A propos des systèmes de particules en interaction sur un réseau
Thèses d'Orsay, no. 202 (1987) , 244 p.
@phdthesis{BJHTUP11_1987__0202__A1_0,
     author = {Comets, Francis},
     title = {A propos des syst\`emes de particules en interaction sur un r\'eseau},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {202},
     year = {1987},
     language = {fr},
     url = {http://archive.numdam.org/item/BJHTUP11_1987__0202__A1_0/}
}
TY  - BOOK
AU  - Comets, Francis
TI  - A propos des systèmes de particules en interaction sur un réseau
T3  - Thèses d'Orsay
PY  - 1987
IS  - 202
PB  - Université de Paris-Sud Centre d'Orsay
UR  - http://archive.numdam.org/item/BJHTUP11_1987__0202__A1_0/
LA  - fr
ID  - BJHTUP11_1987__0202__A1_0
ER  - 
%0 Book
%A Comets, Francis
%T A propos des systèmes de particules en interaction sur un réseau
%S Thèses d'Orsay
%D 1987
%N 202
%I Université de Paris-Sud Centre d'Orsay
%U http://archive.numdam.org/item/BJHTUP11_1987__0202__A1_0/
%G fr
%F BJHTUP11_1987__0202__A1_0
Comets, Francis. A propos des systèmes de particules en interaction sur un réseau. Thèses d'Orsay, no. 202 (1987), 244 p. http://numdam.org/item/BJHTUP11_1987__0202__A1_0/

[1] Ellis R. S. : "Entropy, large deviations and statistical mechanics" ; Springer-Verlag, 1985. | MR | Zbl | DOI

[2] Liggett T. M. : "Interacting particle Systems" ; Springer-Verlag, 1985. | MR | Zbl | DOI

[3] Donsker M. D., Varadhan S. R. S. : "Asymptotic evaluation of certain Markov process expectations for large time IV" ; Comm. Pure Appl. Math. 36, 1983 p. 183-212. | MR | Zbl | DOI

[4] Freidlin M. I., Wentzell A. D. : "Random perturbations of dynamycal systems" ; Springer-Verlag, 1983. | MR | Zbl

[5] Eisele T., Ellis R. S. : "Symmetry breaking and random waves for magnetic systems on a circle" ; Z. Wahr. th. verw. Geb., t. 63, p. 297, 1983. | MR | Zbl | DOI

[6] Olla S. : "Large deviation for Gibbs random fields" ; à paraître dans Prob. Th. Rel. Fields (1986). | MR | Zbl

[7] Föllmer H., Orey S. : "Large deviations for the empirical field of a Gibbs measure" ; prepr. 1986. | MR | Zbl

[8] Ledrappier F. : "Pressure and variational formula for random Ising model" ; Comm. Math. Phys. 56, p. 297, 1977. | MR | Zbl | DOI

[9] Dawson D.A. : "Critical dynamics and fluctuations for a mean-field model of cooperative behavior" ; J. Stat. Phys. n° 31, p. 29, 1983. | MR | DOI

[10] Azencott R., Ruget G. : "Mélanges d'équations différentielles et grands écarts à la loi des grands nombres" ; Z. Wahr. th. verw. Geb. t. 38, p. 1, 1977. | MR | Zbl | DOI

[11] Ruget G. : "Sur la nucléation". Exposé à Clermont-Ferrand, 1982.

[12] Comets F. : "Grandes déviations pour des champs de Gibbs sur d " ; C.R. Acad. Sc. Paris, t. 303, Série I, n° 11, 1986. | MR | Zbl

[13] Comets F. : "Large deviation estimates for a conditional probability distribution. Applications to random interaction Gibbs measures" ; soumis dans Prob. th. Rel. Fields (1987). | MR | Zbl

[14] Comets F., Eisele T. : "Asymptotic dynamics, Non-critical and critical fluctuations for a geometric long-range interacting model" ; soumis dans Comm. Math, Phys. (1986). | MR | Zbl

[15] Comets F. : "Nucleation for a long range magnetic model" ; Ann. Inst. H. Poincaré, vol. 23, n° 2, p.135, 1987. | MR | Zbl | Numdam

