@phdthesis{BJHTUP11_1987__0213__P0_0, author = {Mokkadem, Abdelkader}, title = {Crit\`eres de m\'elange pour des processus stationnaires : estimation sous des hypoth\`eses de m\'elange : entropie des processus lin\'eaires}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e Paris-Sud Centre d'Orsay}, number = {213}, year = {1987}, language = {fr}, url = {http://archive.numdam.org/item/BJHTUP11_1987__0213__P0_0/} }
TY - BOOK AU - Mokkadem, Abdelkader TI - Critères de mélange pour des processus stationnaires : estimation sous des hypothèses de mélange : entropie des processus linéaires T3 - Thèses d'Orsay PY - 1987 IS - 213 PB - Université Paris-Sud Centre d'Orsay UR - http://archive.numdam.org/item/BJHTUP11_1987__0213__P0_0/ LA - fr ID - BJHTUP11_1987__0213__P0_0 ER -
%0 Book %A Mokkadem, Abdelkader %T Critères de mélange pour des processus stationnaires : estimation sous des hypothèses de mélange : entropie des processus linéaires %S Thèses d'Orsay %D 1987 %N 213 %I Université Paris-Sud Centre d'Orsay %U http://archive.numdam.org/item/BJHTUP11_1987__0213__P0_0/ %G fr %F BJHTUP11_1987__0213__P0_0
Mokkadem, Abdelkader. Critères de mélange pour des processus stationnaires : estimation sous des hypothèses de mélange : entropie des processus linéaires. Thèses d'Orsay, no. 213 (1987), 230 p. http://numdam.org/item/BJHTUP11_1987__0213__P0_0/
[1] Sur un modèle autorégressif non linéaire, ergodicité et ergodicité géométrique. J.T.S.A., vol.8, n°2, 1987, 195-204. | MR | Zbl
-[2] Le modèle non Linéaire AR(1) général. Ergodicité et ergodicité géométrique. C.R.A.S., t.301, série I, 1985, 889-892. | MR | Zbl
-[3] Conditions suffisantes d'existence et d'engodicité géométrique des modèles bilinéaires. C.R.A.S., t.301, sèrie I, 1985, 375-377. | MR | Zbl
-[4] Mixing properties of ARMA processes. submitted to Stoch. Proc. Appl. | MR | Zbl | DOI
-[5] Sur le mélange d'un processus ARMA vectoriel. C.R.A.S., t.303, série I, 1986, 519-521. | MR | Zbl
-[6] Propriétés de mélange des processus autorégressifs polynomiaux. Prépublication. Soumis aux Annales de l'I.H.P. | MR | Zbl | Numdam
-[7] Study of risks of kernel estimators. To appear | Zbl | MR | DOI
-[8] Etude des risques du estimateurs à noyaux. C.R.A.S., t.301, série I, 1985, 447-450. | MR | Zbl
-[9] Estimation of the entropy and information of absolutely continuous random variables. To appear in I.E.E.E. Trans. Inf. Theory. | MR | Zbl | DOI
-[10] Entropie des processus linéaires. Prépublication. Soumis à Prob. and Math. Stat. | MR | Zbl
-[11] Entropie de processus et erreur de prédiction. C.R.A.S., t.298, série I, 1984, 493-496. | MR | Zbl
-[12] Geometric ergodicity of Harris-recurrent Markov chains. Stoch. Proc. Appl., 3, 1982, 187-202. | MR | Zbl
, -[13] Sufficient conditiom for ergodicity and recurrence of Markov chains. Stoch. Proc. Appl., 3, 1975, 385-403. | MR | Zbl
-[14] Mixing conditions for Markov chains. Th. Prob. Appl., 28, 1973, 313-328. | MR | Zbl
-[15] Some limit theorems for random functions, part II. Th. Prob. Appl., 6, 1961, 186-198. | Zbl
