea was to study a random walk path on a random planar 
map mn and to compute the scaling exponents, called quantum scaling exponents 
for the frontier and cut points of the random walk on mn. Once this was achieved, 
he was able to recover his previous conjecture via the KPZ formula. His work was 
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AAT 

d+r+d d+r 

d+r+d+r 

Wm, 

FIGURE 3. 

partly based on the seminal work [18] on Brownian intersection exponents. Finally, 
the story ends with the mathematical derivation of these exponents in [16, 17] which 
used yet another approach: the Schramm-Loewner-Evolution SLEK processes (with 
K = 6 here). 

Here is more precisely how it goes. Imagine that we have at our disposal a natural 
model of planar maps mn with boundary (i.e. with the topology of a disk), instead 
of planar maps mn with the topology of a sphere. This can be done in such a way 
that it gives a different, yet interesting model of planar maps: see [6] where Bettinelli 
considers random quadrangulations mn with n faces and which are such that dmn is 
of order ^fn. Let thus mn be sampled uniformly among rooted quadrangulations with 
n faces and boundary of length y/n. Let Wm be a simple random walk on this graph 
mn starting at the root of mn until it reaches the boundary dmn. See Figure 3. One 
can consider the exact analogs of the above sets, i.e: 

(i) The range 9ln of Wm, i.e. 0ln := {Wm}. 

(ii) The cut-points *6n of Wm, i.e. the set of points x G mn so that removing x 

disconnects the range into 2 disjoint components. 
(iii) The frontier points £7n, i-e. all the points on the range that can be connected 

to dmn via the complement mn \ 0ln. 

Similarly to the Euclidean case, iî K = (Kn)n>i is a sequence of random subsets 
of mn, then its quantum scaling exponent is defined as: 
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(2) A = A(K) := lim 
n—>-oo 

E[log|Kn|/|mn|" 

logl / |mn| 
= lim 

n—>-oc 

E[log|Xn|/nl 
log 1/n 

where, once again, we implicitly assume here that the limits exist. 
Even though it was not exactly in the same setup, Duplantier determined in [8] the 

values of these quantum scaling exponents. He found A(£7) = 1/2 and A(g>) = 3/4. 
Now for this universality class (i.e. the pure gravity case of "uniform" planar maps 
mn), the KPZ formula reads as follows: the scaling exponents x and A of a certain 
subset of a random walk path in the Euclidean and quantum cases are related by the 
following quadratic expression: 

(3) X = 
d 
3' 

2 + U . 

One thus finds x(£F) = 1/3 and x{*6) = 5/8. Note that for the range 9i, it is well 
known that an Euclidean random walk Xt visits about N2/ log N sites before touching 
dAjsr, this means that x(&) = 0 which is a fixed point of the above KPZ formula. This 
thus suggests that A ( ^ ) = 0 as well, which in turn means that the random walk Wm 
should visit iV^nin)!1-^1) = n1-0^1) sites of the planar map mn. This is a non-trivial 
fact in its own, which illustrates that the KPZ formula (if true) can be powerful in 
both directions. 

1.5. The KPZ formula in general 

The planar maps mn uniformly chosen among some M£ for some p > 3 are the 
natural universality class for studying random walk on the quantum gravity side. 
Nevertheless, one might also consider an independent random walk on a planar map 
mn sampled together with an Ising model as we explained above. If one would do so, 
this would affect the typical size of the sets î?n and £7n and one would find different 
values for the quantum scaling exponents Aising(57') and AiSing(î?). This reflects the 
fact that the two different procedures we gave to sample planar maps do not fall 
asymptotically in the same universality class. For this Ising universality class, the 
KPZ relation reads as follows: 

(4) X = 
3 

4 
kising 1 

1 

4 
ising • 

Such a correspondence can be very useful to relate critical exponents for the Ising 
model in its quantum gravity form with the analogous Euclidean critical exponents. 
For example, one might hope that if Kn denotes the largest + cluster in the random 
map mn weighted according to Zj(mn), then its quantum scaling exponent AiSing 
should relate to its Euclidean analog through the above formula. Yet, one has to be 
careful with such statements since, especially away from the pure gravity case (i.e. 
uniform planar maps), it is in general a subtle affair to know which critical exponents 
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are allowed to go through the KPZ formula or not. (8) In the case of the Ising model, 
quantum critical exponents are usually derived from the analytic study of Z(/3,J) 
near its bi-critical point and are then transfered to the Euclidean setting using (4). 
See [9]. 

One can now state the general KPZ formula: consider some statistical physics 
model defined together with a random planar lattice (in the suitable universality 
class). Then, the quantum and Euclidean scaling exponents A and x which describe 
the critical properties of the model, are such that the following quadratic KPZ formula 
holds 

(5) X = 
72 

4 
^ 2 + (1 -

7 \ 

Si 
A, 

where the parameter 7 G M+ determines in which universality class the model is. 
We thus find that pure gravity corresponds to 7 = \/%J3 while Ising model corre
sponds to 7 = A/3. More generally, it follows from this correspondence that critical 
two-dimensional models form in some sense a one-dimensional family space. This is 
consistent with the recent theory of SLEK processes which are aimed at describing 
interfaces of critical two-dimensional systems and also form a one-dimensional family 
of processes indexed by K > 0. In fact, the two parameters are related one to another 
by 7 = V^-

1.6. Why go through quantum gravity ? 

The KPZ formula becomes particularly useful (at least on a non-rigorous level) 
when the critical exponents of a particular model happen to be much easier to com
pute, say, in its quantum gravity form than in its Euclidean one (or vice-versa). This 
is exactly what happens in the case of random walk ([8]). 

1.6.1. Quantum gravity coupled with random walk. — Imagine we want to study the 
exterior frontier £7̂  of a random walk Xt in 1? as t increases {fft is defined here as 
the set of points in &t which are connected to infinity in 1? \ &t). For each T > 1, 
the evolution of &t for t > T will not depend of what the random walk did inside 
the hull 2)T5 defined as the complement of the unique infinite connected component 
of 1? \ 91T. Yet the evolution of £7 ,̂ t > T, will depend of the complicated law of the 
boundary 9®T — &T C Z2 which as T —• 00 looks more and more like a fractal set. 
On the quantum gravity side, such geometric processes as {7t behave in some sense 
in a much more Markovian way. 

(8) The subtlety lies partly in the fact that one needs the set K to be independent of the field elh 
in the main Theorem 1.10, while here the largest + cluster would be highly correlated with the 
field e^h. 
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To illustrate this, let us briefly describe a striking recent work by Benjamini and 
Curien [4]. In their work, they rely on an infinite version Qoo of the above rooted 
quadrangulations of the sphere mn G M^. Qoo is called a rooted UIPQ (for Uniform 
Infinite Planar Quadrangulations) and can be seen as a local limit of the quadran
gulations mn as n —• oo. They consider a random walk Wm starting at the root 
of Qoo and they explore the planar map Qoo along the random walk path Wm. The 
crucial observation which goes back to [1] is that if at time m, U'm denotes the exte
rior boundary of the domain which was explored by the random walk so far (9), then 
the law of the infinite connected component \ 2)m depends only on the length 
of dÇ)m — Srm and not at all on its shape. This simplifies things tremendously. Yet, 
it would remain to control how \£Fm\ and |2)m| both increase as a function of m. This 
part turns out to be difficult but Benjamini and Curien are able to obtain in [4] that 
as m —• oo, \!7m\ behaves like \®m\1/2. This provides a rigorous derivation of the 
identity A (£7) = 1/2. (They also obtain another quantum scaling exponent for the 
so-called frontier points.) 

