Sur quelques problèmes non linéaires en physique des plasmas. Sur des problèmes de diffusion non linéaires en hydrologie et en dynamique des populations. Sur quelques méthodes de parallélisation automatique de programmes
Thèses d'Orsay, no. 175 (1985) , 314 p.
@phdthesis{BJHTUP11_1985__0175__A1_0,
     author = {Hilhorst, Danielle},
     title = {Sur quelques probl\`emes non lin\'eaires en physique des plasmas. {Sur} des probl\`emes de diffusion non lin\'eaires en hydrologie et en dynamique des populations. {Sur} quelques m\'ethodes de parall\'elisation automatique de programmes},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris Centre d'Orsay},
     number = {175},
     year = {1985},
     language = {fr},
     url = {http://archive.numdam.org/item/BJHTUP11_1985__0175__A1_0/}
}
TY  - BOOK
AU  - Hilhorst, Danielle
TI  - Sur quelques problèmes non linéaires en physique des plasmas. Sur des problèmes de diffusion non linéaires en hydrologie et en dynamique des populations. Sur quelques méthodes de parallélisation automatique de programmes
T3  - Thèses d'Orsay
PY  - 1985
IS  - 175
PB  - Université de Paris Centre d'Orsay
UR  - http://archive.numdam.org/item/BJHTUP11_1985__0175__A1_0/
LA  - fr
ID  - BJHTUP11_1985__0175__A1_0
ER  - 
%0 Book
%A Hilhorst, Danielle
%T Sur quelques problèmes non linéaires en physique des plasmas. Sur des problèmes de diffusion non linéaires en hydrologie et en dynamique des populations. Sur quelques méthodes de parallélisation automatique de programmes
%S Thèses d'Orsay
%D 1985
%N 175
%I Université de Paris Centre d'Orsay
%U http://archive.numdam.org/item/BJHTUP11_1985__0175__A1_0/
%G fr
%F BJHTUP11_1985__0175__A1_0
Hilhorst, Danielle. Sur quelques problèmes non linéaires en physique des plasmas. Sur des problèmes de diffusion non linéaires en hydrologie et en dynamique des populations. Sur quelques méthodes de parallélisation automatique de programmes. Thèses d'Orsay, no. 175 (1985), 314 p. http://numdam.org/item/BJHTUP11_1985__0175__A1_0/

[1] E. Marode, J. Appl. Phys. 46 (1975) 2005, 2016. | DOI

[2] E. Marode, F. Bastien and M. Bakker, J. Appl. Phys. 50 (1979) 140. | DOI

[3] E. Marode, D. Hilhorst, I. Gallimberti and B. Gallimberti, 31st Gaseous electronics Conf. (Buffalo, NY, 1978), Abstracts, unpublished.

[4] O. Diekmann, D. Hilhorst and L.A. Peletier, SIAM J. Appl. Math. 39 (1980) 48. | MR | Zbl | DOI

[5] J.L. Mccauley Jr., J. Phys. C 10 (1977) 689

J.L. Mccauley Jr., Phys. Rev.B20 (1979) 1928. | DOI

[6] E. Lieb, Rev. Mod. Phys. 48 (1976) 553. | MR | DOI

[7] D. Hilhorst, to be published.

[8] O. Diekmann and D. Hilhorst, in: Lecture notes in mathematics, Vol. 810 (Springer, Berlin, 1980) p. 159. | DOI

[9] R.M. May, Phys. Lett. 25 A (1967) 282 | DOI

E.H. Hauge and P.C. Hemmer, Phys. Norv. 5 (1971) 209

J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6 (1973) 1181

C. Deutsch and M. Lavaud, Phys. Rev. A 9 (1974) 2598 | DOI

J.M. Kosterlitz, J. Phys.C10 (1977) 3753.

[10] O. Diekmann and D. Hilhorst, in preparation.

[1] S. R. Bernfeld and V. Lakshmikantham, An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York, 1974. | MR | Zbl

[2] J. G. Besjes, Singular perturbation problems for partial differential equations, Ph.D. thesis, Delft Technological Univ., Delft, The Netherlands.

