Principes d'invariance et application à la statistique de modèles censurés
Thèses d'Orsay, no. 285 (1991) , 140 p.
@phdthesis{BJHTUP11_1991__0285__P0_0,
     author = {Castelle, Nathalie},
     title = {Principes d'invariance et application \`a la statistique de mod\`eles censur\'es},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {285},
     year = {1991},
     language = {fr},
     url = {http://archive.numdam.org/item/BJHTUP11_1991__0285__P0_0/}
}
TY  - BOOK
AU  - Castelle, Nathalie
TI  - Principes d'invariance et application à la statistique de modèles censurés
T3  - Thèses d'Orsay
PY  - 1991
IS  - 285
PB  - Université de Paris-Sud Centre d'Orsay
UR  - http://archive.numdam.org/item/BJHTUP11_1991__0285__P0_0/
LA  - fr
ID  - BJHTUP11_1991__0285__P0_0
ER  - 
%0 Book
%A Castelle, Nathalie
%T Principes d'invariance et application à la statistique de modèles censurés
%S Thèses d'Orsay
%D 1991
%N 285
%I Université de Paris-Sud Centre d'Orsay
%U http://archive.numdam.org/item/BJHTUP11_1991__0285__P0_0/
%G fr
%F BJHTUP11_1991__0285__P0_0
Castelle, Nathalie. Principes d'invariance et application à la statistique de modèles censurés. Thèses d'Orsay, no. 285 (1991), 140 p. http://numdam.org/item/BJHTUP11_1991__0285__P0_0/

[1] Andersen P.K. and Gill R.D., 1982. Cox's regression model for counting processes : a large sample study. Annals of Statistics, vol 10, 4, 1100-1120. | MR | Zbl | DOI

[2] Bennett G., 1962. Probability inequalities for the sum of independants random variables. J. AM. Statis. Assoc., 57, 33-45. | Zbl | DOI

[3] Berkes I. and Philipp W. 1979 Approximation theorems for independent and weakly dependent random vectors. Annals of Probability, vol 7, 29-54. | MR | Zbl | DOI

[4] Bickel P.J. and Rosenblatt M., 1973. On some global measures of the deviations of density function estimates. Annals of Statistics, vol 1, 1071-1095. | MR | Zbl | DOI

[5] Breslow N. and Crowley J., 1974. A large sample study of the life table and product limit estimates under random censorship. Annals of Statistics, vol 2, 437-453. | MR | Zbl | DOI

[6] Bretagnolle J. and Massart P., 1989. Hungarian construction from the non asymptotic view point. Annals of Probability, vol 10, 239-256. | MR | Zbl

[7] Brillinger D.R., 1969. The asymptotic representation of the sample distribution function. Bull. Amer. Math. Soc., vol 75, 545-547. | MR | Zbl | DOI

[8] Burke M.D., Csörgö S. and Horváth. L., 1981. Strong approximations of some biometrie estimates under random censorship. Z. Warschein. Verw. Geb., 56, 87-112 | MR | Zbl | DOI

[9] Cox D.R. and Oakes D., 1984. Analysis of survival data. Chapman and Hall. | MR

[10] Csörgö M. and Revesz P., 1981. Strong approximations in probability and statistics. Academic Press, New York, 133-134. | MR | Zbl

[11] Csörgö S. and Horváth L., 1983. The rate of strong uniform consistency for the product limit estimator. Z. Wahrschein. Verw. Geb., 62, 411-426. | MR | Zbl | DOI

[12] Dvoretzky A., Kiefer J.C. and Wolfowitz J., 1956. Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Stat., 33, 642-669. | MR | Zbl | DOI

[13] Einmahl J.H.J. and Koning A.J. 1989. Limits theorems for a general weighted process under random censoring with applications. Medical Informatics and Statistics Report, 24. (University of Limburg)

[14] Gehan E.A., 1965. A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika, 52, 203-223. | MR | Zbl | DOI