[16] Comets F., Eisele T., Schatzman M. : "On secondary bifurcations for some non-linear convolution equation" ; Trans. Amer. Math. Soc., t. 296, n° 2, p. 661, 1986. | MR | Zbl | DOI

[1] M. D. Donsker et S. R. S. Varadhan. Asymptotic evaluation of certain Markov process expectations for large time IV, Comm. Pure Appl. Math., 36. 1983, p. 183-212. | MR | Zbl | DOI

[2] S. R. S. Varadhan. École d'Été de Saint-Flour, 1985, Springer Lecture Notes in Math. (à paraître).

[3] H. Föllmer. On entropy and information gain in random fields, Z. Wahr. Verw Geb., 26, 1973, p. 207-217. | MR | Zbl | DOI

[4| S. R. S. Varadhan. Asymptotic probabilities and differential equations, Comm. Pure Appl. Math., 19, 1966. p. 261-286. | MR | Zbl | DOI

[Neveu] : "Martingales à temps dicret" ; Masson, 1972. | MR

[Krengel] : "Ergodic theorems" ; de Gruyter, 1985. | MR | Zbl | DOI

[Ellis] : "Entropy, large déviations and statistical mechanics" ; Springer-Verlag, 1985. | MR | Zbl | DOI

[Preston] : "Random fields" ; Lect. N. Math. 534, Springer, 1976. | MR | Zbl

[0] M. Campanino, E. Olivieri, A.C.D. Van Enter : One dimensional spin glasses with potential decay 1 / r 1 + ϵ . Absence of phase transition and cluster properties. Comm. Math. Phys. 108, p. 241 (1987). | MR | Zbl | DOI

[1] M. Cassandro, E. Olivieri, B. Tirozzi : Infinite differentiability for the one-dimensional spin system with long range interaction. Comm. Math. Phys. 87, p. 229 (1982). | MR | Zbl | DOI

[2] J.T. Chayes, L. Chayes, J. Fröhlich : The low temperature behaviour of disordered magnets. Comm. Math. Phys. 100, p. 399 (1985). | MR | DOI

[3] F. Comets : Grandes déviations pour des champs de Gibbs sur d . Note C. R. Acad. Sc. Paris 303, série 1, n° 11, p. 511 (1986). | MR | Zbl

[4] F. Comets, T. Eisele, M. Schatzman : On secondary bifurcation for some nonlinear convolution equation. Tsans. Amer. Math. Soc. 296, n° 2, p. 661 (1986). | MR | Zbl | DOI

[5] I. Csiszár : I -divergence geometry of probability distributions and minimization problems. Ann. Prob. 3, p. 146 (1975). | MR | Zbl | DOI

[6] D. Dacunha-Castelle : Formule de Chernoff pour une suite de variables réelles. In Séminaire d'Orsay "grandes déviations et applications statistiques". Astérisque n° 68 (1978). | Zbl | Numdam

[7] M.D. Donsker, S.R.S. Varadhan : Asymptotic evaluation of certain Markov expectations for large time, IV. Comm. Pure Appl. Math. 32, p. 183 (1983). | MR | Zbl

[8] T. Eisele, R.S. Ellis : Symmetry breaking and random waves for magnetic systems on a circle. Z. Wahr. verw. Geb. 63, p. 297 (1983). | MR | Zbl | DOI

[9] I. Ekeland, R. Temam : Convex analysis and variational problems. North Holland (1976). | MR | Zbl

[10] R.S. Ellis : Entropy, large deviations, and statistical mechanics. Springer-Verlag (1985). | MR | Zbl

[11] A.C.D. Van Enter, J. Fröhlich : Absence of symmetry breaking for n-vector spin glass models in two dimensions. Comm. Math. Phys. 98, p. 425 (1985). | MR | Zbl | DOI

[12] A.C.D. Van Enter, R. Griffiths : The order parameter in a spin glass. Comm. Math. Phys. 90, p. 319 (1983). | MR | DOI

[13] H. Federer : Geometric measure theory. Springer-Verlag (1969). | MR | Zbl

[14] H. Föllmer, S. Orey : Large deviations for the empirical field of a Gibbs measure. Preprint (1986). | MR | Zbl