, -[16] A central limit theorem and a strong mixing condition. Proc. Nat. Acad.Sci.,U.S.A., 42, 1956, 43-47. | MR | Zbl | DOI
-[17] Independent and stationaly sequences of random variables. Walter-Noordhoof publishing, 1974. | MR | Zbl
, -[18] bounds for asymptotic normality of weakly dependent summands using Stein's methods. Ann. Prob., 9, 1981, 676-683. | MR | Zbl
-[19] Limiting behavior of -statistics for stationaly absolutely regular processes. Z. Wahr. Verw. Gebiete, 35, 1976, 237-252. | MR | Zbl | DOI
-[20] Absolute regularity and functions of Markov chains, Stoch. Proc. Appl., 14, 1983, 67-77. | MR | Zbl
-[21] Random walks with stationaly increments and renewal theory. Mathematical Center Tract n°112, AMSTERDAM, 1979. | MR | Zbl
-[22] Processus aléatoires gaussiens. MIR, Moscou, 1974. | Zbl
, -[23] Strong mixing properties of linear stochastic processes. J.A.P., 11, 1974, 401-408. | MR | Zbl
-[24] On the strong mixing property for linear sequences. Th. Prob. Appl., 22, 1977, 411-413. | Zbl
-[25] Conditions for linear processes to be strong mixing. Z. Wahr. Verw. Gebiete, 1981, 477-480. | MR | Zbl | DOI
-[26] Some mixing properties time series models. Stoch. Proc. Appl. 19, 1985, 297-303. | MR | Zbl
, -[27] Stochastic processes. Wiley, New-York, 1953. | MR | Zbl
-[28] Markov processes. Structure and asymptotic behaviour. Springer, Berlin, 1971. | MR | Zbl
-[29] Markovian representation of stochastic processes. Ann. Inst. Stat. Math., 26, 1974, 363-387. | MR | Zbl
-[30] Remarks on some non parametric estimates of a density function. Ann. Math. Stat., 27, 1956, 832-835. | MR | Zbl
-[31] Non parametric density estimation. The view. Wiley, New-York, 1985. | MR | Zbl
, -[32] Principe d'invariance faible pour la mesure empirique d'une suite de variables aléatoires mélangeantes. Prépublication d'Orsay, 1985. | MR | Zbl
, , -[33] A nonparametric estimation of the entropy for absolutely continuous distributions. I.E.E.E. Trans. Inf. Theory, vol. I, t.22, 1976, 372-375. | MR | Zbl
, -[34] Non parametric functional, estimation. Academic Press, 1983. | MR | Zbl
-[35] A test for normality based on sample entropy. J.R.S.S., serie B, 38, 1976, 54-59. | MR | Zbl
-[36] Complex symetric stable variables and processes. In : Contribution to Statistics : Essays in Honor of Norman L. Johnson. ed. Sen, P.K., New-York, North-Holland, 1982, 63-79. | MR | Zbl
-[37] The mathematical theory of communications. Bell System Technical Journal, 1948. | MR | Zbl
-[38] Lower bound for non Linear prediction error in moving average processes. Ann. Prob., 7, 1979, 128-138. | MR | Zbl
-[39] On prediction of moving average Processes. Bell System Technical Journal, 59, 1980, 367-415. | MR | Zbl | DOI
, , -[40] A new analysis technique for time series data. In modern spectrum analysis. ed. D.G. Childer, Wiley, New-York, 1978.
-CRAS-Série I, T.290, 921-923. | Zbl
, (1980 a),CRAS-Série I, T.291, 81-83.
, (1980 b),Martingale limit theory and its application. Academic Press. | MR | Zbl
, (1980),CRAS-Série I, T. 301, 375-377.
