@phdthesis{BJHTUP11_1990__0278__P0_0, author = {Soyeur, Alain}, title = {\'Etude math\'ematique d'\'equations aux d\'eriv\'ees partielles de la physique \`a valeurs dans une vari\'et\'e}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e de Paris-Sud Centre d'Orsay}, number = {278}, year = {1990}, language = {fr}, url = {http://archive.numdam.org/item/BJHTUP11_1990__0278__P0_0/} }
TY - BOOK AU - Soyeur, Alain TI - Étude mathématique d'équations aux dérivées partielles de la physique à valeurs dans une variété T3 - Thèses d'Orsay PY - 1990 IS - 278 PB - Université de Paris-Sud Centre d'Orsay UR - http://archive.numdam.org/item/BJHTUP11_1990__0278__P0_0/ LA - fr ID - BJHTUP11_1990__0278__P0_0 ER -
Soyeur, Alain. Étude mathématique d'équations aux dérivées partielles de la physique à valeurs dans une variété. Thèses d'Orsay, no. 278 (1990), 88 p. http://numdam.org/item/BJHTUP11_1990__0278__P0_0/
[1] Large solutions for harmonic maps in two dimensions, Comm. Math. Phys., 92 (1983), 203-215. | MR | Zbl | DOI
et .[2] Harmonic Mappings between Surfaces, Lecture Notes in Mathematics, 1062 (Berlin: Springer, 1984). | MR | Zbl
.[3] Amer. J. Math., 86 (1964), 109-160. | MR | Zbl | DOI
et .[4] On the evolution of harmonic maps of Riemannian surfaces, Comm. Math. Helv., 60, (1985), 558-581. | MR | Zbl | DOI
.[5] On the evolution of harmonic maps in higher dimensions, J. Diff. Geometry, 28, (1988), 485-502. | MR | Zbl
.[6] Existence and partial regularity for the heat flow for harmonic maps, Math. Z., 201 (1989), 83-103. | MR | Zbl | DOI
et .[7] Explosion en temps fini pour le flot des applications harmoniques, C. R. Acad. Sci. Paris, 308, série 1, (1989), 339-344. | MR | Zbl
et .[8] Blow-up of solutions of heat flows of harmonic maps, preprint. | MR | Zbl
.[9] Blow-up and global existence for heat flows of harmonic maps, Inventiones Math. 99, (1990), 567-578. | MR | Zbl
et .[10] Ein existenzbeiweis für harmonisch abbildungen, die ein Dirichlet problem lösen mittels der methode des warmeflusses, Manuscripta Math., 34, (1981), 17-25. | MR | Zbl | DOI
.[11] Relaxed energies for harmonic maps, Variational Problems, Paris June 1988, H.Berestycki, J.M.Coron, I.Ekeland Eds, Birkhäuser. | MR | Zbl
, , .[12] On the inverse scattering transform for the Ishimori equations, Physics Letters A, 72, (1989), 183-189. | MR | DOI
et .1 Large solutions for harmonic maps in two dimensions. Comm. Math. Phys. 92 (1983), 203-215. | MR | Zbl | DOI
and .2 Harmonic Mappings between Surfaces, Lecture Notes in Mathematics 1062 (Berlin: Springer, 1984). | MR | Zbl
.3 The Dirichlet problem for harmonic maps from a surface with boundary onto a 2-sphere with nonconstant boundary values. J. Differential Geom. 19 (1984), 393-401. | MR | Zbl | DOI
.4 The concentration compactness principle in the calculus of variations. The limit case, part 2. Rev. Mat. Iberoamericana 1 (1985), 45-121. | MR | Zbl | DOI
.5 Multiple integrals in the calculus of variations (New York: Springer, 1966). | MR | Zbl
.6 Boundary regularity and the Dirichlet problem for harmonic maps. J. Differential Geom. 18 (1983), 253-268. | MR | Zbl | DOI
and .[1] Nonuniqueness for the heat flow of harmonic maps. To appear in Ann. I.H.P.-Analyse Non Linéaire. | MR | Zbl | Numdam
,[2 ] Blow up and global existence for heat flows of harmonic maps, Preprint. | MR | Zbl
and ,[3] Explosion en temps fini pour le flot des applications harmoniques, C. R. Acad. Sci. Paris, 308. serie I, 1989, 339-344. | MR | Zbl
and ,[4] The weak solutions to the evolution problem of harmonic maps, Math. Z., 201, 1989, 69-74. | MR | Zbl | DOI
,[5] Amer. J. Math., 86, 1964, 109-160. | MR | Zbl | DOI
and ,[6] Ein existenzbeiweis für harmonisch Abbildungen, die ein Dirichlet problem lösen mittels der methode des warmeflusses, Manuscripta Math., 34, 1981, 17-25. | MR | Zbl | DOI
,[7] Harmonic maps of manifolds with boundary, Lecture Notes, 471, Springer Verlag, 1975. | MR | Zbl
,[8] Global solutions of reaction diffusion systems, Lecture Notes, 1072. Springer Verlag, 1984. | MR | Zbl
,[9] On the evolution of harmonic maps of Riemannian surfaces, Comm. Math. Helv., 60, 1985, 558-581. | MR | Zbl | DOI
,[10] On the evolution of harmonic maps in higher dimensions, J. Diff. Geometry, 28, 1988, 485-502. | MR | Zbl
,[11] Existence and partial regularity for the heat flow for harmonic maps, Math. Z., 201, 1989, 83-103. | MR | Zbl | DOI
and ,[12] Analytic aspects of the harmonic map problem. Seminar on nonlinear P.D.E., Chern Ed., Springer, Berlin, 1984. | MR | Zbl