[15] J. Fröhlich, J. Z. Imbrie : Improved perturbation expansion for disordered systems : beating Griffiths singularities. Comm. Math. Phys. 96, p. 145 (1984). | MR | Zbl | DOI

[16] J.L. Van Hemmen, A. C. D. Van Enter, J. Canisius : On a classical spin glass model. Preprint Univ. Heidelberg (1982) and Z. Phys. B. | MR

[17] K.M. Khanin, Ya. G. Sinaï : Existence of free energy for models with long-range random Hamiltonians. J. Stat. Phys. 20, p. 573 (1979). | MR | DOI

[18] O. E. Lanford : Entropy and equilibrium states in classical statistical mechanics. In Statistical mechanics and mathematical problems, Lect. Notes Phys. 20, Springer.

[19] F. Ledrappier : Pressure and variational principle for random Ising model. Comm. Math. Phys. 56, p. 297 (1977). | MR | Zbl | DOI

[20] B.M. Mc Coy, T. T. Wu : The two dimensional Ising model. Harvard univ. press (1973). | MR

[21] S. Olla : Large deviation for Gibbs random fields. To appear in Prob. Th. Rel. Fields and Rutgers Univ. preprint (1986). | MR | Zbl

[22] K. R. Parthasarathy : Probability measures on metric spaces. Academic, New York (1967). | MR | Zbl | DOI

[23] P. Peretto : Collective properties of neural networks : a statistical physics approach. Biol. Cybern. 50, p. 51 (1984). | Zbl | DOI

[24] B. Prum : Processus sur un réseau et mesures de Gibbs ; applications. Masson, Paris (1986). | MR | Zbl

[25] D. Sherrington, S. Kirckpatrick : Solvable model of a spin glass. Phys. Rev. Lett. 35, p. 1792 (1975). | DOI

[26] S. R. S. Varadhan : Asymptotic probabilities and differential equations. Comm. Pure Appl. Math. 19, p. 261 (1966). | MR | Zbl

[27] S. R. S. Varadhan : Large deviations and applications. SIAM, Philadelphia (1984). | MR | Zbl | DOI

[28] P. A. Vuillermot : Thermodynamics of quenched random spin systems and applications to the problem of phase transition in magnetic (spin) glasses. J. Phys. A. Math. Gen. 10, n° 8, p1319 (1977). | MR | DOI

[29] S. L. Zabell : Rates of convergence for conditional expectations. Ann. Prob. 8, n° 5, p.928 (1980). | MR | Zbl | DOI

[1] Comets, F. Nucleation for a long range magnetic model. To appear in Ann. Int. H. Poincaré (1987). | MR | Zbl | Numdam

[2] Comets, F., Eisele, Th., Schatzman, M. On secondary bifurcations for some nonlinear convolution equations, Trans. Am. Math. Soc. 296. (1986). | MR | Zbl | DOI

[3] Comets, F., Leonard, C. Rapid simulation and large deviations in dimensions at least two, to appear.

[4] Dawson, D.A. Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Stat. Phys., 31, 29-85 (1983). | MR | DOI

[5] Dawson, D.A., Gārtner, J. Long-time fluctuations of weakly interacting diffusions, preprint. | MR | Zbl

[6] Dawson, D.A., Gārtner, J. Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, preprint 1986. | MR | Zbl

[7] Eisele, Th. Equilibrium and nonequilibrium theory of a geometric long-range spin glass, Ecole d'été de Physique théorique, Les Houches 1984, (eds.) K. Osterwalder, R. Stora. Elsevier Science Publ. 1986. | MR | Zbl

[8] Eisele, Th., Ellis, R.S. Symmetry breaking and random waves for magnetic systems on a circle, Z. Wahrsch. v. G. 63, 297-348 (1983). | MR | Zbl | DOI

[9] Ellis, R.S., Monroe, J.L., Newman, C.M. The GHS and other correlation inequalities for a class of even ferromagnets. Comm. Math. Phys. 46, 167-182 (1976). | MR | DOI

[10] Ellis, R.S., Newman, C.M., Rosen, J.S. Limit theorems for sums of dependent random variables occuring in statistical mechanics. Z. Wahrsch. v. G. 51, 153-169 (1980). | MR | Zbl | DOI

[11] Fouque, J.P. La convergence en loi pour les processus à valeurs dans un espace nucléaire, Ann. Inst. H. Poincaré 20, 225-245 (1984). | MR | Zbl | Numdam

[12] Fritz, J. The Euler equation for the stochastic dynamics of a one-dimensional continuous spin system. Preprint 1986.