(1985 a),CRAS-Série I, T. 301, 447-450. | Zbl
(1985 b),Geometric ergodicity of Harris recurrent Markov chains. Stoch. Proc. Appl. 12, 187-202. | MR | Zbl
, (1982),Markov Processes. Structure and asymptotic behaviour. Springer Verlag. | MR | Zbl
(1971),CRAS-Série I, T. 290, 335-338. | Zbl
, (1980),Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space. Stoch. Proc. Appl. 3, 385-403. | MR | Zbl
(1975),Criteria for classifying general Markov chains. Adv. Appl. Prob. 8, 737-771. | MR | Zbl
(1976),The existence of moments for stationary Markov chains, J. Appl. Prob. 20, 191-196. | MR | Zbl | DOI
(1983),Moments bounds for stationary mixing sequences. Z. Wahr. verw. Gebiete 52, 45-57. | MR | Zbl | DOI
(1980),[1] Comptes rendus. 296. série I. 1983. p 859-862. | Zbl
et .[2] Comptes rendus. 290, série A. 1980. p 921-923. | MR | Zbl
et .[3]
. Prépublication, 1985[4] Comptes rendus. 301. série I. 1985. p. 447-450 | Zbl
.[5] Random coefficient autoregressive model: An introduction. Lectures Notes in Statisttes. 11. 1982. | MR | Zbl
et .[6] Geometrie ergodicity of Harrris recurrent Markov chains. Stoch Proc. Appl. 12. 1982. P.187-202. | MR | Zbl
et[7] Limit theorems for Markov chain transition probabilities. Van Nostrand. London 1971. | MR | Zbl
.[8] Markov chains. North Holland. Amsterdam. 1984. | MR | Zbl
.[9] Markov processes. Structure and asymptotic Behaviour. Springer Verlag. 1971. | MR | Zbl
.[10] Comptes rendus. 290. Series A. 1980. p. 335-338. | Zbl
et .[11] R-theory for Markov chains on general state space I. Ann. Prob., 2, 1974. p. 840-864. | MR | Zbl
.(12] Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space. stoch. Proc. Appl., 3, 1975, p. 385-403. | MR | Zbl
,[13] The existence of moments for stationary Markov chains. J. Appl. Prob., 20, 1983. p. 191-196. | MR | Zbl | DOI
,[1] On the existence of some bilinear time series models, J.T.S.A., 4, 1983, p. 95-110. | MR | Zbl
, et ,[2] Limit theorems for Markov chains, New York.
,[3]Bilinear markovian representation and bilinear models, Technical report n° 161 UMIST, 1983. | MR | Zbl
,[4] Geometric ergodicity of Harris recurrent Markov chains with applications to renewal theory, Stoch. Proc. Appl., 12, 1982, p. 187-202. | MR | Zbl
et ,[5] Sufficient conditions for ergodicity and recurrence of Markov chains, Stoch. Proc. Appl., 3, 1975. p. 385-403. | MR | Zbl
,[6] The existence of moments for stationary Markov chains, J. Appl. Prob. 20, 1983, p 191-196 | MR | Zbl | DOI
,[1] Markovian repersentation of stochastic processes. Ann. Inst. Stat. Math. 26 (1974) 363-387. | MR | Zbl
-[2] Mixing conditions for Markov chains. Th. Prob. Appl. 18 (1973) 312-328. | Zbl | MR
, -[3] On the strong mixing property for linear sequences. Th. Prob. Appl. 22 (1977) 411-413. | Zbl | MR
-[4] Processus aléatoires gaussiens. MIR. Moscou | Zbl
, -[5] Sur un modèle autorégressif non linéaire. Ergodicité et ergodicité géométrique. J.T.S.A., vol. 8, n° 2 (1987) 195-204. | MR | Zbl
-[6] Geometrie ergodicity of Harris-recurrent Markov chains. Stoch. Proc. Appl. 12 (1982) 187-202. | MR | Zbl
, -[7] Some mixing properties of time series models. Stoch. Proc. Appl. 19 (1986) 297-303. | MR | Zbl
, -[8] Sufficient conditions for ergodicity and recurrence of Markov chains. Stoch. Proc. Appl. 3 (1975) 385-403. | MR | Zbl
-[9] Criteria for classifying general Markov chains. Adv. Appl. Prob. 8 (1976) 737-771. | MR | Zbl
-[10] Conditions for linear processes to be strong mixing. Z. Wahr. Verw. Gebiete 57(1981) 481-494. | MR | Zbl | DOI
