@incollection{AST_2014__361__397_0, author = {Kamnitzer, Joel}, title = {Categorification of {Lie} algebras [after {Rouquier,} {Khovanov-Lauda,} ...]}, booktitle = {S\'eminaire Bourbaki volume 2012/2013 : expos\'es 1059-1073 - Avec table par noms d'auteurs de 1948/49 \`a 2012/13}, series = {Ast\'erisque}, note = {talk:1072}, pages = {397--419}, publisher = {Soci\'et\'e math\'ematique de France}, number = {361}, year = {2014}, zbl = {1356.17008}, language = {en}, url = {http://archive.numdam.org/item/AST_2014__361__397_0/} }
TY - CHAP AU - Kamnitzer, Joel TI - Categorification of Lie algebras [after Rouquier, Khovanov-Lauda, ...] BT - Séminaire Bourbaki volume 2012/2013 : exposés 1059-1073 - Avec table par noms d'auteurs de 1948/49 à 2012/13 AU - Collectif T3 - Astérisque N1 - talk:1072 PY - 2014 SP - 397 EP - 419 IS - 361 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2014__361__397_0/ LA - en ID - AST_2014__361__397_0 ER -
%0 Book Section %A Kamnitzer, Joel %T Categorification of Lie algebras [after Rouquier, Khovanov-Lauda, ...] %B Séminaire Bourbaki volume 2012/2013 : exposés 1059-1073 - Avec table par noms d'auteurs de 1948/49 à 2012/13 %A Collectif %S Astérisque %Z talk:1072 %D 2014 %P 397-419 %N 361 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2014__361__397_0/ %G en %F AST_2014__361__397_0
Kamnitzer, Joel. Categorification of Lie algebras [after Rouquier, Khovanov-Lauda, ...], dans Séminaire Bourbaki volume 2012/2013 : exposés 1059-1073 - Avec table par noms d'auteurs de 1948/49 à 2012/13, Astérisque, no. 361 (2014), Exposé no. 1072, 23 p. http://archive.numdam.org/item/AST_2014__361__397_0/
[Ara] Cycles de Schubert et cohomologie equivariante de ", Invent. Math. 85 (1986), no. 1, p. 39-52. | DOI | EuDML | Zbl
- "[Ari] On the decomposition numbers of the Hecke algebra of ", J. Math. Kyoto Univ. 36 (1996), no. 4, p. 789-808. | DOI | Zbl
- "[BFK] A categorification of the Temperley-Lieb algebra and Schur quotients of via projective and Zuckerman functors", Selecta Math. (N.S.) 5 (1999), no. 2, p. 199-241. | DOI | Zbl
, & - "[B] Quiver Hecke algebras and categorification", arXiv: 1301.5868. | DOI
- "[BK] Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras", Invent. Math. 178 (2009), no. 3, p. 451-484. | DOI | Zbl
& - "[C] Equivalences and stratified flops", Compos. Math. 148 (2012), no. 1, p. 185-208. | DOI | Zbl
- "[CKL] Derived equivalences for cotangent bundles of Grassmannians via categorical actions", J. Reine Angew. Math. 675 (2013), p. 53-99. | Zbl
, & - "[CL] Implicit structure in -representations of quantum groups", arXiv:1111.1431. | DOI | Zbl
& - "[CR] Derived equivalences for symmetric groups and -categorification", Ann. of Math. (2) 167 (2008), no. 1, p. 245-298. | DOI | Zbl
& - "[Gi] Geometric methods in the representation theory of Hecke algebras and quantum groups", in Representation theories and algebraic geometry (Montreal, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, p. 127-183. | DOI | Zbl
- "[Gr] Affine controls the modular representation theory of the symmetric groups and related Hecke algebras", math/9907129.
- "[KK] Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras", Invent. Math. 190 (2012), no. 3, p. 699-742. | DOI | Zbl
& - "[Ka] Biadjointness in cyclotomic Khovanov-Lauda-Rouquier algebras", Publ. Res. Inst. Math. Sci. 48 (2012). no. 3, p. 501-524. | DOI | Zbl
- "[KL1] A diagrammatic approach to categorification of quantum groups. I", Represent. Theory 13 (2009), p. 309-347. | DOI | Zbl
& - "[KL2] A diagrammatic approach to categorification of quantum groups II", Trans. Amer. Math. Soc. 363 (2011), no. 5, p. 2685-2700. | DOI | Zbl
& , "[KL3] A categorification of quantum ". Quantum Topol. 1 (2010), no. 1, p. 1-92. | DOI | Zbl
& , "[LLT] Hecke algebras at roots of unity and crystal bases of quantum affine algebras", Comm. Math. Phys. 181 (1996), no. 1, p. 205-263. | DOI | Zbl
, & - "[La] A categorification of quantum sl(2)", Adv. Math. 225 (2010), no. 6, p. 3327-3424. | Zbl
- "[LV] Crystals from categorified quantum groups", Adv. Math. 228 (2011), no. 2, p. 803-861 . | MR | Zbl
& - "[Lu1] Canonical bases arising from quantized enveloping algebras", J. Amer. Math. Soc. 3 (1990), no. 2, p. 447-498. | DOI | MR | Zbl
- "[Lu2] Quivers, perverse sheaves, and quantized enveloping algebras", Amer. Math. Soc. 4 (1991), no. 2, p. 365-421. | DOI | MR | Zbl
, "[N] Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras", Duke Math. J. 76 (1994), no. 2, p. 365-416. | MR | Zbl
- "[R1] Catégories dérivées et géométrie birationnelle (d'après Bondal, Orlov, Bridgeland, Kawamata et al.)", in Séminaire Bourbaki, vol 2004/2005, Astérisque, vol. 307, Soc. Math. France, Paris, 2006, exp. n° 946, p. 283-307. | EuDML | Numdam | MR | Zbl
- "[R2] -Kac-Moody algebras", arXiv:0812.5023.
, "[R3] Quiver Hecke algebras and -Lie algebras", Algebra Colloq. 19 (2012), no. 2, p. 359-410. | DOI | MR | Zbl
, "[ST] Braid group actions on derived categories of coherent sheaves", Duke Math. J. 108 (2001), no. 1, p. 37-108. | DOI | MR | Zbl
& - "[VV] Canonical bases and -algebras", J. reine angew. Math. 659 (2011), p. 67-100. | MR | Zbl
& - "[W1] Knot invariants and higher representation theory I: diagrammatic and geometric categorification of tensor products", arXiv: 1001.2020.
- "[W2] A categorical action on quantized quiver varieties", arXiv:1208.5957. | DOI
, "[Z] Categorification of integrable representations of quantum groups", arXiv:0803.3668 | DOI | MR | Zbl
- "