@phdthesis{BJHTUP11_1994__0365__A1_0, author = {Bid\'egaray, Brigitte}, title = {Etude qualitative d'\'equations d'ondes dispersives}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e de Paris-Sud Centre d'Orsay}, number = {365}, year = {1994}, language = {fr}, url = {http://archive.numdam.org/item/BJHTUP11_1994__0365__A1_0/} }
Bidégaray, Brigitte. Etude qualitative d'équations d'ondes dispersives. Thèses d'Orsay, no. 365 (1994), 146 p. http://numdam.org/item/BJHTUP11_1994__0365__A1_0/
[1] Equations of Langmuir Turbulence and Nonlinear Schrödinger Equation : Smoothness and Approximation. J. Funct. Anal., 79, 183-210 (1988) | MR | Zbl | DOI
,[2] On the Cauchy and Invariant measure problem for the periodic Zakharov system. IHES/M/93 | Zbl
[3] An introduction to nonlinear Schrödinger equations. Textos de métodos matemáticos, Rio de Janeiro (1990)
[4] On the Cauchy Problem for a Nonlocal nonlinear Schrödinger equation occuring in Plasma Physics. Diff. and Int. Equations, 6, 1413-1450 (1993) | MR | Zbl
[5] Existence of self-similar blow-up solutions for Zakharov Equation in dimension two. preprint | MR | Zbl
,[6] Concentration properties of blow-up solutions and instability results for Zakharov Equation in dimension two. preprint | MR | Zbl | DOI
,[7] On nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, 46, 113-129 (1987) (Physique théorique). | MR | Zbl | Numdam
[8] Nonlinear Optics. Addison-Wesley (1992) | MR
,[9] Existence and Smoothing Effect of Solutions for the Zakharov Equations. RIMS (1990) | MR | Zbl
,[10] Ann. Math. Studies, 77, Princeton Univ. Press (1973) | Zbl
[11] Simulation numérique des systèmes de Davey-Stewartson. Sur un système d'interaction ondes courtes-ondes longues. Thèse, Paris Sud, 9.12.1993 (article en préparation)
[12] The Nonlinear Schrödinger Limit of the Zakharov Equations Governing Langmuir Turbulence. Commun. Math. Phys., 106, 569-580 (1986) | MR | Zbl | DOI
,[13] Quelques résultats de régularité pour les équations de la turbulence de Langmuir. CRAS Paris 289, 173-176 (1979) | MR | Zbl
,[14] Fermi-Pasta-Ulam récurrence in the two-space dimensional nonlinear Schrödinger equation. Phys. Fluids, 21, 2116-2118 (1978) | DOI
,[15] Collapse of Langmuir Waves. Soviet Physics JETP., 35, 908-914 (1972)
[16] On invariant measures for some infinite-dimensional dynamical systems. JINR, E5-92-395 (1992) | Zbl | Numdam
1. Sur une équation de Schrödinger non linéaire et non locale intervenant en physique des plasmas. C.R.A.S. Paris, 314, série I, (1992) 449-453. | MR | Zbl
,2. On a nonlocal, nonlinear Schrödinger equation occuring in plasma Physics. Publication CMLA, ENS Cachan, 9208 (1992).
,3. Existence and Smoothing Effect of Solutions for the Zakharov Equations. 1990. | MR | Zbl
, ,4. The Nonlinear Schrödinger Limit of the Zakharov Equations Governing Langmuir Turbulence. Commun. Math. Phys., 106, (1986) 569-580. | MR | Zbl | DOI
, ,5. Collapse and Self-Focusing of Langmuir Waves, in Basic Plasma Physics II, ed. A.A. Galeev and R.N. Sudan, (North Holland, 1984).
,7. On a nonlocal Zakharov equation, to appear | MR | Zbl | DOI
,[1] Equations of Langmuir Turbulence and Nonlinear Schrödinger Equation: Smoothness and Approximation. J. Funct. Anal., 79, 183-210 (1988) | MR | Zbl | DOI
,[2] Existence globale de solutions fortes pour les équations de la turbulence de Langmuir en dimension 2. CRAS Paris, 299, série I, 551-554 (1984) | MR | Zbl
,[3] Opérateurs pseudodifférentiels et théorème de Nash-Moser. Orsay Plus, 1989 | MR | Zbl
,[4] Sur une équation de Schrödinger non linéaire et non locale intervenant en physique des plasmas. CRAS Paris, 314, série I, 449-453 (1992) | MR | Zbl
[5] On a nonlocal, nonlinear Schrödinger equation occuring in plasma Physics. Publication CMLA, ENS Cachan 9208 (1992)
[6] On a class of nonlinear Schrödinger equations I : the Cauchy problem. J. Funct. Anal., 32, 1-32 (1979) | MR | Zbl | DOI
,[7] Scattering theory in the energy spacefor a class of nonlinear Schrödinger equations. J. Math Pures Appl., 64, 363-401 (1985) | MR | Zbl
,[8] Nonlinear Schrödinger equations. Lecture Notes for Physics, vol. 345 | MR | Zbl
[9] Existence and Smoothing Effect of Solutions for the Zakharov Equations. 1990 | MR | Zbl
,[10] The Nonlinear Schrödinger Limit of the Zakharov Equations Governing Langmuir Turbulence. Commun. Math. Phys., 106, 569-580 (1986) | MR | Zbl | DOI
,[11] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44, 705-714 (1977) | MR | Zbl | DOI