-[1] Markovian representation of stochastic processes, Ann. Inst. Stat. Math., 26 (1974), 363-387. | MR | Zbl
,[2] Séries d'observations irrégulières, Masson, Paris (1984). | MR | Zbl
et ,[3] On the strong law of large numbers for a class of stochastics processes, Z. Wahr. Verw. Gebiete, 2 (1963), 1-11. | MR | Zbl | DOI
, , ,[4] Differentiable germs and catastrophes, Cambridge University Press (1975). | MR | Zbl | DOI
,[5] Mixing conditions for Markow chains, Th. Prob. Appl., 28 (1973), 313-328. | Zbl | MR
,[6] Semi algebraic topology over a real closed fields I et II, Math. Zeit., n° 177, 107-129 et n° 178, 175-213 (1981). | MR | Zbl
and ,[7] Eléments d'analyse tome III, Gauthier-Villars, Paris (1970). | MR | Zbl
,[8] Stochastic processes, Wiley, New York (1953). | MR | Zbl
,[9] On the strong mixing property for linear sequences, Th. Prob. Appl., 22, 411-413 (1977). | Zbl
,[10] Martingale limit theory and its application, London Academic (1980). | MR | Zbl
and ,[11] Semi algebraic local triviality in semi algebraic mappings, Ann. Journ. Math., 102, 291-302. | MR | Zbl | DOI
,[12] Resolution of singulariries of an algebraic variety, I-II, Ann. Math., 79, 109-326 (1964). | MR | Zbl
,[13] Independant and stationary sequences of random variables, Walth-Noordhoof publishing Gröningen (1974). | MR | Zbl
and ,[14] Processus aléatoires gaussiens, MIR, Moscou (1974). | Zbl
et ,[15] Contributions to Doeblin's theory of Markov processes, Z. Wahr. verw. Gebiete, 8, 19-40 (1967). | MR | Zbl | DOI
and ,[16] An introduction to real algebra, Rocky Mountain Journ. Math., 14, 4 (1984). | MR | Zbl
,[17] Ensembles semi analytiques, multigraphie de l'I.H.E.S., Bures/Yvette (1965).
,[18] Sur le mélange d'un processus ARMA vectoriel, CRAS, série I, t. 303, 519-521 (1986). | MR | Zbl
,[19] Mixing properties of ARMA processes, soumis à Stoch.Proc.Appl. | MR | Zbl | DOI
,[20] Sur un modèle autorégressif non linéaire, ergodicité et ergodicité géométrique, J.T.S.A., 8, 195-204 (1987). | MR | Zbl
,[21] Conditions suffisantes d'existence et d'ergodicité géométrique des modèles bilinéaires, CRAS, série I, t. 301, 375-377 (1985). | MR | Zbl
,[22] Algebraic geometry I, Complex projective varieties, Springer Verlag, Berlin (1976). | MR | Zbl
,[23] Real algebraic manifolds, Ann. Math., 56, 405-421 (1952). | MR | Zbl
,[24] Geometric ergodicity of Harris recurrent Markov chains, Stoch. Proc. Appl., 12, 187-202 (1982). | MR | Zbl
and ,[25] Limit theorems for Markov chain transition probabilities, Van Nostrand, London (1971). | MR | Zbl
,[26] Some mixing properties of time series models, Stoch. Proc. Appl., 19, 297-303 (1986). | MR | Zbl
and ,[27] Bilinear markovian representation and bilinear models, Stoch. Proc. Appl., 20, 295-306 (1985). | MR | Zbl
,[28] Introduction à la géométrie des variétés différentiables, Dunod, Paris (1969). | MR | Zbl
,[29] Markov chains, North Holland, Amsterdam (1984). | MR | Zbl
,[30] Markov processes. Structure and asymptotic behaviour. Springer, Berlin (1971). | MR | Zbl
,[31] A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sc. U.S.A., 42, 43-47 (1956). | MR | Zbl | DOI
,[32] A new decision method for elementary algebra, Ann. Math., 2, 365-374 (1952). | MR | Zbl
,[33] bounds for asymptotic normality of weakly dependent summands using Stein's methods, Ann. Prob., 9, 676-683 (1981). | MR | Zbl
,[34] On the convergence rate in the central limit theorem for weakly dependent random variables, Th. Prob. Appl., 25, 790-809 (1980). | Zbl | MR