These nice spatial Markovian properties were also crucial in the seminal work on 
the quantum scaling exponents of random walk by Duplantier ([8]), where various 
quantum scaling exponents for the random walk were determined through an asymp
totic analysis of the partition function of random walks coupled with planar maps. 

1.6.2. Quantum gravity coupled with percolation. — Critical percolation has also been 
successfully analyzed from the quantum gravity perspective. Various quantum crit
ical exponents for percolation were determined in [29] and were translated to the 
Euclidean setting via the KPZ formula. This is probably the first explicit use in 
the physics literature of the KPZ formula. In the mathematics literature, there is a 
work in progress by Angel and Curien [2], which gives among other things a rigorous 
determination of the critical points for bond percolation on the UIPT and UIPQ (the 
first one is the analog of the above with triangles instead). Using the Markovian 
structure we briefly sketched above, they are able to compute some of the quantum 
scaling exponents of these critical percolation models, which is a very interesting step 
towards the understanding of statistical physics models on random lattices. 

1.6.3. Quantum gravity coupled with Ising model. — The reason why it is interest
ing to study the Ising model in its quantum gravity form lies in the fact that (as 
was mentioned above), Kazakov was able to compute exactly the annealed partition 
function 

Z(0,J) = 

d+r+d 

e-Pn 

me M4 

d+r+d+r+d 

(9) Some care is needed here, since one has to prove that under the law of Qoo, there is a unique 
infinite connected component in Qoo \ &m, but we will not enter in more details here. See [4]. 
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As hinted previously, various quantum critical exponents for the Ising model can be 
extracted from the behavior of Z((3, J) near (/?c, Jc) and can be translated to the 
Euclidean setting via the KPZ Formula (5) with 7 = \ / 3 . 

It is now time to introduce the main result we wish to explain in this survey. 

1.7. The main result by Duplantier-Sheffield and a conjecture on the 
embedding of planar maps 

What remains mysterious so far in the KPZ correspondence we just described is the 
fact that it relates scaling exponents of sets which do not "live" on the same space. 
For example it relates the scaling exponent of cut-points of a random walk living 
in AN with the (quantum)-scaling exponent of cut-points of a random walk living on 
a random planar map mn. To overcome this, Duplantier and Sheffield discovered a 
setup in which the random set we are interested in, say K, lives on some single space 
(say [0, l]2 or S2), but its size, given in terms of its scaling exponent, can be measured 
in two different ways: an "Euclidean" way which will output some Euclidean scaling 
exponent x = x(K) and a "quantum" way which will output a possibly different 
quantum scaling exponent A = A (if). Their setup is built so that x(K) and A (if) 
will satisfy to the general KPZ relation (5). (More precisely for each value of 7 > 0, 
they found an adequate setup). 

Before going into the details of their setup, one sees here that we are getting 
closer to our initial naive Question 1.1. Indeed, if one had at our disposal a "uniform" 
random metric p on §2, one could evaluate the size of K either using the Euclidean 
metric || • || (which would give us a scaling exponent x) or using the random metric p 
(which would give us an exponent A). Now from the preceding discussions, x and A 
should satisfy to (5) with 7 = y/8/3. Unfortunately we did not quite succeed yet in 
answering Question 1.1. Indeed, Theorems 1.5 and 1.6 provide us with a "uniform" 
probability distribution on compact metric spaces which a.s. have the topology of a 
sphere, but there is (at least for the moment) no canonical way to embed the limiting 
space (moo,/)*) into the sphere. In fact, because of this embedding issue, a proper 
answer to Question 1.1 remains an important open problem. 

Yet, before passing to the limit n —> 00, there are several ways to "naturally" embed 
the planar maps mn into the sphere. We present two of them. 

1.7.1. Embedding of planar maps seen as Riemann Surfaces. — The main idea here 
is that one can view each planar map mn G as a Riemann surface. For this, view 
each face as a polygon (here a square) on which we give the obvious flat conformai 
structure given formally by z > z. By the Schwarz reflexion principle, one can easily 
glue together the conformai structures of two adjacent faces along their edge. Some 
care is needed around each vertex x G mn since the angle around x might not be 
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2TT. Yet, one can use a local chart around each such x of the form z \—> where 
k is the degree of vertex x (this corresponds to the fact that conic singularities of 
complex manifolds are removable). Altogether, this gives us a complex manifold of 
dimension one endowed with a finite atlas indexed by the set of edges and vertices 
of mn. By the Riemann uniformization theorem, since mn ~ S2, mn equipped with 
the above conformai structure can be mapped conformally to §2 and the embedding 
is unique up to Môbius maps of the sphere S2. We thus found a natural way (up 
to Môbius transformations) to embed any planar maps mn into §2. The same idea 
enables us to embed in a conformai way planar maps mn with the topology of a disc 
(with dmn ^ 0) into the disc D or into [0, l]2. 

1.7.2. Embedding of planar maps via circle packings. — If one considers planar maps 
mn G (i.e. triangulations of the sphere), then by Kobe Theorem, there is a unique 
(again up to Môbius transformations) circle packing in S2 whose connectivity graph 
corresponds to mn. See Figure 4. 

This circle-packing embedding is different from the one given by the conformai 
structure, yet one might conjecture that if mn is sampled uniformly from M^, then 
the two embeddings should look almost alike with large probability. 

1.7.3. Scaling limit of planar maps embeddings. — Let mn C S2 be a "natural" em
bedding of a random planar map mn G into §2 (mn may be sampled either uni
formly as in Subsection 1.2 or weighted according to some statistical physics model as 
in Subsection 1.3). To each embedding mn, the renormalized graph distance n~adgr 
on the vertices of mn C S2 can be easily extended to a metric pn on the whole sphere 
S2. If mn is sampled uniformly in M^, then we know from Theorem 1.5 that one 
should choose a = 1/4. If one could prove in this case that as n —» oo, the (random) 
metric pn on §2 would converge in law, then it would give a "good" answer to Question 
1.1 and it would enable us to build a setup for a concrete interpretation of the KPZ 
formula when 7 = 

In some sense the idea of Duplantier and Sheffield is to focus on measures instead 
of distances. If îîîn C S2 is a natural embedding of a planar map mn, then it is natural 
to consider the pushforward in S2 of the Lebesgue measure on mn, renormalized so 
that mn has unit area (i.e. all faces of mn have Lebesgue measure exactly n_1). Let 
us denote by jin this pushforward measure on S2. /in is thus a random measure on the 
sphere with /xn(S2) = 1. As one can see from Figure 4, one expects that \xn should 
look quite singular with respect to Lebesgue measure on §2 (or D if one considers 
maps with the topology of a disc). Let fn be the Radon-Nikodym derivative of jin 
with respect to the Euclidean Lebesgue measure, then we expect fn to become more 
and more "rough" as n —» 00. This brings us to the question. 
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FIGURE 4. This picture is a simulation by Maxim Krikun which represents 
a circle packing of a uniform triangulation on the disc. 

