@incollection{AST_2014__365__101_0, author = {Kleiner, Bruce and Lott, John}, title = {Geometrization of three-dimensional orbifolds via {Ricci} flow}, booktitle = {Local collapsing, orbifolds, and geometrization}, series = {Ast\'erisque}, pages = {101--177}, publisher = {Soci\'et\'e math\'ematique de France}, number = {365}, year = {2014}, mrnumber = {3244330}, language = {en}, url = {http://archive.numdam.org/item/AST_2014__365__101_0/} }
TY - CHAP AU - Kleiner, Bruce AU - Lott, John TI - Geometrization of three-dimensional orbifolds via Ricci flow BT - Local collapsing, orbifolds, and geometrization AU - Collectif T3 - Astérisque PY - 2014 SP - 101 EP - 177 IS - 365 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2014__365__101_0/ LA - en ID - AST_2014__365__101_0 ER -
%0 Book Section %A Kleiner, Bruce %A Lott, John %T Geometrization of three-dimensional orbifolds via Ricci flow %B Local collapsing, orbifolds, and geometrization %A Collectif %S Astérisque %D 2014 %P 101-177 %N 365 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2014__365__101_0/ %G en %F AST_2014__365__101_0
Kleiner, Bruce; Lott, John. Geometrization of three-dimensional orbifolds via Ricci flow, dans Local collapsing, orbifolds, and geometrization, Astérisque, no. 365 (2014), pp. 101-177. http://archive.numdam.org/item/AST_2014__365__101_0/
[1] Orbifolds and stringy topology, Cambridge Tracts in Math. vol. 171, Cambridge Univ. Press, Cambridge, 2007. | MR | Zbl
, & -[2] Scalar curvature and the existence of geometric structures on -manifolds. I", J. Reine Angew. Math. 553 (2002), p. 125-182. | MR | Zbl
- "[3] Einstein manifolds, Ergeb. Math. Grenzgeb. (3), vol. 10, Springer-Verlag, Berlin, 1987. | MR | Zbl
-[4] Geometrization of -dimensional orbifolds", Ann. of Math. (2) 162 (2005), no. 1, p. 195-290. | DOI | MR | Zbl
, & - "[5] Three-dimensional orbifolds and their geometric structures, Panoramas & Synthèses, vol. 15, Soc. Math. France, Paris, 2003. | MR | Zbl
, & -[6] Geometrization of -orbifolds of cyclic type", Astérisque (2001), no. 272, p. 208. | Numdam | MR | Zbl
& "[7] The classification of Seifert fibred -orbifolds", in Low-dimensional topology (Chelwood Gate, 1982), London Math. Soc. Lecture Note Ser., vol. 95, Cambridge Univ. Press, Cambridge, 1985, p. 19-85. | DOI | MR | Zbl
& - "[8] Riemannian geometry of orbifolds", Ph.D. Thesis, University of California, Los Angeles, 1992, http://www.calpoly.edu/~jborzell/Publications/Publication%20PDFs/phd_thesis.pdf. | MR
- "[9] Orbifolds of maximal diameter", Indiana Univ. Math. J. 42 (1993), no. 1, p. 37-53. | DOI | MR | Zbl
, "[10] The splitting theorem for orbifolds", Illinois J. Math. 38 (1994), no. 4, p. 679-691. | MR | Zbl
& - "[11] Introduction to compact transformation groups, Pure Applied Math., vol. 46, Academic Press, New York-London, 1972. | MR | Zbl
-[12] Metric spaces of non-positive curvature, Grundlehren Math. Wiss., vol. 319, Springer-Verlag, Berlin, 1999. | MR | Zbl
& -[13] A course in metric geometry, Grad. Stud. Math., vol. 33, Amer. Math. Soc., Providence, RI, 2001. | DOI | MR | Zbl
, & -[14] Critical points of distance functions and applications to geometry", in Geometric topology: recent developments (Montecatini Terme, 1990), Lecture Notes in Math., vol. 1504, Springer, Berlin, 1991, p. 1-38. | MR | Zbl
- "[15] Nilpotent structures and invariant metrics on collapsed manifolds", J. Amer. Math. Soc. 5 (1992), no. 2, p. 327-372. | DOI | MR | Zbl
, & - "[16] The splitting theorem for manifolds of nonnegative Ricci curvature", J. Differential Geom. 6 (1971/72), p. 119-128. | DOI | MR | Zbl
& - "[17] On the structure of complete manifolds of nonnegative curvature", Ann. of Math. (2) 96 (1972), p. 413-443. | DOI | MR | Zbl
& , "[18] The Ricci flow: techniques and applications. Part I: Geometric aspects, Math. Surveys Monogr., vol. 135, Amer. Math. Soc., Providence, RI, 2007. | MR | Zbl
, , , , , , , , & -[19] Three-dimensional orbifolds and cone-manifolds, MSJ Mem., vol. 5, Math. Soc Japan, Tokyo, 2000. | MR | Zbl
, & -[20] Deforming metrics in the direction of their Ricci tensors", J. Differential Geom. 18 (1983), no. 1, p. 157-162. | DOI | MR | Zbl
- "[21] Equivariant Ricci flow with surgery and applications to finite group actions on geometric -manifolds", Geom. Topol. 13 (2009), no. 2, p. 1129-1173. | DOI | MR | Zbl
& - "[22] Geometric orbifolds", Rev. Mat. Univ. Complut. Madrid 1 (1988), no. 1-3, p. 67-99. | EuDML | MR | Zbl
- "[23] Nonfibering spherical -orbifolds", Trans. Amer. Math. Soc. 341 (1994), no. 1, p. 121-142. | MR | Zbl
, "[24] On the Topology of Locally Volume Collapsed Riemannian -Orbifolds", preprint, http://arxiv.org/abs/1101.3644, 2011. | Zbl
