[Quelques aspects de l'approximation pour les grands temps des solutions d'équations d'évolution dissipatives, par ondelettes et éléments finis]
@phdthesis{BJHTUP11_1992__0314__P0_0, author = {Goubet, Olivier}, title = {Some questions related to the large time approximation, by wavelets and finite elements, of the solutions of dissipative evolution equations}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e de Paris-Sud Centre d'Orsay}, number = {314}, year = {1992}, language = {en}, url = {http://archive.numdam.org/item/BJHTUP11_1992__0314__P0_0/} }
TY - BOOK AU - Goubet, Olivier TI - Some questions related to the large time approximation, by wavelets and finite elements, of the solutions of dissipative evolution equations T3 - Thèses d'Orsay PY - 1992 IS - 314 PB - Université de Paris-Sud Centre d'Orsay UR - http://archive.numdam.org/item/BJHTUP11_1992__0314__P0_0/ LA - en ID - BJHTUP11_1992__0314__P0_0 ER -
%0 Book %A Goubet, Olivier %T Some questions related to the large time approximation, by wavelets and finite elements, of the solutions of dissipative evolution equations %S Thèses d'Orsay %D 1992 %N 314 %I Université de Paris-Sud Centre d'Orsay %U http://archive.numdam.org/item/BJHTUP11_1992__0314__P0_0/ %G en %F BJHTUP11_1992__0314__P0_0
Goubet, Olivier. Some questions related to the large time approximation, by wavelets and finite elements, of the solutions of dissipative evolution equations. Thèses d'Orsay, no. 314 (1992), 88 p. http://numdam.org/item/BJHTUP11_1992__0314__P0_0/
[DM] On the construction of families of approximate inertial manifolds, J. Diff. Equ., to appear. | MR | Zbl
and ;[DJMT] Subgrid modelling and the interaction of small and large wavelenghts in turbulent flows, Computer Physics Communications, 65 (1991) 100-106. | MR | Zbl | DOI
, , and ;[DJT] The nonlinear Galerkin method for the two and three dimensional Navier-Stokes equations, Proceedings of the 12th International Conference on Numerical Methods in Fluids Dynamics, Oxford, July 1990, edited by K.W. Morton, Lectures Notes in Physics, Springer Verlag. | MR
, and ;[FI] Approximate inertial manifolds for the Sine-Gordon equation, J. Diff. and Integ. Equ., vol. 4, 6, 1991, 1169-1193. | MR | Zbl
;[FJoKSTi] On the computation of inertial manifolds, Physics Letters, 131, 1988, 433-436. | MR | DOI
, , , and ;[FMT] Modelling of the interaction of small and large eddies in two dimensional turbulent flows, Math. Mod. and Num. Anal., vol. 22, 1, 1988. | MR | Zbl | Numdam | DOI
, and ;[FST] Inertial manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73, 309-353, 1988. | MR | Zbl | DOI
, and ;[JRT] A nonlinear Galerkin method for the Navier-Stokes equation, Comput. Meth. Appl. Mech. Eng. 80, 1990, 245. | MR | Zbl
, and ;[MT] Nonlinear Galerkin methods ; the finite-elements case, Numer. Math., 57, 1-22, 1990. | MR | Zbl | DOI
and ;[Me] Ondelettes et opérateurs, Hermann, 1990. | Zbl
;[Tl] Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New-York, Applied Mathematical Science Series, vol. 68, 1988. | MR | Zbl
;[T2] Attractors for the Navier-Stokes equations, Localization and Approximation, J. Fac. Sci. Tokyo, Sec. 1A, 629-647, 1989. | MR | Zbl
;[T3] Inertial manifolds and multigrid methods, SIAM J.Math. Anal., 21, 154-178, 1990. | MR | Zbl | DOI
;[B] A block spin construction of ondelettes, Part I : Lemarié functions, Comm. Math. Phys, 110, p. 601-615, (1987). | MR | DOI
,[D] Orthonormal basis of compactly supported wavelets, Comm. on Pure and Applied Math., Vol. XLI, p. 909-996, (1988). | MR | Zbl
,[DeMa] On the construction of families of approximate inertial manifolds, J. Diff. Eq., to appear. | MR | Zbl
and ,[FI] Approximate inertial manifolds for the Sine-Gordon equation, J. Diff. and Int. Eq., 1169-1194, vol 4 (6), 1991. | MR | Zbl
,[FMT] Modelling of the interaction of small and large eddies in two-dimensional turbulent flows, Math. Mod. and Num. Anal. (M2AN), 22, p. 93-114, (1988). | MR | Zbl | Numdam
, and ,[FNST] Inertial Manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures et Appl., 67, p. 197-226, (1988). | MR | Zbl