[3] S. T. Chui and J. D. Weeks, Phase transition in the two-dimensional Coulomb gas, and the interfacial roughening transition, Phys. Rev. B, 14 (1976), pp. 4978-4982. | DOI

[4] Ph. Clément and I. B. Emmerth, On the structure of continua of positive and concave solutions for two point nonlinear eigenvalue problems, MRC Rep. 1766, Univ. of Wisconsin, Madison, 1977.

[5] Ph. Clément and L. A. Peletier, On positive, concave solutions of two point nonlinear eigenvalue problems, J. Math. Anal. Appl., in press. | MR | Zbl

[6] O. Diekmann, Limiting behaviour in an epidemic model, Nonlinear Analysis TMA, 1 (1977), pp. 459-470. | MR | Zbl | DOI

[7] I. Gallimberti, A computer model for streamer propagation, J. Phys. D 5 (1972), pp. 2179-2189.

[8] T. G. Hallam and D. E. Loper, Singular boundary value problems arising in a rotating fluid flow, Arch. Rat. Mech. Anal., 60 (1976), pp. 355-369. | MR | Zbl | DOI

[9] A. Van Harten, Singularly perturbed nonlinear second order elliptic boundary value problems, Ph.D. thesis Univ. of Utrecht, Utrecht, the Netherlands.

[10] F. A. Howes, Boundary-interior layer interactions in nonlinear singular perturbation theory, AMS Memoir 203, American Mathematical Society, Providence, RI, 1978, 108 pp. | MR | Zbl

[11] F. A. Howes and S. V. Parter, A model nonlinear problem having a continuous locus of singular points, Studies in Appl. Math., 58 (1978), pp. 249-262. | MR | Zbl | DOI

[12] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C, 6 (1973), pp. 1181-1203.

[13] E. Marode, The mechanism of spark breakdown in air at atmospheric pressure between a positive point and a plane ; I : Experimental : nature of the streamer track, J. Appl. Phys., 46 (1975), pp. 2005-2015. | DOI

E. Marode, The mechanism of spark breakdown in air at atmospheric pressure between a positive point and a plane ; II : Theoretical : Computer simulation of the streamer track, J. Appl. Phys., 46 (1975), pp. 2016-2020. | DOI

[14] E. Marode et al., in preparation.

[15] C. Miranda, Partial Differential Equations of Elliptic Type, Springer, Berlin, 1970. | MR | Zbl

[16] G. R. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand-Reinhold, London, 1971. | MR | Zbl

[1] D. G. Aronson, Regularity properties of flows through porous media, SIAM J. Appl. Math., 17 (1969), pp. 461-467. | MR | Zbl | DOI

[2] D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion and nerve impulse propagation, Lecture Notes in Mathematics 446, Springer, New York, 1975, pp. 5-49. | MR | Zbl | DOI

[3] S. R. Bernfeld and V. Lakshmikantham, An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York, 1974. | MR | Zbl

[4] C. Cosner, Asymptotic behavior of solutions of second order parabolic partial differential equations with unbounded coefficients, J. Differential Equations, 35 (1980), pp. 407-428. | MR | Zbl | DOI

[5] O. Diekmann, Limiting behavior in an epidemic model, Nonlinear analysis TMA, 1 (1977), pp. 459-470. | MR | Zbl | DOI

[6] O. Diekmann, D. Hilhorst and L. A. Peletier, A singular boundary value problem arising in a prebreakdown gas discharge, SIAM J. Appl. Math., 39 (1980), 48-66. | MR | Zbl | DOI

[7] C. J. Van Duyn, Regularity properties of solutions of an equation arising in the theory of turbulence, J. Differential Equations, 33 (1979), pp. 226-238. | MR | Zbl | DOI

[8] C. J. Van Duyn, On the diffusion of immiscible fluids in porous media, this Journal, 10 (1979), pp. 486-497. | MR | Zbl

[9] C. J. Van Duyn, and L. A. Peletier, Asymptotic behaviour of solutions of a nonlinear diffusion equation, Arch. Rat. Mech. Anal., 65 (1977), pp. 363-377. | MR | Zbl | DOI

[10] P. C. Fife and L. A. Peletier, Nonlinear diffusion in population genetics, Arch. Rat. Mech. Anal., 64 (1977), pp. 93-109. | MR | Zbl | DOI