,[35] Sufficient conditions for ergodicity and recurrence of Markov chains, Stoch. Proc. Appl., 3, 385-403 (1975). | MR | Zbl
,[36] The existence of moments for stationnary Markov chains, J. Appl. Prob., 20, 191-196 (1983). | MR | Zbl
,[37] Foundations of differentiable manifolds and Lie groups, Singer, MIT (1971). | MR | Zbl
,[38] Elementary structure of real algebraic varieties, Ann. Math., 66, 545-556 (1957). | MR | Zbl
,[39] Conditions for linear processes to be strong mixing, Z. Wahr. verw. gebiete, 57, 481-494 (1981). | MR | Zbl | DOI
,[40] Moments bounds for stationnary mixing sequences, Z. Wahr. verw. gebiete, 52, 45-57 (1980). | MR | Zbl | DOI
,[41] Stationary random processes, Holden Day Series (1967). | MR | Zbl
,[42] On the real spectrum of a ring and its applications to semi algebraic geometry, Bull. A.M.S., 15, 19-60 (1986). | MR | Zbl | DOI
,[1] Non parametric estimation of the Matusita's measure of affinity between absolutely continuous distributions. Ann. Inst. Stat. Math. 32, 241-245. | MR | Zbl
(1980).[2] Analyse fonctionnelle. Théorie et applications. Masson, Paris. | MR | Zbl
(1983).[3] Non parametric density estimation. The L1 view. Wiley, New-York. | MR
and (1985).[4] Distribution-free lower bounds in density estimation. Ann. Stat. 12, 1250-1262. | MR | Zbl
and (1984).[5] Principe d'invariance faible pour la mesure empirique d'une suite de variables aléatoires mélangeantes. (To appear). | MR | Zbl | DOI
,[6] On the strong mixing property for linear sequences. Theory Prob. Appl. 22, 411-413. | Zbl
(1977).[7] Decision rules based on the distance for the problem of fit, two samples and estimation. Ann. Math. Stat. 26, 631-640. | MR | Zbl
(1955).[8] Le modèle non linéaire AR(1) général. Ergodicité et ergodicité géométrique. C.R.A.S., t.301, 889-892. | MR | Zbl
(1985).[9] Sur le mélange d'un processus ARMA vectoriel. C.R.A.S., t. 303, 519-521. | MR | Zbl
(1986).[10] Etude des risques des estimateurs à noyaux. C.R.A.S., t. 301, 447-450. | MR | Zbl
(1985).[11] On estimation of a probability density function and the mode. Ann. Math. Stat. 33, 1065-1076. | MR | Zbl
(1962).[12] Some mixing properties of time series models. Stoch. Proc. Appl. 19, 297-303. | MR | Zbl
and (1986).[13] Remarks on some non parametric estimates of a density function. Ann. Math. Stat. 27, 832-835. | MR | Zbl
(1956).[14] A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci., U.S.A. 42, 43-47. | MR | Zbl | DOI
(1956).[15] Global measure of deviation of kernel and nearest neighbor density estimates. Lect. Notes Math. 757, 181-190. | MR | Zbl
(1979).[16] Real and Complex Analysis. Mc Graw-Hill, New-York. | MR | Zbl
(1966).[17] Théorie des distributions. Hermann, Paris. | MR | Zbl
(1966).[18] L'intégration dans les groupes topologiques et ses applications. Hermann, Paris. | MR | Zbl | JFM
(1965).[19] Conditions for linear processes to be strong mixing. Z. Wahr. verw. Gebiete, 57, 481-494. | MR | Zbl
(1981).[20] Moment bounds for stationary mixing sequences. Z. Wahr. verw. Gebiete, 52, 45-57. | MR | Zbl | DOI
(1980).[1] A nonparametric estimation of the entropy for absolutely continuous distributions, IEEE Trans. Inf. Theory, Vol.I , T.22, 372-375, 1976. | MR | Zbl
and ,[2] On statistical estimate for the entropy of a sequence of independent random variables, Theory Prob. Appl., Vol. 4, 333-336, 1956. | MR | Zbl
,[3] Estimation de l'entropie d'une densité, exposé du Séminaire d'Orsay, Paris 1985.
