Surfaces aléatoires : approximation du temps local
Thèses d'Orsay, no. 241 (1989) , 126 p.

Let X(t,ω)td,ωΩ,d2 be a real stationary gaussian field, defined on a probability space (Ω,𝒜P). We look at the asymptotic behavior of a particular stochastic integral, with respect to the geometric measure of the u-level sets, u, of the regularized field, obtained by composition of a convolution of X, say Xϵ, with a matrix normalization which contains part of the information contained in the spectral moments matrix of second order of Xϵ.

Under the condition that the covariance function is twice continuously differentiable out of a set of zero Lebesgue's measure, this functional converges in L2(Ω) to the local time of X at the level u. Furthermore, we give a bound for the speed of convergence.

Classification : 60G60, 60G15, 60G10, 60G57, 60J55, 65D10, 60F25, 60D05, 60E07, 60G50
Keywords: Random fields - Gaussian processes - Stationary processes - Random measures - Local time and additive functional - Smoothing, curve fitting - Lp-limit theorems - Geometric probability, stochastic geometry, random sets - Infinitely divisible distributions, stable distributions - Sums of independent random variables.
@phdthesis{BJHTUP11_1989__0241__A1_0,
     author = {Berzin, Corinne},
     title = {Surfaces al\'eatoires : approximation du temps local},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {241},
     year = {1989},
     language = {fr},
     url = {https://www.numdam.org/item/BJHTUP11_1989__0241__A1_0/}
}
TY  - BOOK
AU  - Berzin, Corinne
TI  - Surfaces aléatoires : approximation du temps local
T3  - Thèses d'Orsay
PY  - 1989
IS  - 241
PB  - Université de Paris-Sud Centre d'Orsay
UR  - https://www.numdam.org/item/BJHTUP11_1989__0241__A1_0/
LA  - fr
ID  - BJHTUP11_1989__0241__A1_0
ER  - 
%0 Book
%A Berzin, Corinne
%T Surfaces aléatoires : approximation du temps local
%S Thèses d'Orsay
%D 1989
%N 241
%I Université de Paris-Sud Centre d'Orsay
%U https://www.numdam.org/item/BJHTUP11_1989__0241__A1_0/
%G fr
%F BJHTUP11_1989__0241__A1_0
Berzin, Corinne. Surfaces aléatoires : approximation du temps local. Thèses d'Orsay, no. 241 (1989), 126 p. http://numdam.org/item/BJHTUP11_1989__0241__A1_0/

[1] Azais, J.M: "Approximation du temps local des mouvements stables". C.R.Acad.Sci.Paris., t306, série I, 787-790 (1988). | Zbl

[2] Azais, J.M; Florens, D: "Approximation du temps local des processus gaussiens stationnaires par régularisation des trajectoires". Prob. Th. Rel. Fields., 76,121-132 (1987). | MR | Zbl | DOI

[3] Belyaiev, Y: "Point processes and first passages problems". Proc. Sixth Berkeley Symp. Math. Stat. Prob., 3, 1-17 (1972). | MR | Zbl

[4] Berman, S.M: "Local times and sample functions properties of stationary gaussian processes". Trans. Amer. Math. Soc, 137,277-299 (1969). | MR | Zbl | DOI

[5] Berman, S.M: "Gaussian processes with stationary incréments: local times and sample functions properties". Ann. Math. Stat., 41, 1260-1272 (1970). | MR | Zbl | DOI

[6] Berman, S.M: "Local nondeterminism and local time of gaussian processes". Indiana Univ. Math. J., 23, 69-94 (1973). | MR | Zbl | DOI

[7] Berman, S.M: "Local nondeterminism and local times of general stochastic processes". Ann. Inst. Henri Poincaré.,19 , n°2, 189-207 (1983). | MR | Zbl | Numdam

[8] Berman, S.M: "Joint continuity of the local times of Markov processes". Z. Wahrs verw. Gebiete., 69, 37-46 (1985). | MR | Zbl | DOI

[9] Berzin, C: "Approximation du temps local des champs aléatoires gaussiens stationnaires par régularisation des trajectoires". C. R. Acad. Sci. Paris., t306, série I, 291-294 (1988). | MR | Zbl

[10] Cuzick, J: "Continuity of gaussian local times". The Ann. Prob., 10, n°3, 818-823 (1982). | MR | Zbl

[11] Davydov, Yu.A: "Local times for multiparameter random processes". Theory Prob. Appl., 23, n°3, 573-583 (1978). | Zbl | DOI

[12] Erdelyi, Magnus, Oberhettinger, Tricomi: "Higher transcendental functions". Bateman manuscript project, Vol 2, Mc Graw-Hill Book Compagny, INC (1953). | Zbl

[13] Feller, W: "An introduction to probability theory and it's applications". John Wiley ans Sons, Inc second corrected printed, Vol 2 (1966). | MR | Zbl

[14] Geman, D; Horowitz, J : "Occupation densities". The Ann. Prob., 8, n°1, 1-67 (1980). | MR | Zbl | DOI

[15] Gray, A; Mathews, Gb; Macrobert, T.M: "A treatise on Bessel functions and their applications to physics", Macmillan and Co, London, second édition (1952).