QUESTION 1.7. - (i) If mn is sampled uniformly in is it the case that fin 
converges as n —> oo to a random measure on S2 ? 

(ii) What ifmn G is weighted by Zjc(mn) ? 

Solving this question is a major open problem in the area, but Duplantier and 
Sheffield made a decisive step in this direction: they managed to identify an explicit 
candidate for the scaling limit of /xn, for which the KPZ equation holds (in the sense 
of measures). This candidate as we will see in more details below is given by the 
exponential of a Gaussian Free Field. 
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1.7.4. Setup and statement of the main Theorem. — The common base space will be 
[0, l]2 and we will consider some deterministic subset K C [0, l]2. Now, we consider 
two measures on this space: 

(i) The Lebesgue measure £ on [0, l]2 
(ii) A random measure fi = /i7 which can be formally written as = elh, where 

h is an instance of a Gaussian Free Field. 
The Gaussian Free field (GFF for short) is a certain Gaussian process which will 

be defined in Section 2. It is "too rough" to live in the space of functions on [0, l]2 
(say L2([0,1}2)) and has to be viewed instead as a random Schwartz distribution. See 
Figure 5 for a representation of how a regularized GFF on D looks like. 

FIGURE 5. An instance of a Gaussian Free Field h in the disc D with 
Dirichlet boundary conditions. Picture by Nam-Gyu Kang. 

Since h is not a proper function, elh is not well-defined a priori. This will be the 
content of Section 3 to give a meaning to such measures. See Figure 6 for an illustration 
of these measures when 7 6 {3/2, 5}. These random measures are supposed to model 
the effect of quantum gravity on our base-space [0, l]2. They are called Liouville 
measures. 
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FIGURE 6. In each picture, all the plain dyadic squares have about the 
same quantum area <5. The picture on the left is for 7 = 3/2 while the 
picture on the right which looks much more singular is for 7 = 5. 

Let us now define Euclidean and quantum scaling exponents in this setting. For 
this, following the notations of [11], we will need the following notion of Euclidean 
and quantum balls. 

Definition 1.8 (Euclidean and quantum balls). — For any point z £ [0, l]2 and any 
e, S > 0, define 

(i) Be (z) to be the Euclidean ball of radius e around z. 
(ii) Bs(z) to be the ball BT(x) with r := sup{r > 0, n{Br(z)) < 6}. Bs{z) will be 

called the quantum ball around z of quantum area S. '10' 

Definition 1.9 (Scaling exponents). — Let K C [0, l]2 be fixed. 
1. The Euclidean scaling exponent x = x(K) is defined as 

(6) x = x(K) := lim logP[Be{z) DK ± 0] 
log e2 

where the point z is sampled uniformly on [0, l]2. 
2. The Quantum scalinq exponent A = A(K) is defined as 

(7) A = A(K) := lim 
logE[n[B5(z) 0 ^ / 0 ] ' 

log 6 

where z is "sampled" according to the a.s. finite measure /x = elh and E averages 
over the random measure fi. 

(10) Note that since we do not have at our disposal any "quantum distance" on S , our definition of 
quantum balls still relies somewhat on the Euclidean one. Nevertheless, it is believed that this slight 
Euclidean use should "average out" as 5 —• 0. 
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As we did before, we implicitly assume here that the limits exist. 

Note that these definitions are the exact analogs of Equations (6) and (7) . Indeed 
if one believes in jin —> /i and if one approximates K to be a subset Kn C iîîn, then 
with 5 = 1/n one has 

A = A(K) « 
logE\u\Bs(z)nK ± 011 

log 6 

d+r log E \fin I the face containing z ~ \in in îîîn is contained in ifn] ]
log 1 /n 

d+r 
logE[ |#n | /n 

log 1/n 

and similarly for x = x(K). We are now in position to state the main theorem of 
Duplantier and Sheffield. 

THEOREM 1 . 1 0 (Duplantier and Sheffield [11]). — Consider the Liouville measure 
= elh on the unit square [0, l]2 and let K be a (deterministic) subset of[0, l]2, such 

that the limits in (6) and (7) exist. Then i / 7 G [0 ,2 ) , the quantum scaling exponent 
A = A(K) for the Liouville measure /i7 almost surely satisfies to the KPZ formula: 

(8) X = 
72 

4 
\2 1 -

72 

4 
A. 

Remark 1.11. — Note that in the statement of the theorem, by Fubini's theorem, 
K may also be a random subset of [0, l]2 but in that case, it needs to be chosen 
independently of /i7. 

Their theorem gives a concrete setup in which the KPZ formula holds and enabled 
Duplantier and Sheffield to state the following striking conjecture. 

CONJECTURE 1 . 1 2 (Duplantier, Sheffield [11]). — / / mn G M£ are sampled 
according to a statistical physics model in the ^-universality class, then the pushfor-
ward measures jin of any "natural" embedding mn C S2 of mn weakly converge as 
n —> 00 towards a random measure which is closely related to the Liouville measure 
/i7 = elh, where h is an instance of the Gaussian Free Field on the sphere S2 
See Remark 2.20 for a definition of the GFF on the sphere S2. 

The reason why the limiting measure is not given exactly by the Liouville measure 
elh stands from the fact that the measures \in are renormalized to have measure one, 
while elh has a random a.s. finite total mass. The actual limit is not given simply 
by conditioning elh to have measure one, nor by renormalizing by / e7/l, it is slightly 

If one keeps track of the root, asymptotically it will be distributed according to /z7 = elh. 
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more subtle than that. See Section 6 in [31] for a precise conjecture on the limiting 
measure. 

The rest of this survey is divided as follows. In Section 2, we will give a short 

introduction to Gaussian Free Field. Then, along Section 3, we will give a meaning 

to the Liouville measures //7 = elh. In [11], the Liouville measures are defined for all 

7 € [0,2), we will give here a simplified proof which holds only for 7 G [0, \/2). Finally, 

in Section 4, we will sketch the main ideas behind the proof of the main theorem. 
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2. THE GAUSSIAN FREE FIELD (GFF)

We will give here a short and by no means self-contained introduction to the 
Gaussian Free Field. We refer to [7, 30] for complete references on this topic. We will 
try to give a certain flavor of what the GFF is and at the same time, we will introduce 
some of its key properties which will be needed later. 

2.1. Discrete Gaussian Free Field (DGFF) in the square 

Let us start by a discrete version, known as the Discrete Gaussian Free Field. To 
simplify, we will consider the case of the square domain [0, l]2. 

Definition 2.1. — The DGFF in A^v := ^ Z 2 D [0, l]2 with Dirichlet boundary condi

tions is a probability measure on functions h,N ' &N —• R such that h\ Q^N = 0 (where 

ÔAM : = TTZ2 H d[0, ll2) and with densitv 

d¥\hN] := a
z 

exp 
1 
2 
dr 

(hN(x)-hN(y))2) \dhN(x), 

where the sum is over nearest neighbor pairs x ~ y £ AJV, and Z is a renormalizing 

constant to make it a probability measure. See Figure 7 for a sample of a DGFF. 