[11] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964. | MR | Zbl

[12] B. J. Gilding, Hölder continuity of solutions of parabolic equations, J. London Math. Soc., 13 (1976), pp. 103-106. | MR | Zbl | DOI

[13] B. J. Gilding and L. A. Peletier, The Cauchy problem for an equation in the theory of infiltration, Arch. Rat. Mech. Anal., 61 (1976), pp. 127-140. | MR | Zbl | DOI

[14] A. M. Il'In and O. A. Oleinik, Asymptotic behaviour of solutions of the Cauchy problem for certain quasilinear equations for large values of time, Mat. Sb., 51 (1960), pp. 191-216. | MR

[15] P. M. Ippolito, Maximum principles and classical solutions for degenerate parabolic equations, J. Math. Anal. Appl. 64 (1978), pp. 530-561. | MR | Zbl | DOI

[16] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'Ceva, Linear and Quasi-linear Equations of Parabolic Type, Trans. Math. Monographs 23, American Mathematical Society, Providence, RI, 1968. | MR | Zbl

[17] E. Marode, The mechanism of spark breakdown in air at atmospheric pressure between a positive point and a plane ; I : Experimental : nature of the streamer track, J. Appl. Phys., 46 (1975), pp. 2005-2015. | DOI

E. Marode, The mechanism of spark breakdown in air at atmospheric pressure between a positive point and a plane ; II : Theoretical : computer simulation of the streamer track, J. Appl. Phys., 46 (1975), pp. 2016-2020. | DOI

[18] E. Marode, F. Bastien and M. Bakker, A model of the streamer-induced spark formation based on neutral dynamics, J. Appl. Phys., 50 (1979), pp. 140-146. | DOI

[19] O. A. Oleinik, Discontinuous solutions of non-linear differential equations, AMS Transl., 26 (1963), pp. 95-172. | MR | Zbl

[20] L. A. Peletier, Asymptotic behavior of solutions of the porous media equation, SIAM J. Appl. Math., 21 (1971), pp. 542-551. | MR | Zbl | DOI

[21] L. A. Peletier and J. Serrin, Gradient bounds and Liouville theorems for quasilinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Série IV, V (1978), pp. 65-104. | MR | Zbl | Numdam

[22] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1967. | MR | Zbl

[23] P. Wilders, private communication.

[1] Brézis, H., Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, Math. Studies, 5, North-Holland, 1973. | MR | Zbl

[2] Diekmann, O., D. Hilhorst & L.A. Peletier, A singular boundary value problem arising in a pre-breakdown gas discharge, SIAM J. Appl. Math., 39, 48-66 (1980). | Zbl | MR | DOI

[3] Ekeland, I. & R. Témam, Analyse Convexe et Problèmes Variationnels, Dunod, Paris, 1974. | MR | Zbl

[4] Grasman, J. & B.J. Matkowsky, A variational approach to singularly perturbed boundary value problems for ordinary and partial differential equations with turning points, SIAM J. Appl. Math. 32, 588-597 (1977). | MR | Zbl | DOI

[5] Martini, R., Differential operators degenerating at the boundary as infinitesimal generators of semi-groups, Ph.D. thesis, Delft Technological Univ., Delft, The Netherlands, 1975.

[1] Adams, R.A., Sobolev Spaces, Academic Press, New York, 1975. | MR

[2] Agmon, S., The L p approach to the Dirichlet problem, I, Ann. Sc. Norm. Sup. Pisa (1959) 405-448 | MR | Zbl | Numdam

[3] Arthurs, A.M., Complementary Variational Principles, Clarendon Press, Oxford, 1980 | MR | Zbl

[4] Arthurs, A.M. & F.D. Robinson, Complementary variational principles for 2 ϕ = f ( ϕ ) with applications to the Thomas-Fermi and Liouville equations, Proc. Camb. Phil. Soc. 65 (1969) 535-541. | MR | Zbl | DOI

[5] Baranger, J. & J. Charlin, Interior error estimates and thickness of the boundary layer in some nonlinear elliptic singular perturbations problems, in : Boundary and Interior Layers - Computational and Asymptotic Methods, J.J.H. Miller ed., Boole Press Limited, 1980. | MR | Zbl

[6] Berger, M.S. & L.E. Fraenkel, Nonlinear desingularization in certain free-boundary problems, Comm. Math. Phys. 77 (1980) 149-172. | MR | Zbl | DOI

[7] Brauner, C.M., Frémond, M. & B. Nicolaenko, A new homographic approximation of free boundary problems, to appear in the Proceedings of the Symposium on Free Boundary Problems : Theory and Applications, Montecatini, June 1981.