, , and ,[FST] Inertial Manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73, p. 309-353, (1988). | MR | Zbl | DOI
, and ,[FSTi] Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. Dyn. Diff. Eq., 1, 199-244 (1989). | MR | Zbl | DOI
, and ,[FT] Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures et Appl., 58, p. 339-368, (1979). | MR | Zbl
and ,[JM] Bases d'ondelettes dans des ouverts de , J. Math. Pures et Appl., 68, p. 95-108, (1989). | MR | Zbl
et ,[L] Ondelettes à localisation exponentielle, J. Math. Pures et Appl., 67, p. 227-236, (1988). | MR | Zbl
,[LM] Ondelettes et bases hilbertiennes, Revista Matematica Iberoamericana, Vol. 2, p. 1-18, (1986). | MR | Zbl | DOI
et ,[M] Ondelettes et Operateurs I : Ondelettes, Hermann 1990. | MR | Zbl
,[MT] Nonlinear Galerkin Methods : The finite elements case, Numer. Math., 57, 205-226 (1990). | MR | Zbl | DOI
and ,[P] Time analycity and Gevrey regularity for solutions of a class of dissipative partial differential equations, J. Nonlinear Anal.: Theory, Methods and Applications, vol. 16, No 11, 959-980. | MR | Zbl | DOI
,[T1] Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68, Springer-Verlag, Berlin, New York, (1988). | MR | Zbl
,[T2] Induced Trajectories and Approximate Inertial Manifolds, Math. Mod. and Num. Anal. (M2AN), 23, p. 541-561, (1989). | MR | Zbl | Numdam
,[T3] Inertial Manifolds and Multigrid Methods, SIAM J. Math. Anal., 21, p. 154-178 (1990). | MR | Zbl | DOI
,[T4] Attractors for the Navier-Stokes equations, localization and approximation, J. Fac. Sci. Tokyo, Sec 1a, 36, 629-647 (1989). | MR | Zbl
,[A]
; thesis, CEREMADE 1989.[B] Analyse Fonctionnelle, Masson, Paris, 1983. | MR | Zbl
;[CT] The incremental unknowns method I, II, Applied Mathematics Letters, 1991. | MR | Zbl
and ;[DM] On the construction of families of approximate inertial manifolds, J. Diff. Equ., to appear. | MR | Zbl
and ;[F] Approximate inertial manifolds for the Sine Gordon equation, J. Diff. and Integ. Equ., to appear. | MR | Zbl
;[FST] Inertial manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73, 309-353, 1988. | MR | Zbl | DOI
, and ;[O] Construction of approximate inertial manifolds using wavelets, submitted to SIAM J. Math. Anal. | MR | Zbl
;[J1] Construction of wavelets on open sets ; in Wavelets : Time-Frequencies Methods and Phases Spaces, Springer-Verlag, Berlin, Heidelberg, 1989. | MR | Zbl | DOI
;[J2] Wavelet methods for fast resolution of elliptic problems, LAMM Prépublication 90/5. | Zbl | DOI
;[JM] Bases d'ondelettes dans des ouverts de , J. Math. Pures Appl., 68, 95-108, 1989. | MR | Zbl
and ;[L] La propriété de support minimal dans les analyses multi-résolution, C. R. Acad. Sci Paris, t. 312, Série I, 773-776, 1991. | MR | Zbl
;[LM] Nonhomogeneous Boundary Value Problems and Applications, Springer-Verlag, New York, 1972. | MR | Zbl
and ;[Ma] Attractors for reaction-diffusion equations : existence and estimate of their dimension, Appl. Anal., 25, 101-147, 1987. | MR | Zbl
;[MT1] Nonlinear Galerkin methods, SIAM J. Num. Anal., 26, 1139-1157, 1989. | MR | Zbl | DOI
and ;[MT2] Nonlinear Galerkin methods ; the finite-elements case, Numer. Math., 57, 1-22, 1990. | MR | Zbl | DOI
and ;[M] Ondelettes et opérateurs, (I) Ondelettes, (II) Opérateurs de Calderon-Zygmund, Hermann, 1990. | MR | Zbl
;[PT] Localization and approximation of attractors for the Ginzburg-Landau equation, J. Dynamic and Diff. Equ., to appear. | MR | Zbl
and ;[T1] Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, Applied Mathematical Science Series, vol. 68, 1988. | MR | Zbl
;[T2] Attractors for the Navier-Stokes equations, Localization and Approximation, J. Fac. Sci. Tokyo, Sec. IA, 629-647, 1989. | MR | Zbl
;[T3] Inertial manifolds and multigrid methods, SIAM J. Math. Anal., 21, 154-178, 1990. | MR | Zbl | DOI
;[T4] Analyse Numérique, PUF, 1970. | Zbl
;[Y] On the multilevel splitting of finite elements spaces, Numer. Math., 49, 379-412, 1986. | MR | Zbl | DOI
;