[16] Kahane, J.P; Salem, R: "Ensembles parfaits et séries trigonométriques". Hermann (1963). | MR | Zbl

[17] Kahane, J.P: "Ensembles aléatoires et dimensions". Cours au séminaire de L'Escurial, Prépub. Math. d'Orsay (1983). | Zbl | MR

[18] Kahane, J.P: "Mesures et dimensions". Fifth. Int. Congress. on Math Educ, held at Adélaïde (Australia) (1984).

[19] Massari, U; Miranda, M: "Minimal surfaces of codimension one". North-Holland, Mathematics Studies, Notas de Matemáticas (95), 91 (1984). | MR | Zbl

[20] Miranda, M: "Frontière minime". Mon. Math., 27, IMPA, Rio De Janeiro (1976).

[21] Miranda, M: "Medida geométrica e algumas aplicaçoes". IMPA, Rio De Janeiro (1979).

[22] Rogers, C.A: "Hausdorff measures". Camb. Univ. Press. (1970). | MR | Zbl

[23] Tricot, C: "Mesures et dimensions". Thèse d'état, Univ. Paris-Sud. Centre d'Orsay (1983).

[24] Widder, D: "The Laplace transform". Princeton University Press (1941). | MR | JFM | Zbl

[25] Wschebor, M: "Surfaces aléatoires: mesure géométrique des ensembles de niveau". Lect. Notes Math., n°1147, Springer-Verlag (1985). | MR | Zbl

[26] Yadrenko, M.L : "Spectral theory of random fiels".Optimization software, INC, Publications divisions, New-York (1983). | MR | Zbl

Adler, R: "The geometry of random fields". John Wiley and Sons (1980). | MR | Zbl

Cramer, H: "Métodos Matemáticos de estadistica". Aguilar (1960).

Cramer, H; Leadbetter, M.R: "Stationary and related stochastic processes". J. Wiley and Sons (1967). | Zbl

Doob, J.L: "Stochastic processes". J. Wiley and Sons (1953). | MR | Zbl

Marcus, M.B: "Gaussian processes with stationary incréments possessing discontinuous sample paths". Pacific. J . Math., 26, 149-157 (1968). | MR | Zbl | DOI

[1] J. M. Azais : "Conditions for convergence of number of crossings to the local time. Application to stable processes with independent increments and to gaussian processes". A paraître. | Zbl

[2] J.M. Azais et D. Florens-Zmirou : "Approximation du temps local des processus gaussiens stationnaires par régularisation des trajectoires". A paraître. | Zbl

[3] S. M. Berman : "Local non determinism and local times of gaussian processes". Indiana Univ. Math. J., Vol 23, n°1, (1973) , pages 69-94 | MR | Zbl | DOI

[4] Y.A Davydov : "Local times for multiparameter random processes". Theory. Probab. Appl., Vol 23, n°3, (1978), pages 573-583. | DOI

[5] W. Ehm : "Sample properties of multiparameter stable processes". Z. Wahrsch. Verw. Gebiete, Vol 56, (1981), pages 195-228. | MR | Zbl | DOI

[6] M. Wschebor : "Surfaces aléatoires : mesure géométrique des ensembles de niveau". Lecture Notes in Math., Springer, Berlin-New York, (1985) | MR | Zbl

[1] E. M. Cabaña, Estimation of the spectral moments, by means of extrema, Reporte n° 84-08, Dto. de Matematicas y Ciencias de la Computacion, Universidad Simon Bolivar, Caracas, 1984.

[2] E. M. Cabaña, Affine Processes: A Test of Isotropy based on Level Sets, S.I.A.M. J. Appl. Math., 47, n° 4, 1987. | MR | Zbl

[3] E. M. Cabaña, Esperanzas para Intégrales sobre Conjuntos de Nivel Aleatorios, Actas II Congreso Latinoamericano de Probabilidades Y Estadistica Matematica (II CLAPEM), Caracas, 1985.

[4] I. Iribarren, Asymptotic behaviour of the integrals of a function on the level set of a mixing random field, Prob. and Math. Stat., 10, Fasc. 1, 1988. | MR | Zbl

[5] G. Lindgren, Spectral moments estimation by means of level crossing, Biometrika, 61, n°3, 1974, p. 401. | MR | Zbl | DOI

[6] M. S. Longuet-Higgins, The statistical analysis of a random moving surface, Phil. Trans. A., 249. 1957, p. 321-387. | MR | Zbl

[7] M. Wschebor, Surfaces aléatoires. Mesures géométriques des ensembles de niveau, Lecture Notes in Math., Springer-Verlag, n° 1147, 1985. | MR | Zbl