Due to the Dirichlet boundary conditions, the density is also equal to 

Z_1 exp (l/2(/ijv, Aftjv))? where A is the discrete Laplacian. Written this way, 

one sees that DGFF is a Gaussian random surface with covariance matrix given 

by A - 1 . It is a standard fact that A-1 is given by the matrix [GN(X,y)]x,yeAN, 
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FIGURE 7. A sample of a DGFF on A21. Picture by S. Sheffield. 

where G^(x,y) is the Green's function for the Random Walk in killed on dA^. 
(A good reference for discrete Green's functions is for example the book [15].) As 
such, one may give the following equivalent definition of DGFF: 

Definition 2.2. — The DGFF on Ajy with D.b.c is the centered Gaussian process 
indexed by the points x e AN and with covariance structure given by 

Cav[hN(x),hN(y)] = E[hN(x)hN(y)] :=GN(x,y). 

Remark 2.3. — Just to give an idea of the amount of fluctuations, "in the bulk", say 
at xN •- (N/2, N/2), one has 

(9) Vax[hn(xN)] = GN(xN,xN) x logiV. 

Remark 2.4- — If D S C is any domain of the plane, one can define similarly a DGFF 
hjsi with D.b.c. in the domain D by using the discretization '•= j^Z2 PI D (and 
with boundary defined as ODN •— }Z2nDc). 

It turns out that as N —> 00, ftAT converges (in a certain sense to be precised later) 
towards a conformally invariant object called Gaussian Free Field. 
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2.2. A first attempt at defining the Gaussian Free Field 

If we are following Definition 2.2, it is tempting to define the continuous limit of hjy 
in the domain D as the centered Gaussian process indexed by the points x G D with 
the following covariance structure: 

(10) Cov[h(x), h(y)] := Go(x,y) for all x, y G D , 

where Go(x,y) is the Green's function of the domain D. See the later Subsection 2.4 
for a definition (and more) on continuous Green's functions. Unfortunately, this defi
nition is "ill-posed" since, as suggested by Remark 2.3, one would have for any x G D 

Var[/i(x)] := GD(X, X) = oo . 

One way to overcome this would be to regularize h using smooth functions, and 
this is what we will do when we will introduce the e-regularization he(z). Before, let 
us follow a different approach to define GFF inspired by our initial Definition 2.1. 

2.3. GFF as a Gaussian process indexed by Sobolev space 

Following Definition 2.1, it is natural to look for a probability measure on functions 
h : D —> r satisfying = 0 whose intensity, informally would be given by 

( H ) F[h] oc exp 
1 
2 D 

\\Vhf) . 

In order to find a well-defined object corresponding to this informal definition, it 
is useful to introduce the following Hilbert space: 

Definition 2.5 (The sobolev space ttf1). - Let = *6r> be the set of smooth func
tions / with compact support in D. We define the space ^{1{= ${\{D)) as the closure 
of for the norm 

LL/H2V : = A" 
D 

L | V / | | 2 . 

^f1 is a separable Hilbert space for the scalar product 

( / ,o)„ := 
hh 
2tt 

d+r+d+r+d+ 

We are thus trying to define a random function h G !HX such that (12) 

PlTil oc exp i 
1 , 

2 " 
d+r+d 

To gain some intuition, if the Hilbert space ttt1 happened to be finite dimensional, 
it would be some ( r f c , || • H2), with k > 1. In that case, if e i , . . . , e& is any orthonormal 

(12) ^e do not pay attention to the constant in the exponential through this informal discussioi 
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basis of RFC, then a random variable x G Rk with intensity F[x] OC e 1/2HXH2 can 
alwavs be written 

x = 
k 

i=l 
CLi &i , 

where (a*) are independent Gaussian random variables. 
Since tH1 is a separable Hilbert space, let (en)n>i be an orthonormal basis for $C . 

By analogy with the finite dimensional case, we want to define the Gaussian Free 
Field h as 

(12) h:= 

n>l 
d+r+d+r+d 

where (an) are independent Gaussian variables ~ ^ ( 0 , 1 ) . The difference with the 
finite-dimensional case is that for any k > 1, the above Gaussian random variable x 

was almost surely in RFC, while in our present case, it can be shown that almost surely, 
the above formal series (12) does not converge in tH1. 

In fact, it does not even converge in L2(D), and as such the Gaussian Free Field h 
will not be defined as a proper function, but instead as a generalized function in 0 ' 
(i.e. a Schwartz distribution). More precisely, it can be shown (see [7]) that almost 
surely, the above sum h converges in the space $ï~x (13). 

Definition 2.6. — From now on, the Gaussian Free Field with Dirichlet b.c. in a 
domain D will be defined as the random distribution 

h:= 
n>l 

y an en a.s in ${ 1 

where (en)n is an orthonormal basis of $£1{D). (The Dirichlet b.c. is hidden in the 
fact that any / G ttt1 satisfies f\QD — 0.) 

Example 2.7. — In the case where D is the square [0, l]2, one can write down an 
explicit basis for «̂ T1([0, l]2), namely for all j , k G N*, let 

(13) d+r+d+r+d+r l 

yf + k2 
2\/27r sm(j7rx) sin(&7n/). 

It is not hard to check that (ej^)j,keN* is indeed an orthonormal basis for {${ , || • ||v)-
A Gaussian Free Field in the square [0, l]2 with zero boundary conditions can thus 
be written as 

h = 
j,keN* 

aj,k 
If + k2 

m^mmdrf+d+f+d+d+d+rmmsm 

where (ajfk)j,k are independent Gaussian variables of variance one and where the 
convergence for this series holds in the space $C~X. 

(13) In fact, it turns out that a.s. h G $( e for any e > 0. 
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Definition 2.8. — If / = Y2n>i an^n £ ^"> then with a slight abuse of notation we 
will denote by (ft,/)v the following quantity 

(h,f)„ := 

d+r+d 

d+r+d+r 

It is straightforward to check that for any / g $ïX, (ft, / ) v is a Gaussian variable. 
More precisely, the following proposition follows easily from the definition of (ft, / ) v . 

PROPOSITION 2 . 9 . — Let h be a Gaussian Free Field in D. Then the process 
((ft,/)v)/e^i is a centered Gaussian process indexed by the set tH1 and with 
covariance structure 

Cov[(ft,/)v,(ft,#)v] = (f,g)v for any f^ge^1. 

Remark 2.10. — In fact, this proposition can serve as another way to introduce the 
Gaussian Free Field. This is for example the point of view in [7, 30], where they 
introduce GFF as this Gaussian process indexed by ${x. 

This approach thus gives a good generalization of Definition 2.1 to the continuous 
setting. In fact it can be proved that the DGFF weakly converges in the sense of 
distributions (for example in +d+r+d+r+dtowards Â 2 ft, where Â 2 is a lattice-dependent 
constant. 

The following proposition relates the Gaussian Free Field we have just defined with 
Definition 2 .2. 

PROPOSITION 2 . 1 1 . — Let h be a Gaussian Free Field in D. For any p e *&D (the 
smooth functions with compact support in D), we will denote by (ft, p) the distri
bution ft tested against the smooth function p. Then the process ((ft,P))pe^D ^s a 
centered Gaussian process indexed by *6D with covariance matrix 

Cov[(h,p),(h,p')} = 
DxD 

p(x)p'(y) GD(x, y) dxdy, 

where is the Green's function of domain D. 