,[13] Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38, n° 1,2, 1981. | MR | Zbl
,[1] Relaxed energies for harmonic maps", Variational Problems, Paris June 1988, H. Berestycki, J.M. Coron, I. Ekeland Eds, Birkhäuser. | MR | Zbl
, , , "[2] Density of smooth functions between two manifolds in Sobolev spaces" , J. Func. Anal. 80 (1988), 60-75. | MR | Zbl | DOI
, , "[3] Harmonic maps with defects" , Comm. Math. Phys. 107 (1986), 649-705. | MR | Zbl | DOI
, , , "[4] Weak solutions to the evolution problem of harmonic maps, Math. Z. 201 (1989), 69-74. | MR | Zbl | DOI
, "[5] Blow-up and global existence for heat flows for harmonic maps", Inventiones Math. 99 (1990), 567-578. | MR | Zbl
and , "[6] Existence and partial regularity result for the heat flow for harmonic maps", Math. Z. 201 (1989), 83-103. | MR | Zbl | DOI
and , "[7] Nonuniqueness for the heat flow of harmonic maps" , Annales IHP, Analyse Non Linéaire, to appear. | MR | Zbl | Numdam
, "[8] Explosion en temps fini pour le flot des applications harmoniques, C.R. Acad. Sci. Paris 308 (1989), 339-344. | MR | Zbl
and , "[9] Blow-up of solutions of heat flows for harmonic maps" , preprint. | MR | Zbl
, "[10] Harmonic mappings of Riemannian manifolds", Amer. J. Math. 86 (1964), 109-160. | MR | Zbl | DOI
and , "[11] Cartesian currents and variational problems for mappings into spheres" , preprints, 1989. | MR | Zbl | Numdam
, , , "[12] The Dirichlet energy of mappings with values into the sphere" , preprint, 1989. | MR | Zbl | DOI
, , , "[13] A construction of solutions satisfying a Caccioppoli inequality for nonlinear parabolic equations associated to a variational functional of harmonic type", preprint.
and , "[14] Reaction-diffusion processes and evolution to harmonic maps", preprint. | MR | Zbl
, , , "[15] Weak solutions and development of singularities of the -model" , Comm. Pure Appl. Math. 41 (1988), 459-469. | MR | Zbl
, "[16] Lectures on geometric measure theory", Proc. of the Centre for Mathematical Analysis, Australian National University 3 (1983). | MR | Zbl
, "[17] On the evolution of harmonic maps of Riemannian surfaces" , Comment. Math. Helv. 60 (1985), 558-581. | MR | Zbl | DOI
, "[18] On the evolution of harmonic maps in higher dimensions", J. Diff. Geom. 28 (1988), 485-502. | MR | Zbl
, "[19] The evolution of harmonic maps : existence, partial regularity and singularities", these proceedings. | Zbl | DOI
, "[1] Progress of Theoretical Physics, 72 n°1, 1984, p. 33-37. | MR | Zbl
,[2] Physics Letters A, 135 n°3, 1989, p. 183-189. | DOI
et ,[3] 75, 1980, p. 59-77. | MR | Zbl
, Archive Rat. Mech. Anal.,[4] 37, 1984, p. 149-187. | MR | Zbl
et , Commun Pure Appl. Math.,[5] C.R. Acad.Sci. Paris, 309, 1989, p. 945-949. | Zbl
, , , et ,[6] Proc. A.M.S., 21, 1989, p. 245-248.
,[7] 37, 1983, p. 133-141. | Zbl
et , Commun. Pure Appl.Math.,[8] J. Differ. Equations, 46, 1982, p. 409-625. | MR | Zbl | DOI
,[9] Commun. Math. Phys., 107, 1986, p. 431-454. | MR | Zbl | DOI
, et ,[10]
, Princeton University Press, 1970.[11] 840, Springer-Verlag, Berlin, 1981. | MR | Zbl
, Lecture Notes in math.,[12] Nonlinearity, 3, 1990. | MR | DOI
et ,[13] The Cauchy Problem For The Ishimori Equation", to appear. | MR | Zbl | DOI
, "[1] On the continuous limit for a system of classical spins, Comm. Math. Phys. 107, 1986, 431-454. | MR | Zbl | DOI
, , ,[2] Multiple solutions of H-systems and Rellich's conjecture, Comm. Pure Appl. Math. 37, 1984, 149-187. | MR | Zbl
, ,[3] On the initial value problem for the Davey-Stewartson systems, Nonlinearity 3, 1990, | MR | Zbl | DOI
, ,[4] Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Springer-Verlag. | MR | Zbl
,[5] Multi vortex solutions of a two dimensional nonlinear wave equation, Progress of Theoretical Physics 72, n°1, 1984, 33-37. | MR | Zbl
,[6] On the inverse scattering transform for the Ishimori equations, Physics Letters A 135, n°3, 1989, 183-189. | MR | DOI
, ,[7] Global small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math. 37, 1983, 133-141. | MR | Zbl
, ,[8] A rapidly convergent iteration, Ann. Sc. Norm. Sup. Pisa (3) 20, 1966, 265-315. | Zbl | Numdam
,[9] Global existence of small solutions to nonlinear evolution equations, J. Diff. Equ. 46, 1982, 409-425. | MR | Zbl | DOI
,[10] The Cauchy problem for Ishimori equations, C.R. Acad. Sci. Paris, to appear. | MR | Zbl
,[11] Singular integrals and differentiability properties of functions, Princeton University Press, 1970. | MR | Zbl
,[12] Large solutions to the volume constrained Plateau problem, Arch. Rational Mech. Anal. 75, 1980, 59-77. | MR | Zbl | DOI
,