Étude mathématique d'équations aux dérivées partielles de la physique à valeurs dans une variété
Thèses d'Orsay, no. 278 (1990) , 88 p.
@phdthesis{BJHTUP11_1990__0278__P0_0,
     author = {Soyeur, Alain},
     title = {\'Etude math\'ematique d'\'equations aux d\'eriv\'ees partielles de la physique \`a valeurs dans une vari\'et\'e},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {278},
     year = {1990},
     language = {fr},
     url = {http://archive.numdam.org/item/BJHTUP11_1990__0278__P0_0/}
}
TY  - BOOK
AU  - Soyeur, Alain
TI  - Étude mathématique d'équations aux dérivées partielles de la physique à valeurs dans une variété
T3  - Thèses d'Orsay
PY  - 1990
IS  - 278
PB  - Université de Paris-Sud Centre d'Orsay
UR  - http://archive.numdam.org/item/BJHTUP11_1990__0278__P0_0/
LA  - fr
ID  - BJHTUP11_1990__0278__P0_0
ER  - 
%0 Book
%A Soyeur, Alain
%T Étude mathématique d'équations aux dérivées partielles de la physique à valeurs dans une variété
%S Thèses d'Orsay
%D 1990
%N 278
%I Université de Paris-Sud Centre d'Orsay
%U http://archive.numdam.org/item/BJHTUP11_1990__0278__P0_0/
%G fr
%F BJHTUP11_1990__0278__P0_0
Soyeur, Alain. Étude mathématique d'équations aux dérivées partielles de la physique à valeurs dans une variété. Thèses d'Orsay, no. 278 (1990), 88 p. http://numdam.org/item/BJHTUP11_1990__0278__P0_0/

[1] H. Brézis et J.M. Coron. Large solutions for harmonic maps in two dimensions, Comm. Math. Phys., 92 (1983), 203-215. | MR | Zbl | DOI

[2] J. Jost. Harmonic Mappings between Surfaces, Lecture Notes in Mathematics, 1062 (Berlin: Springer, 1984). | MR | Zbl

[3] J. Eells et J. Sampson. Amer. J. Math., 86 (1964), 109-160. | MR | Zbl | DOI

[4] M. Struwe. On the evolution of harmonic maps of Riemannian surfaces, Comm. Math. Helv., 60, (1985), 558-581. | MR | Zbl | DOI

[5] M. Struwe. On the evolution of harmonic maps in higher dimensions, J. Diff. Geometry, 28, (1988), 485-502. | MR | Zbl

[6] Y. Chen et M. Struwe. Existence and partial regularity for the heat flow for harmonic maps, Math. Z., 201 (1989), 83-103. | MR | Zbl | DOI

[7] J.M. Coron et J.M. Ghidaglia. Explosion en temps fini pour le flot des applications harmoniques, C. R. Acad. Sci. Paris, 308, série 1, (1989), 339-344. | MR | Zbl

[8] W.Y. Ding. Blow-up of solutions of heat flows of harmonic maps, preprint. | MR | Zbl

[9] Y. Chen et W.Y. Ding. Blow-up and global existence for heat flows of harmonic maps, Inventiones Math. 99, (1990), 567-578. | MR | Zbl

[10] J. Jost. Ein existenzbeiweis für harmonisch abbildungen, die ein Dirichlet problem lösen mittels der methode des warmeflusses, Manuscripta Math., 34, (1981), 17-25. | MR | Zbl | DOI

[11] F. Bethuel, H. Brezis, J.M. Coron. Relaxed energies for harmonic maps, Variational Problems, Paris June 1988, H.Berestycki, J.M.Coron, I.Ekeland Eds, Birkhäuser. | MR | Zbl

[12] B.G. Konopelchenko et B.T. Matkarimov. On the inverse scattering transform for the Ishimori equations, Physics Letters A, 72, (1989), 183-189. | MR | DOI

1 H. Brezis and I. M. Coron. Large solutions for harmonic maps in two dimensions. Comm. Math. Phys. 92 (1983), 203-215. | MR | Zbl | DOI

2 J. Jost. Harmonic Mappings between Surfaces, Lecture Notes in Mathematics 1062 (Berlin: Springer, 1984). | MR | Zbl

3 J. Jost. The Dirichlet problem for harmonic maps from a surface with boundary onto a 2-sphere with nonconstant boundary values. J. Differential Geom. 19 (1984), 393-401. | MR | Zbl | DOI

4 P. L. Lions. The concentration compactness principle in the calculus of variations. The limit case, part 2. Rev. Mat. Iberoamericana 1 (1985), 45-121. | MR | Zbl | DOI