[15] Gill R.D., 1980. Censoring and stochastic integrals. Mathematical Centre Tracts 124. Amsterdam: Mathematische Centre. | MR | Zbl

[16] Gill R.D., 1983. Large sample behaviour of the product-limit estimator on the whole line. Annals of Statistics, vol 11, 49-58. | MR | Zbl

[17] Harrington D. and Fleming T., 1982. A class of rank test procedures for censored survival data. Biometrika, 69, 3, 553-566. | MR | Zbl | DOI

[18] Kaplan E.L. and Meier P., 1958. Nonparametric estimation from incomplete observations. J. AM. Statis. Assoc., 53, 457-481. | MR | Zbl | DOI

[19] Kiefer J., 1969. On the deviations in the Skorohod-Strassen approximation scheme. Z. Wahrschein. Verw. Geb., 13, 321-332. | MR | Zbl | DOI

[20] Komlos J., Major P., and Tusnady G., 1975. An approximation of partial sums of independent RV'- and the sample DF. I. Z. Warschein. Verw. Geb., 32, 111-131. | MR | Zbl | DOI

[21] Liero H., 1982. On the maximal deviation of the kernel regression function estimate. Math. Operationsforsh. Statist., Ser Statistics, vol 13, nx2, 171-182. | MR | Zbl

[22] Massart P., 1990. The tight constant of the Dvorestsky-Kiefer-Wolfowitz inequality. A paraitre dans Annals of probability. | MR | Zbl | DOI

[23] Peto R. and Peto J., 1972. Asymptotically efficient rank invariant test procedures. J.R. Statist. Soc., 135, 185-206.

[24] Prentice R.L., 1978. Linear rank tests with right censored data. Biometrika, 65, 167-179. | MR | Zbl | DOI

[25] Rebolledo R., 1978. Sur les applications de la théorie des martingales à l'étude statistique d'une famille de processus ponctuels. Springer Lect. Notes in Mathematics, 636, 27-70. | MR | Zbl | DOI

[26] Rebolledo R., 1980. Central limit theorems for local martingales Z. Wahrsch. verw. Gebiete 51, 269-286. | MR | Zbl | DOI

[27] Revesz P., 1978. A strong law of the empirical density function. Periodica Math. Hung., Vol 9 (4), 317-324. | MR | Zbl | DOI

[28] Shorack G.R. and Wellner J.A., 1986. Empirical processes with applications to statistics. Wiley and Sons. | MR | Zbl

[29] Silverman B.W., 1978. Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Annals of Statistics, vol 6, nx1, 177-184. | MR | Zbl | DOI

[30] Skorohod A.V., 1976. On a representation of random variables. Th. Proba. Appl., 628-632. | Zbl

[31] Tusnady G., 1977. A remark on the approximation of the sample DF in the multidimensional case. Periodica Math. Hung., Vol 8 (1) 53-55. | MR | Zbl | DOI

[32] Wellner J., 1978. Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z. Warschein. Verw. Geb., 45, 73-88. | MR | Zbl | DOI

[1] Benett G., 1962. Probability inequalities for the sum of independants random variables. J. AM. Statis. Assoc., 57, 33-45 | Zbl | DOI

[2] Bretagnolle J. & Massart P., 1989. Hungarian constructions from the non asymptotic view point. Annals of probability, Vol 17, 239-256 | MR | Zbl | DOI

[3] Csörgö M. & Revesz P., 1981. Strong approximations in probability and statistics. Academic Press, New York, 133-134 | MR | Zbl

[4] Dvoretzky A. & Kiefer J.C. & Wolfowitz J., 1956. Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Stat., 33, 642-669 | MR | Zbl | DOI

[5] Kiefer J., 1969. On the deviations in the Skorohod-Strassen approximation scheme. Z. Wahrschein. Verw. Geb., 13, 321-332 | MR | Zbl | DOI

[6] Komlós J. & Major P. & Tusnády G., 1975. An approximation of partial sums of independent RV'- and the sample DF. I. Z. warschein. Verw. Geb., 32, 111-131 | MR | Zbl | DOI

