@incollection{AST_2014__361__115_0, author = {Puschnigg, Michael}, title = {The {Baum-Connes} conjecture with coefficients for word-hyperbolic groups}, booktitle = {S\'eminaire Bourbaki volume 2012/2013 : expos\'es 1059-1073 - Avec table par noms d'auteurs de 1948/49 \`a 2012/13}, series = {Ast\'erisque}, note = {talk:1062}, pages = {115--148}, publisher = {Soci\'et\'e math\'ematique de France}, number = {361}, year = {2014}, mrnumber = {3289279}, zbl = {1357.19005}, language = {en}, url = {https://www.numdam.org/item/AST_2014__361__115_0/} }
TY - CHAP AU - Puschnigg, Michael TI - The Baum-Connes conjecture with coefficients for word-hyperbolic groups BT - Séminaire Bourbaki volume 2012/2013 : exposés 1059-1073 - Avec table par noms d'auteurs de 1948/49 à 2012/13 AU - Collectif T3 - Astérisque N1 - talk:1062 PY - 2014 SP - 115 EP - 148 IS - 361 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_2014__361__115_0/ LA - en ID - AST_2014__361__115_0 ER -
%0 Book Section %A Puschnigg, Michael %T The Baum-Connes conjecture with coefficients for word-hyperbolic groups %B Séminaire Bourbaki volume 2012/2013 : exposés 1059-1073 - Avec table par noms d'auteurs de 1948/49 à 2012/13 %A Collectif %S Astérisque %Z talk:1062 %D 2014 %P 115-148 %N 361 %I Société mathématique de France %U https://www.numdam.org/item/AST_2014__361__115_0/ %G en %F AST_2014__361__115_0
Puschnigg, Michael. The Baum-Connes conjecture with coefficients for word-hyperbolic groups, dans Séminaire Bourbaki volume 2012/2013 : exposés 1059-1073 - Avec table par noms d'auteurs de 1948/49 à 2012/13, Astérisque, no. 361 (2014), Exposé no. 1062, 34 p. https://www.numdam.org/item/AST_2014__361__115_0/
[1] Examples of random groups", preprint, 2008.
& - "[2] Bott periodicity and the index of elliptic operators", Quart. J. Math. Oxford Ser. (2) 19 (1968), p. 113-140. | DOI | MR | Zbl
- "[3] The index of elliptic operators I", Ann. of Math. (2) 87 (1968), p. 484-530. | DOI | MR | Zbl
& - "[4] The index of elliptic operators IV", Ann. of Math. (2) 93 (1971), p. 119-138. | DOI | MR | Zbl
& , "
[5] Théorie bivariante de Kasparov et opérateurs non bornés dans les
[6] Property
[7] Geometric
[8] Classifying space for proper actions and
[9] Kazhdan's property
[10] Principe d'Oka,
[11] A Hausdorff-Young inequality for
[12] The Connes-Kasparov conjecture for almost connected groups and for linear
[13] Noncommutative geometry, Academic Press Inc., San Diego, 1994. | MR | Zbl
-
[14] A new look at
[15]
[16] Groupes aléatoires (d'après Misha Gromov,...)", in Séminaire Bourbaki, vol. 2002/03, Astérisque, vol. 294, Soc. Math. France, Paris, 2004, p. 173-204. | EuDML | Numdam | MR | Zbl
- "[17] Hyperbolic groups", in Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, p. 75-263. | DOI | MR | Zbl
- "[18] Asymptotic invariants of infinite groups", in Geometric group theory (Sussex, 1991) II, London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, p. 1-295. | MR | Zbl
, "[19] Random walk in random groups", Geom. Fund. Anal. 13 (2003), no. 1, p. 73-146. | DOI | MR | Zbl
, "
[20] La propriété
[21] A characterization of
[22] The Baum-Connes conjecture", in Proceedings of the International Congress of Mathematicians (Berlin, 1998), no. extra vol. II, 1998, p. 637-646. | EuDML | MR | Zbl
, "
[23]
[24] Counterexamples to the Baum-Connes conjecture", Geom. Funct. Anal. 12 (2002), no. 2, p. 330-354. | DOI | MR | Zbl
, & - "[25] Asymptotic properties of unitary representations", J. Funct. Anal. 32 (1979), no. 1, p. 72-96. | DOI | MR | Zbl
& - "
[26] Remarks on the Baum-Connes conjecture and Kazhdan's property
[27] Travaux de N. Higson et G. Kasparov sur la conjecture de Baum-Connes", in Séminaire Bourbaki, vol. 1997/98, Astérisque, vol. 252, Soc. Math. France, Paris, 1998, p. 151-183. | EuDML | Numdam | MR | Zbl
, "
[28] La conjecture de Baum-Connes à coefficients pour le groupe
[29]
[30] The operator
[31] Operator
[32] Equivariant
[33] Groups acting properly on "bolic" spaces and the Novikov conjecture", Ann. of Math. (2) 158 (2003), no. 1, p. 165-206. | DOI | MR | Zbl
& - "[34] The Novikov conjecture and geometry of Banach spaces", Geom. Topol. 16 (2012), no. 3, p. 1859-1880. | DOI | MR | Zbl
& - "
[35] Banach
[36]
[37]
[38] Un renforcement de la propriété
[39] Propriété
[40] Propriété
[41] La conjecture de Baum-Connes à coefficients pour les groupes hyperboliques", J. Noncommut. Geom. 6 (2012), no. 1, p. 1-197. | DOI | MR | Zbl
, "[42] Discrete subgroups of semisimple Lie groups, Ergeb. Math. Grenzgeb. (3), vol. 17, Springer-Verlag, Berlin, 1991. | MR | Zbl
-[43] Towards a calculus for non-linear spectral gaps", in Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, Soc. Ind. Appl. Math., Philadelphie, 2010, p. 236-255. | DOI | Zbl
& - "[44] Non-linear spectral calculus and super-expanders", arXiv:1207.4705, 2012. | MR
& , "
[45] Equivariant Kasparov theory and generalized homomorphisms",
[46] The Baum-Connes conjecture for hyperbolic groups", Invent. Math. 149 (2002), no. 1, p. 97-122. | DOI | MR | Zbl
& - "
[47] Equivariant
[48] Simplicity of the
[49] Une notion de nucléarité en
[50] Progrès récents sur la conjecture de Baum-Connes. Contribution de Vincent Lafforgue", in Séminaire Bourbaki, vol. 1999/2000, Astérisque, vol. 276, Soc. Math. France, Paris, 2002, p. 105-135. | EuDML | Numdam | MR | Zbl
, "
[51] The universal property of equivariant
[52] The Baum-Connes conjecture and discrete group actions on trees", K-Theory 17 (1999), no. 4, p. 303-318. | DOI | MR | Zbl
- "[53] Une démonstration de la conjecture de Connes-Kasparov pour les groupes de Lie linéaires connexes réductifs", C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 18, p. 559-562. | MR | Zbl
- "
[54] Hyperbolic groups admit proper affine isometric actions on