5 C. B. Morrey. Multiple integrals in the calculus of variations (New York: Springer, 1966). | MR | Zbl

6 R. Schoen and K. Uhlenbeck. Boundary regularity and the Dirichlet problem for harmonic maps. J. Differential Geom. 18 (1983), 253-268. | MR | Zbl | DOI

[1] J.M. Coron, Nonuniqueness for the heat flow of harmonic maps. To appear in Ann. I.H.P.-Analyse Non Linéaire. | MR | Zbl | Numdam

[2 ] Y. Chen and W.Y. Ding, Blow up and global existence for heat flows of harmonic maps, Preprint. | MR | Zbl

[3] J.M. Coron and J.M. Ghidaglia, Explosion en temps fini pour le flot des applications harmoniques, C. R. Acad. Sci. Paris, 308. serie I, 1989, 339-344. | MR | Zbl

[4] Y. Chen, The weak solutions to the evolution problem of harmonic maps, Math. Z., 201, 1989, 69-74. | MR | Zbl | DOI

[5] J. Eells and H. Sampson, Amer. J. Math., 86, 1964, 109-160. | MR | Zbl | DOI

[6] J. Jost, Ein existenzbeiweis für harmonisch Abbildungen, die ein Dirichlet problem lösen mittels der methode des warmeflusses, Manuscripta Math., 34, 1981, 17-25. | MR | Zbl | DOI

[7] R. Hamilton, Harmonic maps of manifolds with boundary, Lecture Notes, 471, Springer Verlag, 1975. | MR | Zbl

[8] F. Rothe, Global solutions of reaction diffusion systems, Lecture Notes, 1072. Springer Verlag, 1984. | MR | Zbl

[9] M. Struwe, On the evolution of harmonic maps of Riemannian surfaces, Comm. Math. Helv., 60, 1985, 558-581. | MR | Zbl | DOI

[10] M. Struwe, On the evolution of harmonic maps in higher dimensions, J. Diff. Geometry, 28, 1988, 485-502. | MR | Zbl

[11] M. Struwe and Y. Chen, Existence and partial regularity for the heat flow for harmonic maps, Math. Z., 201, 1989, 83-103. | MR | Zbl | DOI

[12] R. Schoen, Analytic aspects of the harmonic map problem. Seminar on nonlinear P.D.E., Chern Ed., Springer, Berlin, 1984. | MR | Zbl

[13] F. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38, n° 1,2, 1981. | MR | Zbl

[1] F. Bethuel, H. Brezis, J.M. Coron, "Relaxed energies for harmonic maps", Variational Problems, Paris June 1988, H. Berestycki, J.M. Coron, I. Ekeland Eds, Birkhäuser. | MR | Zbl

[2] F. Bethuel, X. Zheng, "Density of smooth functions between two manifolds in Sobolev spaces" , J. Func. Anal. 80 (1988), 60-75. | MR | Zbl | DOI

[3] H. Brezis, J.M. Coron, E.H. Lieb, "Harmonic maps with defects" , Comm. Math. Phys. 107 (1986), 649-705. | MR | Zbl | DOI

[4] Y. Chen, "Weak solutions to the evolution problem of harmonic maps, Math. Z. 201 (1989), 69-74. | MR | Zbl | DOI

[5] Y. Chen and W.Y. Ding, "Blow-up and global existence for heat flows for harmonic maps", Inventiones Math. 99 (1990), 567-578. | MR | Zbl

[6] Y. Chen and M. Struwe, "Existence and partial regularity result for the heat flow for harmonic maps", Math. Z. 201 (1989), 83-103. | MR | Zbl | DOI

[7] J.M. Coron, "Nonuniqueness for the heat flow of harmonic maps" , Annales IHP, Analyse Non Linéaire, to appear. | MR | Zbl | Numdam

[8] J.M. Coron and J.M. Ghidaglia, "Explosion en temps fini pour le flot des applications harmoniques, C.R. Acad. Sci. Paris 308 (1989), 339-344. | MR | Zbl

[9] W.Y. Ding, "Blow-up of solutions of heat flows for harmonic maps" , preprint. | MR | Zbl

[10] J. Eells and J.H. Sampson, "Harmonic mappings of Riemannian manifolds", Amer. J. Math. 86 (1964), 109-160. | MR | Zbl | DOI

[11] M. Giaquinta, G. Modica, J. Soucek, "Cartesian currents and variational problems for mappings into spheres" , preprints, 1989. | MR | Zbl | Numdam

[12] M. Giaquinta, G. Modica, J. Soucek, "The Dirichlet energy of mappings with values into the sphere" , preprint, 1989. | MR | Zbl | DOI

[13] K. Horihata and N. Kikuchi, "A construction of solutions satisfying a Caccioppoli inequality for nonlinear parabolic equations associated to a variational functional of harmonic type", preprint.