[8] Brauner, C.M. & B. Nicolaenko, Singular perturbations and free boundary problems, in : Computing Methods in Applied Sciences and Engineering, R. Glowinski & J.L. Lions eds, North Holland 1980. | MR | Zbl

[9] Brauner, C.M. & B. Nicolaenko, Internal layers and free boundary problems, in : Boundary and Interior Layers - Computational and Asymptotic Methods, J.J.H. Miller ed., Boole Press Limited 1980. | MR | Zbl

[10] Brauner, C.M. & B. Nicolaenko, Homographic approximations of free, boundary problems characterized by elliptic variational inequalities, to appear in Advances in Mathematics. | MR | Zbl

[11] Brezis, H., Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North Holland, Amsterdam, 1973. | MR | Zbl

[12] Brezis, H., Intégrales convexes dans les espaces de Sobolev, Israel J. Math. 13 (1972) 9-23. | MR | Zbl | DOI

[13] Brezis, H. & F. Browder, Sur une propriété des espace de Sobolev, C.R. Acad. Sc. Paris 287 (1978) 113-115. | MR | Zbl

[14] Brezis, H. & F. Browder, A property of Sobolev spaces, Comm, in P.D.E. 4 (1979) 1077-1083. | MR | Zbl | DOI

[15] Caffarelli, L.A. & A. Friedman, Asymptotic estimates for the plasma problem, Duke Math. J. 47 (1980) 705-742. | MR | Zbl | DOI

[16] Damlamian, A., Application de la dualité non convexe à un problème non linéaire à frontière libre (équilibre d'un plasma confiné), C.R. Acad. Sc. Paris 286 (1978) 153-155. | MR | Zbl

[17] Deny, J. & J.L. Lions, Les espaces du type de Beppo-Levi, Ann. Inst. Fourier, 5 (1953-54) 305-370. | Zbl | Numdam | DOI

[18] Diekmann, O., Hilhorst, D. & L.A. Peletier, A singular boundary value problem arising in a pre-breakdown gas discharge, SIAM J. Appl. Math. 39 (1980) 48-66. | MR | Zbl | DOI

[19] Diekmann, O. & D. Hilhorst, How many jumps ? Variational characterization of the limit solution of a singular perturbation problem, in : Geometrical Approaches to Differential Equations, R. Martini ed., Lecture Notes in Mathematics 810, Springer 1980. | MR | Zbl | DOI

[20] Ekeland, I. & R. Temam, Analyse Convexe et Problèmes Variationnels, Dunod-Gauthier-Villars, Paris, 1974. | MR | Zbl

[21] Frank, L.S. & E.W. Van Groesen, Singular perturbations of an elliptic operator with discontinuous nonlinearity, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis, O. Axelsson, L.S. Frank & A. Van Der Sluis eds, North Holland 1981. | MR | Zbl

[22] Frank, L.S. & W.D. Wendt, On an elliptic operator with discontinuous nonlinearity, Report 8116 of Nijmegen University, June 1981. | Zbl

[23] Grun-Rehomme, M., Caractérisation du sous-differentiel d'intégrandes convexes dans les espaces de Sobolev, J. Math, pures et appl. 56 (1977) 149-156. | MR | Zbl

[24] Hilhorst, D., A nonlinear evolution problem arising in the physics of ionized gases, to appear in SIAM J. Math. Anal. 13 (1982). | MR | Zbl | DOI

[25] Hilhorst, D., Hilhorst, H.J. & E. Marode, Rigorous results on a time dependent inhomogeneous Coulomb gas problem, Phys. Lett. 84A (1981) 424-426. | DOI

[26] Kinderlehrer, D. & G. Stampacchia, An introduction to Variational Inequalities and their Applications, Academic Press, New York, 1980. | MR | Zbl

[27] Protter, M.H. & H.F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, 1967. | MR | Zbl

