Matrices de Toeplitz dans le cas d -dimensionnel Extensions de fonctions de type positif dans le cas d -dimensionnel et maximum d'entropie : applications à la reconstruction de densités.
Thèses d'Orsay, no. 218 (1987) , 218 p.
@phdthesis{BJHTUP11_1987__0218__P0_0,
     author = {Seghier, Abdellatif},
     title = {Matrices de {Toeplitz} dans le cas $d$-dimensionnel {Extensions} de fonctions de type positif dans le cas $d$-dimensionnel et maximum d'entropie : applications \`a la reconstruction de densit\'es.},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e Paris-Sud Centre d'Orsay},
     number = {218},
     year = {1987},
     language = {fr},
     url = {http://archive.numdam.org/item/BJHTUP11_1987__0218__P0_0/}
}
TY  - BOOK
AU  - Seghier, Abdellatif
TI  - Matrices de Toeplitz dans le cas $d$-dimensionnel Extensions de fonctions de type positif dans le cas $d$-dimensionnel et maximum d'entropie : applications à la reconstruction de densités.
T3  - Thèses d'Orsay
PY  - 1987
IS  - 218
PB  - Université Paris-Sud Centre d'Orsay
UR  - http://archive.numdam.org/item/BJHTUP11_1987__0218__P0_0/
LA  - fr
ID  - BJHTUP11_1987__0218__P0_0
ER  - 
%0 Book
%A Seghier, Abdellatif
%T Matrices de Toeplitz dans le cas $d$-dimensionnel Extensions de fonctions de type positif dans le cas $d$-dimensionnel et maximum d'entropie : applications à la reconstruction de densités.
%S Thèses d'Orsay
%D 1987
%N 218
%I Université Paris-Sud Centre d'Orsay
%U http://archive.numdam.org/item/BJHTUP11_1987__0218__P0_0/
%G fr
%F BJHTUP11_1987__0218__P0_0
Seghier, Abdellatif. Matrices de Toeplitz dans le cas $d$-dimensionnel Extensions de fonctions de type positif dans le cas $d$-dimensionnel et maximum d'entropie : applications à la reconstruction de densités.. Thèses d'Orsay, no. 218 (1987), 218 p. http://numdam.org/item/BJHTUP11_1987__0218__P0_0/

[1] Burg J.P. Maximum entropy spectral analysis. Ph. D. thesis. Dept of Geophysics, Standford University, California, 1979.

[2] Chover J. On normalized entropy of the extensions of a positive-definite function. J. Math. Mec., 10, n° 6, 927-945, 1961. | MR | Zbl

[3] Dacunha-Castelle D. Reconstruction des phases en cristallographie par maximum d'entropie (d'après Bricogne). Séminaire Bourbaki, 36è année, 1983-84, n° 628. | Numdam | Zbl | MR

[4] Helson H. and Szegö G. A problem in prediction theory. Ann. Math. Pura. App. 51, 1960, p. 107-138. | MR | Zbl

[5] Jaynes E.T. Information theory and statistical mechanic. Physical revieew, vol. 106. n°4 (1957), 620-630. | MR | Zbl | DOI

[6] Kac M. Can you hear the shape of a dum ? Amer. Math. Monthly 73 (1966), p 1-23. | MR | Zbl

(1) D. Dacunha-Castelle, Comptes rendus, 259, 1964, p. 4480. | Zbl

(2) M. G. Krein, C. R. (Doklady) Acad. Sc. de l'U.R.S.S., 26, n° 1, 1940. | MR

(3) M. G. Krein, On Basic Approximation Problem in Theory of Extrapolation and Filterin Process (traduction anglaise dans Selected Transl. Math. Statist. Prob. 4, 1964, p. 127-131).