2.4. The Green's function G d of a domain D 

Definition 2.12 (Green's function in the domain D). — The Green's function of a 
domain D ^ C will be denoted by the function GD ' D x D -+ M+. For any x g D, 

define the function Gx(y) := Go(x,y). With such notations, the Green's function 
Gn(x,y) is characterized by the following properties 

(a) AGX(-) = 0 on D \ {#}, namely it is harmonic in D \ {x}. 

(b) Gx(y)^0asy-*dD. 

(c) Gx{y) ~ log r-̂ -r as y -» x. 
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By removing the logarithmic singularity, one can rewrite Gx(y) in the following way 
Gx{y) = log +ddrdGx(y), where Gx(y) is the harmonic extension to D of the function 
~~ l°g \x-y\ on ^ne boundary dD. 

Here are some well-known properties of Green's functions that we will use. 

PROPOSITION 2.13 (Properties of the Green's function). — 

(a) Conformai invariance: if' <j> : D d+rdd+r+dr D' is a conformai map, then for any x,y g D, 

GD(x,y) = GD,(<l>(x),4>(v))-

This follows easily from the definition of Green's function. 
(b) Note that GB(0,y) = log ^ . 
(c) Go(x,y) = GD(v,X) (this can be seen for example using (a) with (b)). 
(d) For any x g D, Gx g M1. 
(e) In the sense of distributions, ^A[GX(-)] = Sx, the Dirac point mass at x 
(f) The above harmonic correction Gx(y) satisfies 

Gx(x) = \ogC(x,D), 

where C(x,D) is the conformai radius of D viewed from x. If <\> is a conformai 
map D —> D with (f>(x) = 0, then C(x,D) is simply defined as {^(x)^1. This 
property (/) can be easily checked using (a) and (b). 

Let us now explain how one can recover (at least formally) Proposition 2.11 from 
the above property (e). For any / g one can make sense of ^:(Vft, V/ ) where 
Vh is understood in the sense of Schwartz distributions. It is not hard to check that 
this quantity is exactly (h,f)v. Now, since / has compact support, integration by 
parts implies 

d+r+d+r++d Q 
2TT 

7h,Vf)dr+d+r+d = d r d d d - ( h , [ - A ] f ) . 

Using this identity with p := [—A]/ g we find 

(h,p) = (h,[-27rA-1]p)v. 

This implies Proposition 2.11 since 

COV[<ft, p), (h,,/)] = CavHh, [-27RA-1]P)V, (h, [ - 2 T T A - V ) v ] 

= ( [ - 2 7 R A - 1 ] P , [ - 2 7 R A - 1 ] P ' ) V 

d+r 1 

d+r+d+r 
Vf-27rA-1l/9, Vf-27rA-1lo/) 

- (p, f-27rA->') = 
JdxL 

p(x)p(y)GD(x,y) dxdy, 

where in the last equality, we used property (e). 
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Finally, let us mention that using property (b), it is not hard to extract the following 
striking property for Gaussian Free Field. 

PROPOSITION 2 . 1 4 (Conformai invariance). — Let $ : D' —• D be a conformai map. 
If h is GFF in D, then h! := ho <j> is a Gaussian Free Field in D'. 

2.5. The e-regularized GFF he 

The purpose of this subsection is to regularize the Gaussian Free Field h in order 
to obtain a smooth function he. For this, we will rely on the following e-regularization 
of the Green's function. For any e > 0 and any point x G D , let 

GXM := log 
1 

eV\x-y\ 
d+d+r++d+r 

This regularization has the following important property: 

PROPOSITION 2 . 1 5 . — For any x g D, and any e > 0, Gx g $£x. Furthermore, in 
the sense of distributions, one has the following identity 

(14) 
- 1 

2tt 
0(g>£ = ®£ - 0* • £0 

where t/Xj€ denotes the uniform measure on the circle of radius e around x, dB€(x). 

Remark 2.16. — In fact, with the above definition of GJ, the proposition as stated 
is not correct when x is close to the boundary (d(x,dD) < e). To overcome this issue 
while keeping the same statement for the proposition, the definition of G^ has to 
be modified accordingly near the boundary dD. To keep things simple, we choose in 
this paper to neglect these effects. We refer to [11] where this technicality is handled 
properly. 

This regularized Green's function enables us to introduce he(z) the GFF eval
uated against i/Xy€, the uniform measure on dBe(x). Informally, it corresponds 
to h€(z) := (h,vXie). Let us define it as follows 

Definition 2.17. — If h is a sample of a GFF in D, then for any z g D, let 

he(z) := </*,G*)v, 

which is well defined since Gxe g . 

In fact, it corresponds exactly to our informal definition thanks to the following 

computation: since Gxe g $£X, one has 

h€(z) = (h,Gxe)v 

dr 
1 

271 
(M-A]G*> 

= (h,vXi€). 
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2.6. A Brownian motion out of the GFF 

Along this subsection, we will identify a very useful Brownian motion "within" the 
Gaussian Free Field. We start with the following lemma: 

LEMMA 2 . 1 8 . — For any z G D and any e > 0(14), one has that 

(15) Var[M*)] =log-
1 

e 
f logC(*,Z>), 

where C(z,D) is the conformai radius of D viewed from z. 

Proof — We have 

Vax[h€(z)] =var[( / i ,gj)v; 

0(g0®£ - 0* • £0 

d+d+r+d+r+d+d 

= log 
1 

e 
Gz(x)dvz Adx 

= log 
1 

e 
logC(z,D). 

The following proposition will be of crucial importance in the remaining of this 
text: 

PROPOSITION 2 . 1 9 . — Let h be a GFF with zero-boundary conditions in some 
domain D. For any point z G D, let t% := inf{£ > 0 : Be-±(z) C D} and let 

Yt(z) := he-t(z), 

be the stochastic process defined for any t>tQ. (Recall he(z) denotes the above regu-
larization.) 

Then with such notations, the stochastic process 

Ç8t(z) :=Yt*+t-Yt., 

is a standard Brownian motion. 

Proof — The family of random variables {$t(z)}t>o is clearly a Gaussian process. 
Therefore, it only remains to check that for any 0 < s < t, Cov[25s(z), ^Bt(z)] = s 

(14) To be self-contained, one should assume here that d(z, dD) > e 
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(= s A t). Let ro := e *°, ri := e (*o+s) and r2 := e (*o+*). Let us first compute 

Cov[hri(z),ftr2(*)] = E[<fc,G* )„(h,GIX] 

0(g>£ £ - 0* • £0 

— (Gzri,vr2,z) 

= log 
1 

d+r+dr 
+ logCU,L>) 

= tg + a + logC(«,D). 

One can compute in the same way Cov[hro(z),hri(z)\ and Cov[hro(z),hr2(z)]. This 
gives us 

Cov\$.(z), <Èt(zj\ = Cov[/lri (z) - hrn(z), hrJz) - hrJz)} 

— t0 + 5 + t0 2 * £q 

= s. 

Let us conclude this section on the Gaussian Free Field by the following remark. 