[28] Seidman, T.I., The asymptotic growth of solutions of - Δ u = λ f ( u ) for large λ , Indiana Univ. Math. J. 30 (1981) 305-311. | MR | Zbl | DOI

[29] Temam, R., A nonlinear eigenvalue problem : The shape at equilibrium of a confined plasma, Arch. Rat. Mech. Anal. 60 (1975) 51-73. | MR | Zbl | DOI

[30] Temam, R., Remarks on a free boundary value problem arising in plasma physics, Comm, in P.D.E. 2 (1977) 563-585. | MR | Zbl | DOI

[31] Weyer, J., Über Maximale Monotonie von Operatoren des Typs L * ϕ L , Report 78-24 of Cologne University, October 1978. | MR

[1] Alikakos, N.D. & R. Rostamian, Large time behavior of solutions of Neumann boundary value problem for the porous medium equation, Indiana Univ.Math.J. 30 (1981) 749-785. | MR | Zbl | DOI

[2] Atkinson, C. & J.E. Bouillet, Some qualitative properties of solutions of a generalized diffusion equation, Math. Proc. Cambridge Philos. Soc. 86 (1979) 495-510. | MR | Zbl | DOI

[3] Atkinson, C. & J.E. Bouillet, A generalized diffusion equation : radial symmetries and comparison theorems, J.Math.Anal.Appl. 95 (1983) 37-68. | MR | Zbl | DOI

[4] Bamberger, A., Etude d'une equation doublement non linéaire, J.Funct.Anal. 24 (1977) 148-155. | MR | Zbl | DOI

[5] Bear, J., Dynamics of Fluids in Porous Media, American Elsevier Publishing Company 1972. | Zbl

[6] Benilan, Ph. & M.G. Crandall, Regularizing effects of homogeneous evolution equations, MRC Report 2076, University of Wisconsin.

[7] Cortazar, C., The application of dissipative operators to nonlinear diffusion equations, J.Diff.Eq. 47 (1983) 1-23 | MR | Zbl | DOI

[8] Crandall, M.G. & M. Pierre, Regularizing effects for u t + A ϕ = 0 in L 1 , J.Funct.Anal. 45 (1982) 194-212. | MR | Zbl | DOI

[9] Dafermos, C.M., Asymptotic behaviour of solutions of evolution equations, in : Nonlinear Evolution Equations, M.G.Crandall ed., Academic Press 1978. | MR | Zbl

[10] Van Duyn, C.J., Some fundamental properties of the simultaneous flow of fresh and salt groundwater in horizontally extended aquifers, in : Proceedings of Euromech 143, A.Verruijt & P.B.J.Barends eds., Balkema, Rotterdam 1981.

[11] Van Duyn, C.J., On the diffusion of immiscible fluids in porous media, SIAM J.Math.Anal. 10 (1979) 486-496. | MR | Zbl | DOI

[12] Friedman, A., Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Cliffs, N.J., 1964. | MR | Zbl

[13] Gilding, B.J., Hölder continuity of solutions of parabolic equations, J.London Math.Soc. 13 (1976) 103-106. | MR | Zbl | DOI

[14] De Josselin De Jong, G., The simultaneous flow of fresh and salt water in aquifers of large horizontal extension determined by shear flow and vortex theory, in : Proceedings of Euromech 143, A. Verruijt & F.B.J.Barends eds., Balkema, Rotterdam 1981.

[15] Kalashnikov, A.S., On some nonlinear equation arising in the theory of nonstationary filtration, Trudy Seminara im I.G.Petrovskovo 4 (1978) 137-146. | MR | Zbl

[16] Kalashnikov, A.S., The Cauchy problem for some degenerate second order parabolic equations with general nonlinearities, Trudy Seminara im I.G.Petrovskovo 6 (1981) 83-96. | MR | Zbl

[17] Kalashnikov, A.S., Cauchy's problem in classes of increasing functions for certain quasilinear degenerate parabolic equations of second order, Differential' nye Uravneniya 9 (1973) 682-691. | MR | Zbl

[18] Ladyženskaja, O.A., V.A. Solonnikov & N.N. Ural'Ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs Volume 23, Providence R.I.: American Mathematical Society 1968. | MR | Zbl | DOI