- "[25] A primer on mapping class groups, Princeton Math. Ser., vol. 49, Princeton Univ. Press, Princeton, NJ, 2012. | MR
& -[26] A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters", J. Differential Geom. 28 (1988), no. 1, p. 1-21. | DOI | MR | Zbl
- "[27] Metric foliations and curvature, Progr. Math., vol. 268, Birkhäuser Verlag, Basel, 2009. | MR | Zbl
& -[28] A generalized sphere theorem", Ann. of Math. (2) 106 (1977), no. 2, p. 201-211. | DOI | MR | Zbl
& - "[29] Orbi-espaces", in Sur les groupes hyperboliques d'après Mikhael Gromov (E. Ghys & P. de la Harpe, eds.), Progr. Math., vol. 83, Birkhauser Boston, Inc., Boston, MA, 1990, p. 203-213. | DOI | MR
- "[30] Three-manifolds with positive Ricci curvature", J. Differential Geom. 17 (1982), no. 2, p. 255-306. | DOI | MR | Zbl
- "[31] Four-manifolds with positive curvature operator", J. Differential Geom. 24 (1986), no. 2, p. 153-179. | DOI | MR | Zbl
, "[32] A compactness property for solutions of the Ricci flow", Amer. J. Math. 117 (1995), no. 3, p. 545-572. | DOI | MR | Zbl
, "[33] Non-singular solutions of the Ricci flow on three-manifolds", Comm. Anal. Geom. 7 (1999), no. 4, p. 695-729. | DOI | MR | Zbl
, "[34] Three-orbifolds with positive Ricci curvature", in Collected papers on Ricci flow, Ser. Geom. Topol., vol. 37, Int. Press, Somerville, MA, 2003, p. 521-524. | MR
, "[35] Roots in -manifold topology", in The Zieschang Gedenkschrift, Geom. Topol. Monogr., vol. 14, Geom. Topol. Publ., Coventry, 2008, p. 295-319. | DOI | MR | Zbl
& - "[36] Hyperbolic manifolds and discrete groups, Progress in Mathematics, vol. 183, Birkhäuser Boston, Inc., Boston, MA, 2001. | MR | Zbl
-[37] Locally collapsed -manifolds", in this volume. | Numdam
& - "[38] Notes on Perelman's papers", Geom. Topol. 12 (2008), no. 5, p. 2587-2855. | DOI | MR | Zbl
& ,"[39] Foundations of differential geometry. Vol I, Interscience Publishers, New York, 1963. | MR | Zbl
& -[40] A compactness property for solutions of the Ricci flow on orbifolds", Amer. J. Math. 123 (2001), no. 6, p. 1103-1134. | DOI | MR | Zbl
- "[41] Iteration on Teichmüller space", Invent. Math. 99 (1990), no. 2, p. 425-454. | DOI | EuDML | MR | Zbl
- "[42] The classical Plateau problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn's lemma", Topology 21 (1982), no. 4, p. 409-442. | DOI | MR | Zbl
, - "[43] The existence of embedded minimal surfaces and the problem of uniqueness", Math. Z. 179 (1982), no. 2, p. 151-168. | DOI | EuDML | MR | Zbl
, ,"[44] Orbifolds as groupoids: an introduction", in Orbifolds in mathematics and physics (Madison, WI, 2001), Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, p. 205-222. | DOI | MR | Zbl
- "[45] Recent progress on the Poincare conjecture and the classification of -manifolds", Bull. Amer. Math. Soc. (N.S.) 42 (2005), no. 1, p. 57-78 (electronic). | DOI | MR | Zbl
- "[46] On a classification of gradient shrinking solitons", Math. Res. Lett. 15 (2008), no. 5, p. 941-955. | DOI | MR | Zbl
& - "[47] Le théorème d'hyperbolisation pour les variétés fibrées de dimension ", Astérisque (1996), no. 235, p. x+159. | Numdam | MR | Zbl
- "[48] Thurston's hyperbolization of Haken manifolds", in Surveys in differential geometry. Vol. III (Cambridge, MA, 1996), Int. Press, Boston, MA, 1998, p. 77-194. | MR | Zbl
,"[49] The Entropy Formula for the Ricci Flow and its Geometric Applications", preprint, http://arXiv.org/abs/math.DG/0211159, 2002. | Zbl
- "[50] Ricci Flow with Surgery on Three-Manifolds", preprint, http://arxiv.org/abs/math.DG/0303109, 2003. | Zbl
,"[51] Surgery and the Yamabe invariant", Geom. Fund. Anal. 9 (1999), no. 6, p. 1189-1199. | DOI | MR | Zbl
& - "[52] On the classification of gradient Ricci solitons", Geom. Topol. 14 (2010), no. 4, p. 2277-2300. | DOI | MR | Zbl
& - "[53] Spherical splitting of -orbifolds", Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 2, p. 269-287. | DOI | MR | Zbl
- "[54] The geometries of -manifolds", Bull. London Math. Soc. 15 (1983), no. 5, p. 401-487. | DOI | MR | Zbl
- "[55] Partial differential equations. III, Appl. Math. Sciences, vol. 117, Springer-Verlag, New York, 1997. | MR | Zbl
-[56] Three-dimensional manifolds, Kleinian groups and hyperbolic geometry", Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, p. 357-381. | DOI | MR | Zbl
- "[57] Three-Manifolds with Symmetry", preprint, 1982.
, "[58] The Ricci flow on -orbifolds with positive curvature", J. Differential Geom. 33 (1991), no. 2, p. 575-596. | DOI | MR | Zbl
- "[59] Notes on -Dimensional -Solutions", http://www.math.ucsb.edu/~yer/kappa-solutions.pdf.
- "