Remark 2.20 (Gaussian Free Field on S2). — We have just defined the Gaussian Free 
Field on a domain D with Dirichlet Boundary conditions. In the same fashion, one 
can define a Gaussian Free Field on the sphere S2 (this is needed for example if one 
wants to make sense of Conjecture 1.12). In this case, the Green's function is given 

by 

Gd(x,î/) := log cot an 
dr 

2 
for all x , | /GS2 , 

where 6 denotes the angle between x and y. If one wants to define the Gaussian Free 
Field on S2 as a Gaussian process similarly as in Definition 2.9, the construction can 
be done in the same fashion except that in this case, the natural Hilbert space to 
consider would be the closure for the norm || • ||v of the space C^(§2) of smooth 
functions (j) : S2 —> R with /g2 (f)(x)dx = 0 (the integral here is with respect to the 
area measure on S2). 

3. THE LIOUVILLE MEASURES e^h 

The purpose of this section is to make sense of these Liouville measures elh, which 
are crucial in the main Theorem 1.10. The approach followed in [11] is to discretize 
e7 h into e1 he (where he is the e-regularization of the GFF h we have introduced in 
Subsection 2.5) and to then let e —> 0. As it will become clear below, without renor-
malization, elhe would diverge in the space of measures. The natural discretization 
will be the following one: 
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Definition 3.1. — For any domain D, any 7 > 0 and any e > 0, let fie be the measure 
absolutely continuous with respect to Lebesgue measure £ and such that 

(16) dfjLe(z) :=e^e^h^ dz. 

Duplantier and Sheffield prove the following proposition in [11]: 

PROPOSITION 3.2. — / / 7 G [0,2), then for any domain D, almost surely as 
e \ 0 along powers of two, the measures fie weakly converge inside D towards a 
non-degenerate random measure /z7 which we will call the Liouville measure of 
parameter 7 . The Liouville measure /i7 is measurable with respect to the Gaussian 
Free Field h and we will denote it sometimes by //7 = elh. 

Remark 3.3. — (i) If 7 G (0,2), it can be shown that the Liouville measure /i7 is 
a.s. singular with respect to Lebesgue measure, 

(ii) If 7 > 2, in some sense things become "singular". See for example the work [3] 
which studies this case. 

We give here a new proof of this proposition which holds only for the regime 
7 G [0, V2) and furthermore our convergence result will hold only along a certain sub
sequence €fc \ 0 that we will not make explicit (in [11], it is also along a particular 
subsequence, but they show that = 2~k is enough). We believe this proof is inter
esting in its own since it is slightly different from the one carried in [11], yet it cannot 
be extended to the range 7 G [y/2,2). See the proof in [11] which gives the full range 
[0,2). 

Proof in the case 7 G [0, v^)- — To simplify, we will restrict ourselves to the case 
where D is a bounded domain. We wish to prove the following proposition: 

PROPOSITION 3.4. — If j G [0, \f2), then for any continuous function (j) : D —> R, 
the sequence of random variables 

K W } e > o = 
D 

(j)(z)fjie(dz) 
e>0 

is a Cauchy sequence in L2. 

Let us first see why this proposition implies Proposition 3.2 in the regime 
7 G [0, >/2). Let DJl(D) be the space of finite positive measures on D. It is well-known 
that this space equipped with the weak* topology (called "weak convergence of 
measures" in Probability theory) is a complete, metrizable, separable space. Here is 
an example of a metric on 9Jl(D) which induces the weak* topology. Let (<fij)j>i be a 
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countable basis of the separable space (^(D), || • ||oo) of continuous functions on D 
such that 110j I |oo < 1 for aU 3- Then 

[C(s, D)C(y, 
\nH^)-n2(d>i)\ 

i>i 
2J 

defines a metric on 9Jl(D) for the weak* topology. 

Using Proposition 3 .2 , one can find a subsequence (ek)k>i such that uniformly for 
all j G {1, . . . , * } , 

E[L€k,(<t>j) - n€k„(0,)) ] < 2~3k for all k">k'>k. 

By Markov's inequality, this implies P[|/jCfc, -//€fc//(<^)| > 2~FC] < 2~k for all 
A: > 1 and j < k. Using Borel-Cantelli lemma, it is an easy exercise to show that 
this in turn implies that fi€k is a.s. a Cauchy sequence in (DJl(D),d). Since the later 
space is complete, we thus obtain an almost sure limit \x = //7 G 9Jl(D). Furthermore, 
since each random measure /iefc is clearly measurable with respect to the Gaussian 
Free Field ft, we obtain that /x7 = lim /i€k (ft) is itself measurable with respect to ft as 
a limit in (9Jt(Z)), d) of ft-measurable measures. 

Proof of Proposition 3.2. — Let us start with the simpler lemma 

LEMMA 3 . 5 . — / / 7 G [0, then for any continuous function (f) : D —+ R, we have 
that 

E\uJ6)2} 
e—0 DxD 

<Kx)<f>(y) [C(s, D)C(y, D)]7V2 e ^ G ° ^ dxdy . 

Proof of the lemma. — 

E[/iE(0)2] = 
'DxD 

[C(s, D)C(y, +x+d+sx+x+ed+[C(s, D)C(y, 

(17) dr 
DxD 

<t>(x)<f){y) e^r[he(X)+he(y)\ dxdy 

where we used the fact that if X ~ J\f(0, cr2), then its Laplace transform is given 

by E\e^x] = e ^ . 

Now, 

V*r\he(x) + he(yj\ = Var[fte(x)l + Var [h€(yj\ + 2 Cav[he(x), he(y)] 

= Var[fte(x)l +Vai\he(y)]+2{G*v€mV). 
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If \x — y\ > e, we find exactly (15): 

Var[he(x) + he(i/)] =2 log - + log C(x, D) + log C(y, D) + 2 (x, y). 

Let # ( # , y) := log[C(x, D)C(y, D)] + 2 GD(X, y), then if |# — y| < e, one finds instead 
the inequality 

Var[/ic(aO + My)] < 21°g 
1 

e 
+x+e[C(s, D)C 

Plugging these into (17) gives us 

EUU)2] = 
\x—y\>e 

j>{x)4>(y) [C(x, D)C(y, d + r + d + r d D ^ ^ e ^ ^ ' ^ d x d y 

+ 0{U\\lo 
\x-y\<e 

[C(s, D)C(y, +x+ex 

To conclude the proof of the lemma, one needs to show that the second term goes 

to zero as e —• 0 while the first one remains bounded. The key contribution in both 

cases is what happens when x ~ y. In that case, we know that Go(x,y) ~ log \x^Ly\ • 

This implies that when x ~ y, the term e^00^^ behaves like 

e-y2GD(x,y) _ 1 

x-y\ 

72+o(l) 

a 
where o(l) —* 0 as x —> y. Using the fact that if a < 2, then JJD^D —r~ < oo, it is 
an easy exercise to conclude the proof of the lemma. 

Now, let us prove Proposition 3.4, i.e. that {/xe(0)}e>o is a Cauchy sequence for 
any <j> continuous on D. For this, let us estimate for 0 < 77 < e: 

[C(s, D)C(y, +x+ed+xzse+x+x+e+[C(s, D)C(y, +xe+z+z 

2 2 
- 2e 2 77 2 

DxD 
Mx)Mv)e^rVK{xdr+d)+h^v)\dxdv. 