[19] Temam, R., Navier- Stokes Equations, North Holland 1979. | MR | Zbl

[1] Alikakos, N.D. & R. Rostamian, Large time behavior of solutions of Neumann boundary value problem for the porous medium equation, Indiana Univ. Math. J. 30 (1981) 749-785. | MR | Zbl | DOI

[2] Alikakos, N.D. & R. Rostamian, Stabilization of solutions of the equation u t = Δ φ - β ( u ) , Nonlinear Analysis TMA 6 (1982) 637-647. | MR | Zbl

[3] Aronson, D.G., M.G. Crandall & L.A. Peletier, Stabilization of solutions of a degenerate nonlinear diffusion equation, Nonlinear Analysis TMA 6 (1982) 1001-1022. | MR | Zbl | DOI

[4] Bertsch, M., M.E. Gurtin, D. Hilhorst & L.A. Peletier, On interacting populations that disperse to avoid crowding : the effect of a sedentary colony, to appear. | MR | Zbl | DOI

[5] Dafermos, C.M., Asymptotic behavior of solutions of evolution equations in : Nonlinear evolution equations, M.G. Crandall ed., Academic Press 1978. | Zbl | MR

[6] Diaz, J.I. & R. Kersner, On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium, to appear as MRC Report, Univ. of Wisconsin, Madison. | MR | Zbl

[7] Dibenedetto E., Continuity of weak solutions to a general porous media equation, Indiana Univ. Math. J. 32 (1983) 83-118. | MR | Zbl | DOI

[8] Friedman, A., Partial Differential Equations of Parabolic type, Prentice Hall, Englewood Cliffs, N.J., 1964. | MR | Zbl

[9] Friedman, A., Partial Differential Equations, Holt Rinehart New York 1969. | MR | Zbl

[10] Gagneux, G. Déplacement de fluides non miscibles incompressibles dans un cylindre poreux, J. de Mécanique 19 (1980) 295-325. | MR | Zbl

[11] Gurtin, M.E. & A.C. Pipkin, On populations that disperse to avoid crowding, to appear. | MR | Zbl

[12] Kalashnikov, A.S., The propagation of disturbances in problems of nonlinear heat conduction with absorption, USSR Comp. in Math. Phys. 14, 4 (1974) 70-85. | Zbl | DOI

[13] Kalashnikov, A.S., The Cauchy problem in a class of growing functions for equations of unsteady filtration type, Vestnik Moskov Univ. Ser. VI Mat. Mech. 6 (1963) 17-27 (in Russian). | MR | Zbl

[14] Kinderlehrer, D. & G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic Press 1980. | MR | Zbl

[15] Kufner, A., O. John & S. Fučik, Function Spaces, Noordhoff International Publishing, Leiden 1977. | MR | Zbl

[16] Ladyzenskaja, O.A., V.A. Solonnikov & N.N. Ural'Ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs Volume 23, Providence, R.I.: American Mathematical Society 1968. | MR | Zbl | DOI

[17] Madaune-Tort, M., Perturbations singulières de problèmes aux limites du second ordre hyperboliques et paraboliques non linéaires, Thèse, Université de Pau 1981.

[18] Osher, S. & J. Ralston, L1 Stability of travelling waves with applications to convective porous media flow, Comm. Pure Appl. Math. 35 (1982) 737-749. | MR | Zbl | DOI

[19] Rademacher, H., Uber partielle und totale Differenzierbarkeid von Funktionen mehrerer Variabein und über die Transformation der Doppelintegrale, Math. Ann. 79 (1919) 340-359 (and in : Collected Papers of Hans Rademacher, E. Grosswald ed., The MIT Press 1974.) | MR | JFM | DOI

[20] Schatzman, M., Stationary solutions and asymptotic behavior of a quasilinear degenerate parabolic equation, Rapport 76, Centre de Mathématiques Appliquées, Ecole Polytechnique 1982. | MR | Zbl

[21] Toure, H., Etude des équations générales u t - φ ( u ) x x + f ( u ) X = V par la théorie des semi-groupes non linéaires dans L 1 , Thèse, Université de Franche-Comté Besançon 1982

1. Aronson, D. G., Crandall, M. G., Peletier, L. A. : Stabilization of solutions of a degenerate nonlinear diffusion equation. Nonlin. Analysis, Theory, Methods, Appl. 10, 1001-1022 (1982) | MR | Zbl | DOI