[7] Massart P., 1990. The tight constant of the Dvorestsky-Kiefer-Wolfowitz inequality. A paraitre dans Annals of probability | MR | Zbl | DOI

[8] Shorack G.R. & Wellner J.A., 1986. Empirical processes with applications to statistics. Wiley & Sons. | MR | Zbl

[9] Skorohod A.V., 1976. On a representation of random variables. Th. Proba. Appl., 628-632 | Zbl

[10] Wellner J., 1978. Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z.warschein. Verw. Geb., 45, 73-88 | MR | Zbl | DOI

[1] Benett G.,1962. Probability inequalities for the sum of independants random variables. J. AM. Statis. Assoc., 57, 33-45 | Zbl | DOI

[2] Bretagnolle J. & Massart P., 1989. Hungarian constructions from the non asymptotic view point. Annals of probability, Vol 17, 239-256 | MR | Zbl | DOI

[3] Burke M.D. & Csörgö S. & Horváth L., 1981. Strong Approximations of Some Biometric Estimates under Random Censorship. Z. Warschein. Verw. Geb., 56, 87-112 | MR | Zbl | DOI

[4] Komlós J. & Major P. & Tusnády G., 1975. An approximation of partial sums of independent RV'- and the sample DF. I. Z. Warschein. Verw. Geb., 32, 111-131 | MR | Zbl | DOI

[5] Shorack G.R. & Wellner J.A., 1986. Empirical processes with applications to statistics. Wiley & Sons. | MR | Zbl

[6] Wellner J., 1978 Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z. Warschein. Verw. Geb., 45, 73-88 | MR | Zbl | DOI

[1] Andersen P.K. and Gill R.D. (1982) Cox's regression model for counting processes : a large sample study. Annals of Statistics, vol 10, 4, 1100-1120. | MR | Zbl | DOI

[2] Bennett G. (1962) Probability inequalities for the sum of independants random variables. J. AM. Statis. Assoc., 57, 33-45. | Zbl | DOI

[3] Bretagnolle J. and Massart P. (1989) Hungarian construction from the non asymptotic view point. Annals of Probability, vol 10, 239-256. | MR | Zbl

[4] Burke M.D., Csörgö S., Horváth L. (1981) Strong Approximations of Some Biometric Estimates under Random Censorship. Z. Warschein. Verw. Geb., 56, 87-112. | MR | Zbl | DOI

[5] Castelle N. Approximation forte d'un vecteur de processus empiriques. Voir 1ère partie, chapitre deux de cette thèse.

[6] Cox D.R and Oakes D. (1984) Analysis of Survival Data. Chapman & Hall. | MR

[7] Dvoretzky A., Kiefer J.C. and Wolfowitz J. (1956) Asymptotic minimal character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Stat., 33, 642-669. | MR | Zbl | DOI

[8] Einmahl J.H.J. and Koning A.J. (1989) Limits theorems for a general weighted process under random censoring with applications. Medical Informatics and Statistics Report, 24. (University of Limburg)

[9] Gill R.D. (1980) Censoring and Stochastic Integrals. Mathematical Centre Tracts 124. Amsterdam: Mathematische Centre. | MR | Zbl

[10] Gill R.D. (1983) Large sample behaviour of the product-limit estimator on the whole line. Annals of Statistics, vol 11, 49-58. | MR | Zbl

[11] Harrington D. and Fleming T. (1982) A class of rank test procedures for censored survival data. Biometrika, 69, 3, 553-566. | MR | Zbl | DOI

[12] Massart P., 1990. The tight constant of the Dvorestsky-Kiefer-Wolfowitz inequality. A paraitre dans Annals of probability. | MR | Zbl | DOI

[13] Shorack G.R. & Wellner J.A. (1986) Empirical processes with applications to statistics. Wiley & Sons. | MR | Zbl

[14] Wellner J. (1978) Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z. Warschein. Verw. Geb., 45, 73-88. | MR | Zbl | DOI