Similarly as in the proof of the lemma, we find that 

V*x\h€{x) + hJy)] < log - + log - + log(G(z, D)C(y, D)) + 2 GD(x, y), 

with equality if and only if \x — y\ > e V rj (and d(x, $£>) A d(y, dD) > e as well). In 
particular, in the same fashion as above, if 7 is chosen so that 7 < this implies 

(15) In fact we also need to assume here that d(x, dD) A d(y, dD) > e, but we neglect these boundary 
issues here which are easy to be taken care of. 
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that 
2 2 

e 2 r? 2 
DxD 

0(x)0(y)e^MM*)+Mv)J dxdy 

0<r;<e->0 'DxD 
Hx)<t>(y) [C(x, D)C(y, D)]7V V G - ^ dxdy, 

which thus implies that /xe(</>) is indeed a Cauchy sequence in L2. 

Remark 3.6. — Another natural approach would be to consider e i-» /ie(0) as a 
stochastic process in e \ 0. Since it can be written as 

d+r+d+r 
dd 

0(x)e^(x)+^logeda:, 

d+r 
d+r 

6(x)C(x, D)~°z~ elK {x)~ ̂  Var th«(a:)-

and since for each fixed x, e I-* e7£(a;)-~VarL/le^)J is a positive martingale, one might 

be tempted to prove the a.s. convergence of /ie (</>), when <\> > 0, by showing that it is a 
positive martingale (furthermore the above L2 bounds when 7 < V2 would imply its 
uniform integrability). Unfortunately, this is not the case. In [11], the authors manage 
nevertheless to rely on such an approach by looking at a different way to regularize h, 
namely hn := YLi<n C1* / i)v/* ' wnere {fi} is some orthonormal basis of &C1. In that 
case //n(</>) (defined accordingly, see [11]) is in this case a positive martingale. 

Remark 3.7. — Finally, one should point out that such measures had already been 
constructed within the theory of Gaussian Multiplicative Chaos initially developed by 
Kahane in [12]. See [28] for a more general construction of such measures. 

4. IDEAS BEHIND THE PROOF OF THE MAIN THEOREM 

In this section, we wish to explain where the KPZ formula comes from by giving 

some of the ideas behind the proof of Theorem 1.10. 

4.1. Setup 

Let us fix some (deterministic) K C [0, l]2 and some parameter 7 G [0,2). Assuming 
that the limit exists in Equation (7), our goal is to express the quantum scaling 
exponent A = A(K) as a function of the Euclidean scaling exponent x = x(K). 

Recall that 

A = A(K) := lim 
lQgE[iA[B*(z)nK^0]] 

log S 
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where z is "sampled" according to the a.s. finite measure p — elh and E averages over 
the random measure p. In this setting, we first sample /x7 = ejh ~ E and conditioned 
on the measure /x7, we sample z ~ p7. For the proof of the main theorem, it will be 
useful to invert this procedure, i.e. to first sample z (according to the correct marginal 
measure) and then to sample p1 conditioned on the value of z. The coming subsection 
introduces the right tool for this. 

4.2. Rooted Liouville measures 

As we have just explained, the definition of the exponent A involves the coupling 
(/i7,z), where z is sampled according to the first coordinate p7 (which in general is 
not a probability measure). The law of this coupling can be written dh x dp1{z). In 
order to invert this sampling procedure, we will introduce the following probability 
measure which can be viewed as an e-regularization of the above coupling. 

Definition 1^.1 (Rooted Liouville measure). — For any 7 G [0,2) and any e > 0, let 

6e := i - e ^ W dhdz 

be the probability measure on $£~Y x [0, l]2, where Ze is a renormalizing constant 
chosen so that 6e is a probability measure. 

This regularized coupling enables us to make sense of the reversed sampling pro

cedure. First of all, we need to compute the marginal distribution of Oe on z. It is 

simply given by pe(z) = Z~xEh [e7he^] which is explicit since using Lemma 2.18 one 

has that it is proportional to C(z, D)1*/2 when d(z, dD) > e. In particular, as e —> 0, 

the density p€(z) converges towards a limiting p(z) oc C(z,D)7 /2. Now, conditioned 

on z, the marginal on h is given by the Gaussian Free Field h weighted by elh^z\ i.e. 

by j^^hj^jh' Note that this step would not make any sense without our e-regular

ization since the scalar quantity "e7^*)" is not defined at point z. It is a standard fact 

about Gaussian processes (Cameron-Martin theorem), that if hz is sampled according 

to f1*1^**1 , then hz h + 7 Gz. To see this at least heuristically, note that the 

process h + 7 Gz is a deterministic translation of the Gaussian process h and it is easy 
to check that in the finite dimensional case, if X is a standard Gaussian vector in MN, 
then for any fixed u G MN, the law of X = X + u is the same as the law of X weighted 
by e<*'w>. In the case of the Gaussian Free Field, the scalar product is (•, -)v and we 
indeed have by definition that {h^Gze)v = jhe(z). 

In particular, the pair (z,hz) ~ 6e can also be sampled as follows: first sample 
z according to the above marginal distribution pe (whose density away from dD is 
proportional to C(z,D)7 /2), and then conditioned on 2, let hz := h + ^yG2, where h 

is an independent Gaussian Free Field in [0, l]2. This way, we see that the measures 6€ 
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converge towards a limiting measure © as e —• 0, for which the GFF (hz) conditioned 

on the first component z ~ p is sampled according to hz := h + jGz. 

Using this coupling we have that 

E[fi[Bd(z)nK^0\] x 6 Bd(z)r\K^0 

(18) dr 
[o,i]2 

p(z)dz Fh [B8hz=h+1 QZ (z) H K Î 0] , 

where BflZ=h^Gz(z) denotes the quantum ball of quantum area ô around z in the 
sense of Definition 1.8 but with a field sampled according to hz := h + 7 Gz. 

4.3. An estimate about quantum balls around the root 

For any z g [0, l]2, in the same fashion as in Proposition 3.2, it can be shown that 
if 7 < 2 and if hz := h + 7G*, then one can make sense of the Liouville measure 
rooted at z, pz := elh,z. 

In [11], the following property is shown. 

PROPOSITION 4.2. — Let z g [0, l]2 and let hz := h + jGz, then almost surely as 

the Euclidean radius r \ 0, 

\pz(BJz))] ~cr^QE\e^hr^}ss 

where Q = Q1 := 2 / 7 + 7 / 2 > 2 and where hz := hr + 7G* (c = c7 is some explicit 
constant). See Subsection 1^.1 in [11]. 

We will not prove this proposition, but instead we will convince ourselves through 
the computation of the expectation of p,^{Br{z)) that one can indeed expect such a 
behavior: 

LEMMA 4.3. — We have 

E\pz(BJz))] ~ddcr^QE\e^hr^} 

as r —* 0 for a certain constant c — c7. 