(4) N. Levinson et H. P. Mckean, Jr., Acta. Math., 112, 1964, p. 98-143. | MR | Zbl | DOI

1. D. Dachuna-Castelle, Remarque sur un problème de M. Paul Levy, C.R. Acad. Sci., Paris t. 259 (1964). p. 4480. | MR | Zbl

2. H. Dym et H. P. Mckean, Application of Granges spaces of integral functions to the prediction of stationary Gaussian processes, Illinois J. Math., vol. 14 (1970), pp. 299-343. | MR | Zbl

3. H. Dym et H. P. Mckean, Extrapolation and interpolation of stationary Gaussian processes, Ann. of Math. Statistics, vol. 41 (1970), pp. 1817-1844. | MR | Zbl | DOI

4. H. Dym, A problem in trigonometric approximation theory, à paraître. | Zbl

5. H. Dym, Trace formulas for a class of Toeplitz-like operators, Israel J. Math., vol. 27 (1977), pp. 21-48. | MR | Zbl | DOI

6. U. Grenander et G. Szegög, Toeplitz forms and their applications. University of California Press, Berkeley and Los Angeles, 1958, pp. 196-198. | MR | Zbl

7. P. Koosis, Interior compact spaces of functions on a half-line, Comm. Pure Appl. Math., vol. 10 (1957), pp. 583-615. | MR | Zbl

8. M. C. Krein, On basic approximation problem in theory of extrapolation and filtering process, Traduction anglaise dans Selected Transl. Math. Statis. Prob., vol. 4 (1964), pp. 127-131. | Zbl

9. N. Levinson et H. P. Mckean, Jr., Weighted trigonometrical approximation on 1 , Acta Math., vol. 112 (1964), pp. 98-143. | MR | Zbl

10. Y. A. Rozanov, Stationary process, Prigmatgiz Moskva, 1963, Traduction anglaise par A. Feinstein, Holden Day, San Francisco, 1967, pp. 135-142.

[1] V. M. Adamyan et D. Z. Arov, Theory of Probability and its Applications (traduit du Russe), 13, 1968.

[2] H. Dym et H. P. Mckean, Gaussian Process, Functions Theory, and the Inverse Spectral Problem, Academic Press, New York, London. | MR | Zbl

[3] A. Seghier, Ill. J. Math. 22, n° 3, septembre 1978.

[1] V.M. Adamyan and D.Z. Arov, Theory of probability and its applications 1968 Vol. 13, (traduit du russe).

[2] H. Dym et H.P. Mc Kean, Gaussian process, functions theory and the inverse spectral problem. Academic Press New-York - London. | MR | Zbl

[3] Kunze - Segal, Integral and operators, pages 240-253 (Springer Verlag, Berlin, Heidelberg, New York). | MR | Zbl

[4] W. Rudin, Functional analysis, pages 301-319 (Mc Graw-Hill Book Company) | MR | Zbl

[5] A. Seghier, Prédiction d'un processus stationnaire, Illinois Journal of Mathematics. Volume 22, Number 3, September 1978. | MR | Zbl

[1] I. Ju. Linnick, Math. U.S.S.R. 12 r, 9, 1975, p. 1323-1332.

[2] H. Widom. Publ. Math. I.H.E.S., 44, 1975, p. 191-240. | Zbl | Numdam | DOI

[1] D. Dacunha-Castelle : Inversion des opérateurs de Toeplitz et statistiques des champs aléatoires gaussiens. Colloque international du C.N.R.S., Vol. n° 307. | MR | Zbl

[2] Grenander and Szegö : Toeplitz forms and their applications. Universite of California press. Berkeley and Los Angeles. 1958. | MR | Zbl | DOI

[3] J.Iu. Linnick : A multidimensional analogue of a limit theorem of G. Szegö.