[13] Glauber, R.J. Time-dependent statistics of the Ising model, J. Math. Phys. 4, 294 (1963). | MR | Zbl

[14] Hida, T. Brownian Motion, Springer-Verlag. New York, Heidelberg, Berlin, 1980. | MR | Zbl

[15] Holley, R.A., Stroock, D.W. Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motions, Res. Ins. Math. Sci. Kyoto 14, 741-788 (1978). | MR | Zbl | DOI

[16] Ikeda, N., Watanabe, S. Stochastic differential equations and diffusion processes, North-Holland Publishing Co. Amsterdam, 1981. | MR | Zbl

[17] Ito, K. Foundations of stochastic differential equations in infinite dimensional spaces. Soc. Ind. appl. Math. Philadelphia, 1984. | MR | Zbl

[18] Jacod, J. Théorèmes limite pour les processus. Ecole d'été de probabilités de St Flour XIII - 1983, L. N. Math. 1117, (1985) . | MR | Zbl | DOI

[19] Kipnis, C. Processus de champ moyen, Stochastics 5, 93-106, (1981). | MR | Zbl | DOI

[20] Mc Kean, H.P. Propagation of chaos for a class of nonlinear parabolic equations. Lect. Ser. Diff. Equ. 2, 41-57 (Van Nostrand Reinhold. New York. 1969).

[21] Mc Kean, H.P. Fluctuations in the kinetic theory of gases, Comm. Pure Appl. Math. 28, 435-455 (1975). | MR

[22] Mitoma, I. Tightness of probabilities on 𝒞 ( [ 0 , 1 ] ) , 𝒮 ' and 𝒟 ( [ 0 , 1 ] ) , 𝒮 ' , Ann. Prob. 11, 989-999 (1983). | MR | Zbl

[23] Nagasawa, M., Tanaka, H. Propagation of chaos for diffusing particles of two types with singular mean field inter-action, Prob. Th. rel. F. 71, 69-83 (1986). | MR | Zbl | DOI

[24] Oelschläger, K. A martingale approach to the law of large numbers for weakly interacting stochastic processes, Ann. Prob. 12, 458-479 (1984). | MR | Zbl | DOI

[25] Shiga, T., Tanaka, H. Central limit theorems for a system of Markovian particles with mean field interactions. Z. Wahrsch. v. G. 69, 439-459 (1985). | MR | Zbl | DOI

[26] Strichartz, R.S. Multipliers on fractional Sobolev Spaces. J. Math. Mech. 16, 1031-1060 (1967). | MR | Zbl

[27] Sznitman, A.S. Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated. J. Funct. Anal. 56, 311-336 (1984). | MR | Zbl | DOI

[28] Tanaka, H. Hitsuda, M. Central limit theorem for a simple diffusion model of interacting particles, Hiroschima Math. J. 11, 415-423 (1981). | MR | Zbl

[29] Spitzer, F. In St Flour 73, L.N.M. 390.

[1] R. Azencott. Cours à Saint-Flour. Lect. Notes in Math., 1978, p. 774.

[2] R. Azencott, R. Ruget. Mélanges d'équations différentielles et grands écarts à la loi des grands nombres. Z. Wahr. th. verw. Geb., t. 38. 1977, p. 1. | MR | Zbl | DOI

[3] J. Bretagnolle, in Séminaire d'Orsay : Grandes déviations et applications statistiques. Astérisque, n° 68. 1978. | Zbl | Numdam

[4] M. Cassandro. A. Galves, E. Olivieri. M. E. Vares. Metastable behavior of stochastic dynamics : a pathwise approach. Prep. I. M. P. A., Rio de Janeiro, série BO13/83. 1983. | MR | Zbl

[5] F. Comets. Thèse de 3e cycle. Étude d'un modèle d'Ising de champ moyen, à l'aide de technique de Grandes déviations. Nucléation. n° 3696. Orsay. 1984.