2. Bertsch, M., Hilhorst, D. : A density dependent diffusion equation in population dynamics : stabilization to equilibrium. To appear | MR | Zbl | DOI

3. Busenberg, S. N., Travis, C. C. : Epidemic models with spatial spread due to population migration. J. Math. Biol. 16, 181-198 (1983) | MR | Zbl | DOI

4. Dafermos, C. M. : Asymptotic behaviour of solutions of evolution equations. Nonlinear Evolution Equations, (Crandall, M. G., ed.) pp. 103-124. New York : Academic Press 1978 | MR | Zbl

5. Dibenedetto, E. : Continuity of weak solutions to a general porous media equation, Indiana Univ. Math. J. 32, 83-118 (1983) | MR | Zbl | DOI

6. Gurney, W. S. C., Nisbet, R. M. : The regulation of inhomogeneous populations. J. Theoret. Biol. 52, 441-457 (1975) | DOI

7. Gurtin, M. E., Maccamy, R. C. : On the diffusion of biological populations. Math. Biosc. 33, 35-49 (1977) | MR | Zbl | DOI

8. Gurtin, M. E., Pipkin, A. C. : On interacting populations that disperse to avoid crowding. Quarterly of Applied Mathematics. To appear | MR | Zbl

9. Okubo, A.: Diffusion and ecological problems: Mathematical models. Berlin-Heidelberg-New York : Springer 1980 | MR | Zbl

10. Osher, S., Ralston, J.: L 1 stability of travelling waves with applications to convective porous media flow. Comm. Pure Appl. Math. 35, 737-749 (1982) | MR | Zbl | DOI

11. Peletier, L. A. : The porous media equation, Application of nonlinear analysis in the physical sciences (Amann, H., Bazley, N., Kirchgassner, K., eds.) pp. 229-241. Boston: Pitman 1981 | Zbl | MR

12. Shigesada, N. : Spatial distribution of dispersing animals. J. Math. Biol. 9, 85-96 (1980) | MR | Zbl | DOI

13. Shigesada, N., Kawasaki, K., Teramoto, E. : Spatial segregation of interacting species. J. Theoret. Biol. 79, 83-99 (1979) | MR | DOI

14. Skellam, J. G. : Random dispersal in theoretical populations. Biometrika 38, 196-218 (1981) | MR | Zbl | DOI

[1] Alikakos, N.D., An application of the invariance principle to reaction-diffusion equations, J. Diff. Eq., 33 (1979) 201-225. | MR | Zbl | DOI

[2] Alikakos, N.D., and R. Rostamian, Large time behaviour of solutions of Neumann boundary value problem for the porous medium equation, Indiana Univ. Math. J., 30 (1981) 749-785. | MR | Zbl | DOI

[3] Aronson, D.G., Some properties of the interface for a gas flaw in porous media, in : Free Boundary Problems : Theory and Applications, Vol. I (eds. A. Fasano and M. Primicerio), Pitman, 1983. | Zbl

[4] Aronson, D.G., and Ph. Bénilan, Régularité des solutions de l'équation des milieux poreux dans N , C.R. Acad. Sc. Paris, 288 (1979) 103-105. | MR | Zbl

[5] Aronson, D.G., M.G. Crandall and L.A. Peletier, Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal., TMA, 6 (1982) 1001-1022. | MR | Zbl | DOI

[6] Bamberger, A., Etude d'une équation doublement non linéaire, J. Funct. Anal., 24 (1977) 148-155. | MR | Zbl | DOI

[7] Bertsch, M., M.E. Gurtin, D. Hilhorst and L.A. Peletier, On interacting populations that disperse to avoid crowding : The effect of a sedentary colony, J. Math. Biol., 19 (1984) 1-12. | MR | Zbl | DOI

[8] Bertsch, M., M.E. Gurtin, D. Hilhorst and L.A. Peletier, On interacting populations that disperse to avoid crowding : Preservation of segregation, to appear. | MR | Zbl

[9] Bertsch, M., and D. Hilhorst, A density dependent diffusion equation in population dynamics : stabilization to equilibrium, to appear. | MR | Zbl | DOI

[10] Bertsch, M., and L.A. Peletier, A positivity property of solutions of nonlinear diffusion equations, J. Diff. Eq. 53 (1984) 30-47. | MR | Zbl | DOI

[11] Bertsch, M., and L.A. Peletier, Porous Media type equations : an overview, to appear.