[4] W. Rudin : Functions theory in polydiscs. W.A. BENJAMIN, INC. 1969. | MR | Zbl

[5] A. Seghier : Prédiction d'un processus stationnaire ... Illinois Journal of Mathematics. Vol. 22. 6 Number 3 Sept. 1978. | MR | Zbl

[6] E.M. Stein : Singular Integrals and differentials properties of functions. Princeton University press, 1970. | MR | Zbl

[7] G. Szegö : On certain helmitian forms associated with the Fourier Series of a positive functions, Comm, Seminaire math. Univ. Lund tome supp. 1952, p. 228-237. | MR | Zbl

[8] H. Widom : A symptotic inversion of convolution operators. Publi. Math. I.H.E.S. 44, 1975, p. 191-240. | MR | Zbl | Numdam | DOI

[9] H. Widom : Szegö's limit theorem : the Higher dimensional Matrix Case. Journal of Functional analysis vol. 39. Number 2, November 1980, page 182-198. | MR | Zbl | DOI

[1] A. Seghier, Comptes rendus. 293. série I. 1981, p. 605-608. | Zbl

[2] H. Widom. Szegö's theorem and a complete symbolic calculus... in Seminar on singularities of linear partial differential equations. Annals of Math. Studies n° 91, Princeton Univ. Press. N.J.. 1979, p. 261-283. | MR | Zbl

1. D. Dacunha-Castelle, Inversion des opérateurs de Toeplitz et statistiques des champs aléatoires gaussiens, in "Colloque International du CNRS," Vol. 307, CNRS, Lyon, 1980. | MR | Zbl

2. Grenander and Szegö, "Toeplitz Forms and Their Applications", Univ. of California Press, Berkeley/Los Angeles, 1958. | MR | Zbl | DOI

3. J. Iu. Linnick, A Multidimensional analogue of a limit theorem of G. Szegö, Math. USSR-Izr. 9 (1975), 1323-1332. | Zbl | DOI

4. A. Seghier, Inversion de la matrice de Toeplitz en plusieurs dimensions et théorème de Szegö. C.R. Acad. Sci. Paris Ser. I Math. 293 (1981). | MR | Zbl

5. M. Widom, Asymptotic inversion of convolution operators, Publ. Math. IHES 44 (1975), 191-240. | MR | Zbl | Numdam | DOI

6. H. Widom, Szegö's limit theorem: The higher dimensional matrix case, J. Funct. Analys. 39 (1980), 182-198. | MR | Zbl | DOI

7. H. Widom, Szegö's Theorem and a complete symbolic calculus, in "Seminar on Singularities of Linear Partial Differential Equations", Annals of Math. Studies, No. 91, pp. 261-283, Princeton Univ. Press, Princeton, N.J., 1979. | MR | Zbl

[1] M. Kac.- Can you hear the shape of a drum ? Amer. Math. Monthly 73, (1966) p. 1-23. | MR | Zbl | DOI

[2] H.P. Mc Kean, Jr. and I.M. Singer.- Curvature and the eigenvalues of the laplacian. J. of Differential Geometry 1 ; (1967) p. 43-49. | MR | Zbl

[3] A. Seghier.- Inversion de la matrice de Toeplitz en d dimension et développement asymptotique de la trace à l'ordre d . A paraître dans J. of Functional Analysis. | MR | Zbl

[4] A. Seghier.- C.R.A.S. t. 300, Série I. n° 15, 1985.

[5] B.V. Fedosov. - Asymptotic formulas the eigenvalues of the Laplace operator for a polyhedron. Dokl. Akad. Nauk SSSR 157 (1964) p. 536-538. | MR | Zbl

[6] J. Cheeger.- Spectral geometry of singular rïemannian space. J. of Differential Geometry. Vol. 18, n° 4, p. 575-657, 1983. | MR | Zbl | DOI

[1] J. P. Burg, Maximum Entropy Spectral Analysis, Ph.D. Thesis., Dept. of Geophysics, Stanford University, California, 1975.

[2] J. Chover, On normalized entropy of the extensions of a positive definite function, J. Math. Mec., 10, n° 6, 1961, p. 927-945. | MR | Zbl

[3] U. Grenander et G. Szegö, Toeplitz forms and theirs applications, University of California Press, Berkeley and Los Angeles, p. 40-41, 1958. | MR | Zbl

[4] H. Helson et D. Lowdenslager, Prediction theory and Fourier Series in Several variables, Acta Mathematica 1958, p. 165-202. | MR | Zbl

[5] H. Helson et D. Sarason, Past and future, Math. Scand., 21, n° 1, 1967, p. 5-16. | MR | Zbl | DOI

[6] I. Ibrahimov et Y. Rozanov, Processus aléatoires gaussiens. Mir, Moscou, 1967, p. 212-213.