[6] F. Comets. T. Eisele. M. Schatzman. On secondary bifurcations for some non-linear convolution equation. Trans. Amer. Math. Soc., t. 296 n° 2. 1986. p. 661. | MR | Zbl | DOI

[7] D. Dacunha-Castelle M. Duflo. Probabilités et Statistiques. t. 2. Masson. 1983. | Zbl

[8] D. Dawson. J. Gartner. Large deviations from the McKean-Vaslov limit for weakly interacting diffusions. 1984. to appear in Stochastics. | MR | Zbl

[9] C. Dellacherie. P. A. Meyer. Probabilités et Potentiel. Hermann, 1975. | MR

[10] N. Dunford, J. Schwartz. Linear operators. Wiley. 1963. | Zbl

[11] T. Eisele. R. S. Ellis, Symmetry breaking and random waves for magnetic systems on a circle. Z. Wahr. th. verw. Geb., t. 63. 1983. p. 297. | MR | Zbl | DOI

[12] R. S. Ellis, C. M. Newman. Limit theorems for sums of dependent random variables occuring in statistical mechanics. Z. Wahr. th. verw Geb., t. 44. 1978. 1978, p. 117. | MR | Zbl | DOI

[13] R. S. Ellis, C. M. Newman. J. S. Rosen. Limit theorems for sum of dependent random variables occuring in statistical mechanics II. Z. Wahr. th. verw. Geb., t. 51, 1980, p. 153. | MR | Zbl | DOI

[14] W. Faris. G. Jona-Lasinio. Large fluctuations for a nonlinear heat equation with noise. J. Phys. A., Math. Gen., t. 15. 1982. | MR | Zbl | DOI

[15] M. I. Freidlin, A. D. Wentzell. Random perturbations of dynamical systems. Springer Verlag, 1983. | MR | Zbl

[16] J. Gartner, On large deviations from the invariant measure. Th. of Proba. and Applic., t. 22, 1977. p. 42. | Zbl | MR

[17] R. Glauber, Tim dependent statistics of the Ising model. J. Math. Physic. t. 4, n° 2, 1963, p. 294. | MR | Zbl | DOI

[18] R. B. Griffiths, C. Weng, J. S. Langer, Relaxation times for metastable states in the mean-field model of a ferromagnet. Phys. Rev., t. 149. n° 1. 1966. | DOI

[19] R. A. Holley, D. W. Stroock, A martingale approach to infinite systems of interacting processes. Ann. Proba., t. 4, n° 2. 1976, p. 195. | MR | Zbl

[20] J. Jacod. Multivariate point processes : predictable projection. Radon Nikodym derivatives representation of martingales. Z. Wahr. th. verw Geb., t. 31, 1975. | MR | Zbl

[21] G. J. O. Jameson, Topology and normed spaces. London. Chapman and Hall. 1974. | MR | Zbl

[22] C. Kipnis, Processus de champ moyen : existence, unicité, mesures invariantes et limites thermodynamiques. Stochastics. t. 5. 1981, p. 93. | MR | Zbl | DOI

[23] O. Penrose. Kinetics of phase transition. Proc. in Sitges. Lect. Notes in Phys., t. 84. 1978. | MR

[24] G. Ruget, Sur la nucléation. Exposé à Clermont-Ferrand. 1982.

[25] F. Spitzer, Cours à Saint-Flour. Lect. Notes in Math., t. 390, 1973.