,[4] Nonparametric density estimation. The L1 view, Wiley, New-York, 1985. | MR | Zbl
and ,[5] Entropy-base tests of Uniformity, J. Amer. Stat. Ass., Vol. 76, N° 376, 967-974, 1981 . | MR | Zbl | DOI
and ,[6] Inequalities, Cambridge University Press, 1967. | JFM | Zbl
, and ,[7] Some moments of an estimate of Shannon's measure of information, Comm. Stat., Vol. 3, 89-94, 1974. | MR | Zbl
and ,[8] Thèse doctorat d'état, Université Paris XI, Orsay, 1987
,[9] Nonparametric Functional Estimation, Academic Press, 1983. | MR | Zbl
,[10] A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sc., U. S. A., 42, 43-47, 1956. | MR | Zbl | DOI
,[11] Remark on some non parametric estimates of a density function, Ann. Math. Stat., 27, 832-835, 1956. | MR | Zbl
,[12] Theorie des Distributions, Hermann, Paris, 1966. | MR | Zbl
,[13] A test for normality based on sample entropy, J. Roy. Stat. Soc., Ser. B, 38, 54-59, 1976. | MR | Zbl
,[1] Information theory. Intersciences publishers. | MR | Zbl
(1967),[2] Maximum entropy spectral analysis. In modern spectrum analysis, ed. D.G. Childers, Wiley, New York.
(1978),[3] A new analysis technique for time series data. In modern spectrum analysis, ed. D.G. Childers, Wiley, New York.
(1978),[4] Complex symmetric stable variables and processes. In : Contribution to Statistics : Essays in Honour of Norman L. Johnson, pp. 63-79. Sen, P.K., Ed New York, North Holland. | MR | Zbl
(1982),[5] Linear problems in th order and stable processes. SIAM J. Appl. Math. 41, pp. 43-69. | MR | Zbl | DOI
and (1981),[6] Prediction of stable processes : spectral and moving average representations. Z. Wahr. verw. gebiete, 66, pp. 593-612. | MR | Zbl | DOI
and (1984),[7] -divergence geometry of probability distributions and minimization problems. Ann. Prob., vol. 3, n° 1, pp. 146-158. | MR | Zbl
(1975),[8] Harmonizable stable processes. Z. Wahr. verw. gebiete 60, pp. 517-533. | MR | Zbl | DOI
(1982),[9] Lower bound for non linear prediction error in moving average processes, Ann. Prob., 7, pp. 128-138. | MR | Zbl
(1979),[10] Information and information stability of random variables and processes. Holden Day Series. | MR | Zbl
(1964),[11] Stationary random processes, Holden Day Series. | MR | Zbl
(1967),[12] Real and complex analysis, Mc Graw Hill. | MR | Zbl
(1974),[13] Some structure theorems for the symmetric stable laws, Ann. Math. Stat., 41, p. 412-421. | MR | Zbl
(1970),[14] The mathematical theory of communications, Bell System Technical Journal. | MR | Zbl
(1948),[15] On prediction of moving average processes, Bell system Technical Journal vol. 59, n° 3, pp. 367-415. | MR | Zbl | DOI
, and (1980),[16] An introduction to bispectral analysis and bilinear time series models. Springer Verlag. | MR | Zbl
and (1984),