[7] M. G. Krein, On basic approximation problem in theory of extrapolation and filtering process, Selected, Transl. Math. Statis. Proba., 4, 1964, p. 127-137.

[1] Arov, D.Z. and Krein, M.G. On computations of entropy and their minimum. Acto.Sci.Math. 45 (1983) pp 33-50. | Zbl

[2] Burg, J.P., 1975. "Maximum Entropy Spectral Analysis". Ph.D. Thesis. Dept. of Geophysics, Standford University, California, 197.

[3] Dacunha-Castelle, D. 1984. Reconstruction des phases en cristallographie par maximum d'entropie (d'après G. Bricogne). Séminaire Bourbaki 36e année 1983-84 N° 628. | Numdam | MR | Zbl

[4] Childerd, D. (Editeur) Modern Spectral Analysis IEEE Press.

[5] Chover, J. "On normalized entropy of the extensions of a positive-definite function." J.Math.Mech. 10 N° 6 927-945, 1961. | MR | Zbl

[6] Gassiat, E. Problème Sommatoire par maximum d'entropie. C.R.A.S. Paris t. 303, serie I, n° 14, 1986. | MR | Zbl

[7] Grenander, U. and Szegö, G. Toeplitz forms and their applications. University of California Press, Berkeley and Los Angales, 1958. | MR | Zbl | DOI

[8] Past and Future. Math. Scand. 21, N° 1. 1967, 5-16. | MR | Zbl

[9] Helson, H. and Szegö, G. A problem in prediction theory. Ann. Math. Pure App. 51, 1960, pp. 107-138. | MR | Zbl

[10] Ibrahimov, I. and Rozanov, Y. Processus aléatoires gaussiens (1967) Editions MIR Moscou.

[11] Krein, M.G. On Basic Approximation Problem in Theory of Extrapolation and Filtering Process ; in Selected Transl. Math. Statis. vol. 4 (1964) ; pp. 127-137.

[12] Livesey, A.K. and Skilling, J. Maximum Entropy Theory Acta Cryst. (1985) A 41; pp. 113-122. | DOI

[13] Mokkadem, A. Entropie de processus et erreur de prédiction. C.R.A.S. Paris, t.298, Serie I, N°19, 1984. | MR | Zbl

[14] Seghier, A. Prédiction d'un processus stationnaire du second ordre. Illinois Journal of Mathematics.

[15] Seghier, A. Inversion de la matrice de Toeplitz en d dimentions et dévéloppement asymptotique de la trace de l'inverse à l'ordre d . Journal of Functional Analysis. Vol. 67, N°3, July 1986. | MR | Zbl | DOI

[1] Chover, J. "On normalized entropy of the extension of a positive definite function." J. Math. Mech. 10 N°6 pp 927-945, 1961. | MR | Zbl

[2] Helson, H. - Lowdenslager, Prediction Theory and Fourier Series in Several variables (II). | Zbl | DOI

[3] Keih, M.G. On basic approximation problem in theory of extrapolation and filtering process. Selected Transl. Math. Statis. Prob. vol 4 (1964), pp 127-137.

[4] Kunsch, Thermodynamics and Statistical Analysis of Gaussians Random Fields. Z. Wahrsheintichkeits - Theorie verw. Gebeite. | Zbl

[5] Rudin, W. "The extension problem of positive definite functions". Illinois J. Math. 7, 1963 ; pp 532-539. | MR | Zbl | DOI

[6] Seghier, A. Reconstruction de densités de probabilités et de densités spectrales par le principe du maximum d'entropie. A paraître 1987.

[7] Seghier, A. Inversion de la matrice de Toeplitz en plusieurs dimensions. Journal of Functional Analysis, Vol 67, N°", July 1986.