[26] C. Thompson, Mathematical statistical mechanics. New York, Macmillan. 1972. | MR | Zbl

[27] A. D. Ventsel, Rough limit theorems on large deviations for Markov stochastic processes. Th. of Proba, and Appl., t. 21, n° II, 1976, p. 227 et n° III, p. 499. | Zbl | MR

0. E. Bienenstock, Cooperation and competition in C.N.S. development : a unified approach, Synergetics of the Brain (Proc. Sympos., at Schloss Elmau, 1983, E. Basar et al., eds.), Berlin and New York. | Zbl

1. O. Diekmann and H. G. Kaper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal. 2 (1978), 721-737. | MR | Zbl | DOI

2. Th. Eisele and R. S. Ellis, Symmetry breaking and random waves for magnetic systems on a circle, Z. Wahrsch. Verw. Gebiete 63 (1983), 297-348. | MR | Zbl | DOI

3. Th. Eisele and R. S. Ellis, The generalized Curie-Weiss model and the d-body ferromagnetic circle (to appear).

4. R. S. Ellis, J. L. Monroe and C. M. Newman, The GHS and other correlation inequalities for a class of even ferromagnets, Comm. Math. Phys. 46 (1976), 167-182. | MR | DOI

5. G. B. Ermentrout and J. D. Cowan, Large scale spatially organized activity in neural nets, Siam J. Appl. Math. 38 (1980), 1-21. | MR | Zbl | DOI

6. G. B. Ermentrout and J. D. Cowan, Secondary bifurcation in neuronal nets, Siam J. Appl. Math. 39 (1980), 323-340. | MR | Zbl | DOI

7. D. J. Gates and O. Penrose, The van der Waals limit for classical systems. I. A variational principle, Comm. Math. Phys. 15 (1969), 255-276. | MR | Zbl | DOI

8. D. O. Hebb, The organization of behavior, Wiley, New York, 1949.

9. U. An Der Heiden, Analysis of neural networks, Lecture Notes in Biomathematics, vol. 35, Springer-Verlag, Berlin and New York, 1980. | MR | Zbl

10. J. L. Van Hemmen, A. C. D. Van Enter and J. Canisius, On a classical spin class model, Z. Phys. B 50 (1983), 311-336. | MR | DOI

11. G. Iooss and D. D. Joseph, Elementary stability and bifurcation theory, Springer-Verlag, New York and Berlin, 1980. | MR | Zbl

12. O. E. Lanford, Entropy and equilibrium states in classical statistical mechanics, Statistical Mechanics and Mathematical Problems (Battelle Seattle, 1971), Lecture Notes in Phys., vol. 20, Springer-Verlag, 1973, pp, 1-113. | DOI

13. Ch. Van Der Malsburg, Development of ocularity domains and growth behavior of axon terminals, Biol. Cybernet. 32 (1979), 49-62. | DOI

14. J. Palis and W. De Melo, Geometric theory of dynamical systems, Springer-Verlag, New York and Berlin, 1982. | MR | Zbl | DOI

15. G. Ruget, About nucleation, preprint, 1982. | MR

16. M. Schatzman, Spatial structuration in a model in neurophysiology, preprint, 1982. | MR | Zbl

17. S. Smale, The mathematics of time, Springer-Verlag, New York and Berlin, 1980. | MR | Zbl | DOI

18. N. V. Swindale, A model for the formation of ocular dominance stripes, Proc. Roy Soc. London Ser. B 208 (1980), 243-264.

19. N. V. Swindale, A model for the formation of orientation columns, Proc. Roy Soc. London Ser. B 215 (1982), 211-230.

20. C. L. Thompson, Mathematical statistical mechanics, Princeton Univ. Press, Princeton, N. J., 1972. | MR | Zbl

21. A. Vanderbauwhede, Local bifurcation and symmetry, Pitman, Boston, Mass., 1982. | MR | Zbl

22. D. J. Willshaw and Ch. Van Der Malsburg, How patterned neural connections can be set up by self-organization, Proc. Roy Soc. London Ser. B 194 (1976), 431-445.

23. F. Comets, Tunnelling and nucleation for a local mean field model, Ann. Inst. H. Poincaré (to appear).

24. P. Deuflhard, B. Fiedler and P. Kunkel, Efficient numerical path following beyond critical points, Preprint 278, SFB 123, Heidelberg, 1984. | MR | Zbl

25. Th. Eisele, Equilibrium and nonequilibrium theory of a geometric longrange spinglass, Proc. Summer School Les Houches 1984 on Critical Phenomena, Random Systems and Gauge Theories. | MR | Zbl