[12] Quelques résultats de régularité pour les équations de la turbulence de Langmuir. CRAS Paris, 289, 173-176 (1979) | MR | Zbl
,[13] Existence of solutions for Schrödinger evolution equations. Comm. Math. Phys., 110, 415-426 (1987) | MR | Zbl | DOI
[14] Collapse and Self-Focusing of Langmuir Waves. Basic Plasma Physics II, ed. A.A. Galeev and R.N. Sudan, North Holland, 1984
[15] Collapse of Langmuir Waves. Soviet Physics JETP, 35, 908-914 (1972)
[1] Mathematical Methods of Classical Mechanics. Springer, New York, 1978 | MR | Zbl | DOI
[2] Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations. Part I : Schrödinger Equations. GAFA, 3, 107-156 (1993) | MR | Zbl
[3] Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations. Part II : The KdV-Equation. GAFA, 3, 209-262 (1993) | MR | Zbl
[4] Periodic Nonlinear Schrödinger Equation and Invariant Measure. Preprint, IHES | MR | Zbl | DOI
[5] Measures and Differential Equations in Infinite-Dimensional Space. Kluwer Academic Publishers, 1991 | MR | Zbl
,[6] An invariant measure for the equation . Commun. Math. Phys., 98, 1-16 (1985) | MR | Zbl | DOI
[7] Convergence of an Energy-preserving scheme for the Zakharov equations in one space dimension. Prepr. Indiana-Univ. Bloomington | Zbl
[8] On the numerical chaos in the nonlinear Schrödinger Equation. | Zbl | DOI
,[9] Time Evolution of almost periodic solutions of the KdV equation. Rocky Mountain J. of Math., 8, 95-104 (1978) | MR | Zbl | DOI
[10] Quantitive theory of the Fermi-Pasta-Ulam Recurrence in the Nonlinear Schrödinger Equation. Phys. Rev. Letters, 47, 717-718 (1981) | MR | DOI
[11] Modulational instability and the Fermi-Pasta-Ulam recurrence. Phys. Fluids, 24, 23-26 (1981) | Zbl | DOI
[12] Periodic Solutions of the KdV Equation. Commun, in Pure and Appl. Math., 28, 141-188 (1975) | MR | Zbl | DOI
[13] Almost Periodic Behavior of Nonlinear Waves. Advances in Math., 16, 368-379 (1975) | MR | Zbl | DOI
[14] Statistical Mechanics of the Nonlinear Schrödinger Equation. J. of Stat. Phys., 50, 657-687 (1988) | MR | Zbl | DOI
, ,[15] Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math. 29, 143-226 (1976) | MR | Zbl | DOI
,[16] Quasi-recurring energy leakage in the two-space-dimensional nonlinear Schrödinger Equation. Phys. Fluids, 23, 881-883 (1980) | DOI
,[17] Simulation numérique des systèmes de Davey-Stewartson. Thèse de l'Université Paris-Sud, 1993
[18] -solutions for non linear Schrödinger equations and nonlinear Groups. Funkcialaj Ekvac., 30, 115-125 (1987) | MR | Zbl
[19] Recurrence in semidiscrete approximations of the nonlinear Schrödinger Equation. SIAM J. on Scient, and Stat. Comp., 8, 98-1004 (1987) | MR | Zbl
,[20] Relationship between Benjamin-Feir instabïlity and recurrence in the nonlinear Schrödinger equation. Phys. Fluids, 21, 1275-1278 (1978) | DOI
,[21] Fermi-Pasta-Ulam recurrence in the two-space dimensional nonlinear Schrödinger equation. Phys. Fluids, 21, 2116-2118 (1978) | DOI
,[22] The significance of Nonlinearity in the Natural Science. Plenum, New York, 67ff. (1977)
, ,[23] Collapse of Langmuir Waves. Soviet Physics JETP., 35, 908-914 (1972)
[24] On the invariant measure for the nonlinear Schrödinger equation. JINR, E5-91-174 (1991)
[25] On an invariant measure for a nonlinear Schrödinger equation. Sov. Math. Dokl., 43 (1991) | Zbl
[26] A remark on the invariant measure for the nonlinear Schrödinger equation. JINR, E5-92-23 (1992)
[27] An invariant measure for a nonlinear wave equation. JINR, E5- 92-305 (1992) | MR | Zbl
[28] On invariant measures for some infinite-dimensional dynamical systems. JINR, E5-92-395 (1992) | Zbl | Numdam
[1] Coherent puise propagation, a dispersive, irreversible phenomenon. J. Math. Phys., 15, 1852-1858 (1974) | DOI
, ,[2] Optical solitons. in Contemporary Nonlinear Optics, Agrawal and Boyd éd., Academic Press (1992) | DOI
[3] Some Remarks on the nonlinear Schrödinger equation in the critical case. Preprint Paris 6 | MR | Zbl | DOI
,[4] Finite-dimensional attractor for the laser equations. Nonlinearity, 2, 241-269 (1989) | MR | Zbl | DOI
, ,[5] Amplitude Instabilities of Transverse Travelling Waves in Lasers. Phys. Rev. Lett., 71, 1705-1708 (1993) | DOI
, ,[6] The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann. Inst. H. Poincaré, Anal. Non Linéaire, 2, 309-402 (1985) | MR | Zbl | Numdam | DOI
,[7] Maxwell-Bloch Turbulence. Prog. of Theor. Phys., Supp 99, 295-324 (1989) | MR | DOI
, ,[8] Nonlinear Optics. Addison-Wesley (1992) | MR
,[9] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44, 705-714 (1977) | MR | Zbl | DOI