Proof. — First of all, using Lemma 2.18, one has (if d(z,dD) > r): 

ERE* DD+RD =¥j\eihr{z)]ei2Gi{z) 

= C(z,D)£r~£ C(z,D)i2r-^2 

= C(z,D)3+r-^2!2 
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In order to compute E[/d(.Br(,z))], let us approximate hz = h + ^Gz into 

h\ := he+1Gz: 

E\uzJBJz))] = lim e^r 
£-•0 er 

Ere7ft.(x)+72G^(x)ndx 

ee+ 
3 

d+r+d+r+d+r+d+ using Lemma 2.18 

d+r 
br 

e4Gz(x) e72 log|o:-zr1+72G*(a:) 

ee 
re 

exp 372 
2 

5*(*) + o(l)] 
1 

q+e+e+e+ 
g+r 

as r —* 0, since # i—• Gz(x) is continuous. Therefore as r —• 0: 

E K ( B r ( Z ) ) ] ~ C ( Z , B ) 3 ^ 2 
1 

'Br \x-z\t* 
dx 

~C(z.D)*' 12 2-KU1 7 du 

\pz(BJz))] ~cr^Qf++fd( 

~ cr7 QE[e7,ll 

Remark 4-4- — This first moment computation indeed provides some supporting 
evidence for Proposition 4.2. Yet, such a comparison of first moments is not so natural 
after all since, as it was pointed out to us by Nicolas Curien, the expected quantum 
area of Br(z) diverges as r —» 0 when 7 g (>/2,2] (in the above displayed equation, 
2 — 72 < 0 when 7 > y/2). This counter-intuitive phenomenon is due to the fact 
that for any 7 > 0, the main contribution in E[e7/l*^] does not come from typical 
properties of h€(z) but follows instead from large deviations events for h€(z). This is 
why first moments computations are not suitable for studying "typical" behavior as 
one is interested in the statement of Proposition 4.2. See Subsection 4.1 in [11] for a 
proof of this "law of large numbers" type of behavior. 

Recall that the quantum ball Bs(r) for a field hz is defined as BT(z) with 

r := sup{r > 0, [i*(Br(z)) < S}. The content of Proposition 4.2 tells us that Bs(z) 

should be very well approximated by the ball Bs(r) defined as Bf(z) with 

f := sup {r > 0 s.t. crlQ elh^z) < S] 
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Plugging this into (18) gives us 

E[p[Bô(z)f)K^0]] x 
[o,i]2 

p(z)dzFh[Bàhz=h+lGz(z)nK^ 0 

= 
[o,i]2 

dzEh [lBsh W N ^ 0 

= 
f[o,i]2 

dzEh \ lBï(z)nK^0 

= 
[o,i]2 

dzEh E[lFÎ.(2,)NK^0 t_ 

As we will see below, it is not difficult to show that the law of the random radius 
f = f(z) at point z depends very little on the point z G [0, l]2 (16). In particular, if P 
denotes this common law for f, we have that 

E[p[Bô(z)nK ^ 0]] « 
d 

dF(f) 
r[o,i]2 

\pz(BJd+rdz))] 

= 
rsd 

dP(f) f2x{K) by definition of x = x{K) 

\pz(^QE\e^hr^} 

Therefore it only remains to understand the law of f (in some sense uniformly in the 
root z G [0, l]2). This will be done by identifying a drifted Brownian motion within 
hz :=h + <yGz. 

4.4. Reduction to a large deviation question on Brownian motion 

Let us fix some z G (0, l)2 and let to > 0 so that Be-t0 (z) C (0, l)2. Then similarly 
as in Proposition 2.19, if 

\pz(BJz))] ~cr^QE\e^hr^} 

= he-t-t0 (z) - he-t0 (z) + 7 [G*-t-to (*) - G*-.0 (z)] 

= he-t-t0 (z) - he-t0 (z) + 7 1 , 

then (Wt(z))t>o is a Brownian motion with drift 7.1.e Wt == Bt+^t. f can be defined 
using this Brownian motion: indeed recall 

f := sup j r > 0 s.t. crlQ elK{z) < s] 

= exp - [ inf {* > 0 s.t. c (e"')7Q e7 he-< (*} < 5} 1 

« e x p - [ i n f It > 0 s.t. ( e " ' ) ^ e75'*7* * < <SJ 1 

[i6) are neglecting boundary issues here. 
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= exp — inf <t > 0 s.t. Bt + (y-Q)t< 
logô 

7 

= exp — inf < t > 0 s.t. Bt + a71 > 
log i l 

7 

where 5 t := (—Bt) is a standard Brownian motion and where q7 := Q1 — 7 = 
2 / 7 — 7 / 2 , which is positive when 7 < 2. Let T = T$ be the stopping time for the 
drifted Brownian motion Bt + a7£ stopped the first time it reaches level 7 _ 1 log | . 
Since f « e_T<5, summarizing the above discussion, we obtain that A = A(K) should 
be given by 

A = lim 
\ogE[e-2xTs] 

log 6 

It remains to compute the quantity E[e 2xT<5]. This is a classical computation for 
Brownian motion and it works as follows. Consider for any (3 > 0 the process: 

t »-> exp (/3Bt 
d+r+ 
d+r+ 

which is a martingale. Using the optional stopping theorem for the stopping time T$, 

we get for any /3 > 0, 

E[exp ( - (3 a7 T5 + /3/7log - - (32 T6/2)] = 1, 

which in turn gives 

E[e-2xTs] = J ^ , 

if (3 = /37 is chosen so that 2x = /3a7 + / ?2 /2 . Since A = A(K) is given ultimately 
by / ?7 /7 , this indeed gives us a quadratic relation between ) and A(K). One can 
check that this quadratic relation is the KPZ Formula (8). • 

4.5. Other proofs of a KPZ formula in the literature 

Finally, let us mention that after Duplantier and Sheffield announced their result, 
other proofs of KPZ formulas have been proved in slightly different settings: 

— Benjamini and Schramm obtained in [5] a simple and enlightening proof of a 
KPZ formula for multiplicative dyadic cascades in dimension one. The advan
tage of their proof is that it gives a quadratic relation between actual Hausdorff 
dimensions as opposed to "expected box-counting dimensions" in [11]. Unfor
tunately, their argument is inherently one-dimensional and if one would extend 
their argument to higher dimensions, it would no longer deal with proper Haus
dorff dimensions. 
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- Rhodes and Vargas proved in [27] a KPZ formula in the general setting of 
Gaussian multiplicative Chaos. Their proof enables to deal with "stationary" 
measures (as opposed to [5] which relies on a discrete dyadic division). The 
difference with [11] is that their KPZ formula holds for a different notion of 
dimension (or rather scaling exponent) as the one considered in [11]. In that 
sense their work is complementary to the work [11]. More precisely, in rough 
terms, if K C [0, l ] 2 and if µ denotes a measure (for example the Liouville 
measure), then their notion of scaling exponent is defined as 

A(K) := inf < s G (0,1], s.t. 
coverings KCUB(xi,ri) 

inf 
i 

M(B(o; i,r<)) f l} = 0 

where the balls B(xi,ri) are Euclidean balls of radii r^. This notion is very 
different from the expected box-counting dimension considered in [11]. Note 
that in both works [11] and [27], the notions of scaling exponents A, A still rely 
somewhat on the Euclidean metric. It seems one is still far from a "true" KPZ 
correspondence between Euclidean and quantum metrics. 
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