[14] J. Keller, J. Rubinstein, P. Sternberg, "Reaction-diffusion processes and evolution to harmonic maps", preprint. | MR | Zbl

[15] J. Shatah, "Weak solutions and development of singularities of the S U ( 2 ) σ -model" , Comm. Pure Appl. Math. 41 (1988), 459-469. | MR | Zbl

[16] L. Simon, "Lectures on geometric measure theory", Proc. of the Centre for Mathematical Analysis, Australian National University 3 (1983). | MR | Zbl

[17] M. Struwe, "On the evolution of harmonic maps of Riemannian surfaces" , Comment. Math. Helv. 60 (1985), 558-581. | MR | Zbl | DOI

[18] M. Struwe, "On the evolution of harmonic maps in higher dimensions", J. Diff. Geom. 28 (1988), 485-502. | MR | Zbl

[19] M. Struwe, "The evolution of harmonic maps : existence, partial regularity and singularities", these proceedings. | Zbl | DOI

[1] Y. Ishimori, Progress of Theoretical Physics, 72 n°1, 1984, p. 33-37. | MR | Zbl

[2] B.G. Konopelchenko et B.T. Matkarimov, Physics Letters A, 135 n°3, 1989, p. 183-189. | DOI

[3] H. Wente, Archive Rat. Mech. Anal., 75, 1980, p. 59-77. | MR | Zbl

[4] H. Brezis et J.M. Coron, Commun Pure Appl. Math., 37, 1984, p. 149-187. | MR | Zbl

[5] R. Coifman, P.L. Lions, Y. Meyer, et S. Semmes, C.R. Acad.Sci. Paris, 309, 1989, p. 945-949. | Zbl

[6] S. Muller, Proc. A.M.S., 21, 1989, p. 245-248.

[7] S. Klainerman et G. Ponce, Commun. Pure Appl.Math., 37, 1983, p. 133-141. | Zbl

[8] J. Shatah, J. Differ. Equations, 46, 1982, p. 409-625. | MR | Zbl | DOI

[9] C. Bardos, C. Sulem et P.L. Sulem, Commun. Math. Phys., 107, 1986, p. 431-454. | MR | Zbl | DOI

[10] E.M. Stein, Princeton University Press, 1970.

[11] D. Henry, Lecture Notes in math., 840, Springer-Verlag, Berlin, 1981. | MR | Zbl

[12] J.M. Ghidaglia et J.C. Saut, Nonlinearity, 3, 1990. | MR | DOI

[13] A. Soyeur, "The Cauchy Problem For The Ishimori Equation", to appear. | MR | Zbl | DOI

[1] C. Bardos, C. Sulem, P.L. Sulem, On the continuous limit for a system of classical spins, Comm. Math. Phys. 107, 1986, 431-454. | MR | Zbl | DOI

[2] H. Brezis, J.M. Coron, Multiple solutions of H-systems and Rellich's conjecture, Comm. Pure Appl. Math. 37, 1984, 149-187. | MR | Zbl

[3] J.M. Ghidaglia, J.C. Saut, On the initial value problem for the Davey-Stewartson systems, Nonlinearity 3, 1990, | MR | Zbl | DOI

[4] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Springer-Verlag. | MR | Zbl

[5] Y. Ishimori, Multi vortex solutions of a two dimensional nonlinear wave equation, Progress of Theoretical Physics 72, n°1, 1984, 33-37. | MR | Zbl

[6] B.G. Konopelchenko, B.T. Matkarimov, On the inverse scattering transform for the Ishimori equations, Physics Letters A 135, n°3, 1989, 183-189. | MR | DOI

[7] S. Klainerman, G. Ponce, Global small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math. 37, 1983, 133-141. | MR | Zbl

[8] J. Moser, A rapidly convergent iteration, Ann. Sc. Norm. Sup. Pisa (3) 20, 1966, 265-315. | Zbl | Numdam

[9] J. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Diff. Equ. 46, 1982, 409-425. | MR | Zbl | DOI

[10] A. Soyeur, The Cauchy problem for Ishimori equations, C.R. Acad. Sci. Paris, to appear. | MR | Zbl

[11] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, 1970. | MR | Zbl

[12] H. Wente, Large solutions to the volume constrained Plateau problem, Arch. Rational Mech. Anal. 75, 1980, 59-77. | MR | Zbl | DOI