[12] Caffarelli, L.A., and A. Friedman, Regularity of the free boundary for the one-dimensional flow of gas in a porous medium, Amer. J. Math., 101 (1979) 1193-1218. | MR | Zbl | DOI

[13] Crandall, M.G., and M. Pierre, Regularizing effects for u t + A φ ( u ) = 0 in L 1 , J. Funct. Anal., 45 (1982) 194-212. | MR | Zbl | DOI

[14] Dafermos, C.M., Asymptotic behaviour of solutions of evolution equations, in : Nonlinear Evolution Equations (ed. M.G. Crandall), Academic Press, 1978. | MR | Zbl

[15] Dibenedetto, E., Continuity of weak solutions to a general porous media equation, Indiana Univ. Math. J., 32 (1983) 83-118. | MR | Zbl | DOI

[16] Gilding, B.H., Hölder continuity of solutions of parabolic equations, J. London Math. Soc., 13. (1976) 103-106. | MR | Zbl | DOI

[17] Gurtin, M.E., R.C. Maccamy and E.A. Socolovsky, A coordinate transformation for the porous media equation that renders the free-boundary stationary, Quart. Appl. Math., 42 (1984), 345-357. | MR | Zbl | DOI

[18] Gurtin, M.E., and A.C. Pipkin, A note on interacting populations that disperse to avoid crowding, Quart. Appl. Math., 42 (1984) 87-94. | MR | Zbl | DOI

[19] Knerr, B.F., The porous medium equation in one dimension, Trans. Amer. Math. Soc., 234 (1977) 381-415. | MR | Zbl | DOI

[20] Ladyženskaja, O.A., V.A. Solonnikov and N.N. Ural'Ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23, Amer. Math. Soc., Providence RI, 1968. | MR | Zbl

[21] Peletier, L.A., The porous media equation, in : Application of Nonlinear Analysis in the Physical Sciences (eds. H. Amann, N. Bazley and K. Kirchgassner), Pitman, 1981. | Zbl

[22] Temam, R., Navier-Stokes Equations ; Theory and Numerical Analysis. North-Holland, Amsterdam, 1979. | Zbl

1. Gurney, W.S.C., Nisbet, R.M. : The regulation of inhomogeneous populations. J. Theoret. Biol. 52, 441-457 (1975). | DOI

2. Gurtin, M. E., Maccamy, R. C. : On the diffusion of biological populations. Math. Biosc. 33, 35-49 (1977). | MR | Zbl | DOI

3. Bertsch, M., Hilhorst, D. : A density dependent diffusion equation in population dynamics : stabilization to equilibrium. To appear. | MR | Zbl | DOI

4. Bertsch, M., Gurtin, M. E., Hilhorst, D., Peletier, L. A. : On interacting populations that disperse to avoid crowding : The effect of a sedentary colony. J. Math. Biol. 19, 1-12 (1984). | MR | Zbl | DOI

5. Gurtin, M. E., Pipkin, A. C. : A note on interacting populations that disperse to avoid crowding. Quart. Appl. Math. 42,87-94 (1984) | MR | Zbl | DOI

6. Busenberg, S. N., Travis, C. C. : Epidemic models with spatial spread due to population migration. J. Math. Biol. 16, 181-198 (1983). | MR | Zbl | DOI

7. Shigesada, N., Kawasaki, K., Teramoto, E. : Spatial segregation of interacting species. J. Theoret. Biol. 79, 83-99 (1979). | MR | DOI

8. Peletier, L. A. : The porous media equation, Application of nonlinear analysis in the physical sciences (Amann, H., Bazley, N., Kirchgassner, K., eds.) pp. 229-241. Boston : Pitman 1981. | Zbl

9. Aronson, D. G., Peletier, L. A. : Large time behavior of solutions of the porous media equation. J. Differential Eqns. 39, 378-412 (1981). | MR | Zbl | DOI

10. Bertsch, M., Gurtin, M.E., Hilhorst, D. : The equation c ( z ) t = ( | z x | m - 1 z x ) x : the free boundary induced by a discontinuity in the derivative of c . To appear.