Microlocal properties of sheaves and complex WBK
Astérisque, no. 356 (2013) , 121 p.
@book{AST_2013__356__R1_0,
     author = {Getmanenko, Alexander and Tamarkin, Dmitry},
     title = {Microlocal properties of sheaves and complex {WBK}},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {356},
     year = {2013},
     mrnumber = {3185464},
     zbl = {1295.32017},
     language = {en},
     url = {http://archive.numdam.org/item/AST_2013__356__R1_0/}
}
TY  - BOOK
AU  - Getmanenko, Alexander
AU  - Tamarkin, Dmitry
TI  - Microlocal properties of sheaves and complex WBK
T3  - Astérisque
PY  - 2013
IS  - 356
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2013__356__R1_0/
LA  - en
ID  - AST_2013__356__R1_0
ER  - 
%0 Book
%A Getmanenko, Alexander
%A Tamarkin, Dmitry
%T Microlocal properties of sheaves and complex WBK
%S Astérisque
%D 2013
%N 356
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_2013__356__R1_0/
%G en
%F AST_2013__356__R1_0
Getmanenko, Alexander; Tamarkin, Dmitry. Microlocal properties of sheaves and complex WBK. Astérisque, no. 356 (2013), 121 p. http://numdam.org/item/AST_2013__356__R1_0/

[1] T. Aoki, T. Kawai & Y. Takei - "The Bender-Wu analysis and the Voros theory", in Special functions (Okayama, 1990), ICM-90 Satell. Conf. Proc., Springer, 1991, p. 1-29. | MR | Zbl

[2] M. A. Evgrafov & M. V. Fedoryuk - "Asymptotic behaviour as λ of the solutions of the equation w '' (z)-p(z,λ)w(z)=0 in the complex z-plane", Russian Math. Surveys 21 (1966), p. 1-48. | Zbl | MR

[3] A. Getmanenko - "Shatalov-Sternin's construction of complex WKB solutions and the associated Riemann surface", preprint arXiv:0907.2934, see also arXiv:1111.0834.

[4] S. Kamimoto & T. Koike - "On the Borel summability of WKB-theoretic transformation series", preprint RIMS-1726, 2011.

[5] M. Kashiwara & P. Schapira - Sheaves on manifolds, Grundl. Math. Wiss., vol. 292, Springer, 1990. | MR | Zbl

[6] S. Mac Lane - Categories for the working mathematician, second ed., Graduate Texts in Math., vol. 5, Springer, 1998. | MR | Zbl

[7] P. Schapira - Microdifferential systems in the complex domain, Grundl. Math. Wiss., vol. 269, Springer, 1985. | MR | Zbl

[8] B. Y. Sternin & V. E. Shatalov - Borel-Laplace transform and asymptotic theory, CRC Press, 1996. | MR | Zbl

[9] D. Tamarkin - "Microlocal condition for non-displaceablility", preprint arXiv:0809.1584.

[10] A. Voros - "The return of the quartic oscillator: the complex WKB method", Ann. Inst. H. Poincaré Sect. A (N.S.) 39 (1983), p. 211-338. | MR | Zbl | EuDML | Numdam