Classes de Gevrey non isotropes et interpolation dans les domaines de type fini de 𝐂 2
Thèses d'Orsay, no. 298 (1991) , 96 p.
@phdthesis{BJHTUP11_1991__0298__P0_0,
     author = {Thilliez, Vincent},
     title = {Classes de {Gevrey} non isotropes et interpolation dans les domaines de type fini de $\mathbf{C}^2$},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {298},
     year = {1991},
     language = {fr},
     url = {http://archive.numdam.org/item/BJHTUP11_1991__0298__P0_0/}
}
TY  - BOOK
AU  - Thilliez, Vincent
TI  - Classes de Gevrey non isotropes et interpolation dans les domaines de type fini de $\mathbf{C}^2$
T3  - Thèses d'Orsay
PY  - 1991
IS  - 298
PB  - Université de Paris-Sud Centre d'Orsay
UR  - http://archive.numdam.org/item/BJHTUP11_1991__0298__P0_0/
LA  - fr
ID  - BJHTUP11_1991__0298__P0_0
ER  - 
%0 Book
%A Thilliez, Vincent
%T Classes de Gevrey non isotropes et interpolation dans les domaines de type fini de $\mathbf{C}^2$
%S Thèses d'Orsay
%D 1991
%N 298
%I Université de Paris-Sud Centre d'Orsay
%U http://archive.numdam.org/item/BJHTUP11_1991__0298__P0_0/
%G fr
%F BJHTUP11_1991__0298__P0_0
Thilliez, Vincent. Classes de Gevrey non isotropes et interpolation dans les domaines de type fini de $\mathbf{C}^2$. Thèses d'Orsay, no. 298 (1991), 96 p. http://numdam.org/item/BJHTUP11_1991__0298__P0_0/

[BF] E. Bedford & J. E. Fornaess A construction of peak functions on weakly pseudoconvex domains. Ann. of Math. 107 (1978), 555-568. | MR | Zbl | DOI

[Bl] T. Bloom 𝐂 -peak functions for pseudoconvex domains of strict type. Duke Math. J. 45 (1978), 133-147. | MR | Zbl | DOI

[BO] J. Bruna & J. M. Ortega Interpolation by holomorpbic functions smooth to the boundary in the unit ball of 𝐂 N . Math. Ann. 274 (1986), 527-575. | MR | Zbl | DOI

[Br] J. Bruna An extension theorem of Whitney type for non quasi-analytic classes of functions. J. London Math. Soc. 22 (1980), 495-505. | MR | Zbl | DOI

[Ca] D. Catlin Estimates for invariant metrics on weakly pseudoconvex domains in 𝐂 2 . Math. Z. 200 (1989), 429-466. | MR | Zbl | DOI

[CC1] J. Chaumat & A.-M. Chollet Classes de Gevrey non isotropes et application à l'interpolation. Ann. Scuola Norm. Sup. Pisa (IV) 15 (1988), 615-676. | MR | Zbl | Numdam

[CC2] J. Chaumat & A.-M. Chollet Noyaux pour résoudre l'équation ¯ dans des classes ultradifférentiables sur des compacts irréguliers de 𝐂 N . Proc. Mittag-Lefller Inst. 1987/1988, Math. notes 38, Princeton Univ. Press, à paraître. | MR | Zbl

[CW] R. R. Coifman & G. Weiss Analyse harmonique non commutative sur certains espaces homogènes. Springer Lectures Notes 242 (1972). | MR | Zbl

[DFW] K. Diederich, J. E. Fornaess & J. Wiegerinck Sharp Hölder estimates for ¯ on ellipsoids. Manuscripta Math. 56 (1986), 399-417. | MR | Zbl

[Ge] M. Gevrey Sur la nature analytique des solutions des équations aux dérivées partielles. Ann. Ec. Norm. Sup (III) 35 (1918), 129-190. | MR | JFM | Numdam | DOI

[KN] J. J. Kohn & L. Nirenberg A pseudoconvex domain not admitting a holomorphic support function. Math. Ann. 201 (1973), 265-268. | MR | Zbl | DOI

[Ko] J. J. Kohn Boundary behavior of ¯ on weakly pseudoconvex manifolds of dimension two. J. Diff. Geom. 6 (1972), 523-542. | MR | Zbl

[No] A. V. Noell Interpolation from curves in pseudoconvex boundaries. Michigan Math. J. 37 (1990), 275-281. | MR | Zbl | DOI

[NRSW] A. Nagel, J.-P. Rosay, E. M. Stein & S. Wainger Estimates for the Bergman and Szegö kernels in 𝐂 2 . Ann. of Math. 129 (1989), 113-149. | MR | Zbl | DOI

[NSW] A. Nagel, E. M. Stein & S. Wainger Boundary behavior of functions holomorphic in domains of finite type. Proc. Nat. Acad. Sci. USA 78 (1981), 6596-6599. | MR | Zbl | DOI

[Si] N. Sibony Une classe de domaines pseudoconvexes. Duke Math. J. 55 (1987), 299-319. | MR | Zbl | DOI

[St] E. M. Stein Singular integrals and estimates for the Cauchy-Riemann equations. Bull. Amer. Math. Soc. 79 (1973), 440-445. | MR | Zbl | DOI