@book{AST_2013__356__R1_0, author = {Getmanenko, Alexander and Tamarkin, Dmitry}, title = {Microlocal properties of sheaves and complex {WBK}}, series = {Ast\'erisque}, publisher = {Soci\'et\'e math\'ematique de France}, number = {356}, year = {2013}, mrnumber = {3185464}, zbl = {1295.32017}, language = {en}, url = {http://archive.numdam.org/item/AST_2013__356__R1_0/} }
Getmanenko, Alexander; Tamarkin, Dmitry. Microlocal properties of sheaves and complex WBK. Astérisque, no. 356 (2013), 121 p. http://numdam.org/item/AST_2013__356__R1_0/
[1] The Bender-Wu analysis and the Voros theory", in Special functions (Okayama, 1990), ICM-90 Satell. Conf. Proc., Springer, 1991, p. 1-29. | MR | Zbl
, & - "[2] Asymptotic behaviour as of the solutions of the equation in the complex -plane", Russian Math. Surveys 21 (1966), p. 1-48. | Zbl | MR
& - "[3] Shatalov-Sternin's construction of complex WKB solutions and the associated Riemann surface", preprint arXiv:0907.2934, see also arXiv:1111.0834.
- "[4] On the Borel summability of WKB-theoretic transformation series", preprint RIMS-1726, 2011.
& - "[5] Sheaves on manifolds, Grundl. Math. Wiss., vol. 292, Springer, 1990. | MR | Zbl
& -[6] Categories for the working mathematician, second ed., Graduate Texts in Math., vol. 5, Springer, 1998. | MR | Zbl
-[7] Microdifferential systems in the complex domain, Grundl. Math. Wiss., vol. 269, Springer, 1985. | MR | Zbl
-[8] Borel-Laplace transform and asymptotic theory, CRC Press, 1996. | MR | Zbl
& -[9] Microlocal condition for non-displaceablility", preprint arXiv:0809.1584.
- "[10] The return of the quartic oscillator: the complex WKB method", Ann. Inst. H. Poincaré Sect. A (N.S.) 39 (1983), p. 211-338. | MR | Zbl | EuDML | Numdam
- "