@phdthesis{BJHTUP11_1994__0391__P0_0, author = {Scheid, Jean-Fran\c{c}ois}, title = {\'Etude th\'eorique et num\'erique de l'\'evolution morphologique d'interfaces}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e de Paris-Sud Centre d'Orsay}, number = {391}, year = {1994}, language = {fr}, url = {http://archive.numdam.org/item/BJHTUP11_1994__0391__P0_0/} }
TY - BOOK AU - Scheid, Jean-François TI - Étude théorique et numérique de l'évolution morphologique d'interfaces T3 - Thèses d'Orsay PY - 1994 IS - 391 PB - Université de Paris-Sud Centre d'Orsay UR - http://archive.numdam.org/item/BJHTUP11_1994__0391__P0_0/ LA - fr ID - BJHTUP11_1994__0391__P0_0 ER -
Scheid, Jean-François. Étude théorique et numérique de l'évolution morphologique d'interfaces. Thèses d'Orsay, no. 391 (1994), 174 p. http://numdam.org/item/BJHTUP11_1994__0391__P0_0/
[1] On a dissolution-growth problem with surface tension in the neighborhood of a stationary solution, SIAM J. Math. Anal., Vol. 24, No. 2 (1993), p. 299-316. | MR | Zbl | DOI
, , ,[2] On classical solvability of the multidimensional Stefan problem for convective motion of a viscous incompressible fluid, Math. USSR Sbornik, Vol. 60 (1988), No. 1. | Zbl | DOI
, ,[3] Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling, J. Math. Anal. Appl. 164 (1992), p. 350-362. | MR | Zbl | DOI
, ,[4] Evolution d'une interface par capillarité et diffusion de volume I. Existence locale en temps, Ann. Inst. H. Poincaré, 1 (1984), p. 361-378. | MR | Zbl | Numdam | DOI
, ,[5] Numerical approach to interfacial dynamics, Proc. of Workshop on nonlinear PDE and appli. (1989)
, ,[6] Instabilités interfaciales morphologiques. Etude de l'évolution d'une electrode de cuivre soumise à une réaction electrochimique, Thèse de doctorat, 1993.
,[7] Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs Volume 23, Providence R.I, American Mathematical Society 1968. | MR | Zbl
, , ,[8] The Gibbs-Thomson correction and conditions for the classical solution of the modified Stefan problem, Soviet Mathematics Doklady 43, No 1 (1991).
,[9] Modeling crystal growth in a diffusion field with fully-facetted crystals, Ph. D. thesis, University of New Jersey, 1993. | MR
,[10] Théorie de l'instabilité interfaciale morphologique. Cas des phénomènes de dissolution et de dépôt. Première partie, J. de Chimie Physique, 1985, 82, no1.
,[11] Théorie de l'instabilité interfaciale morphologique. Cas des phénomènes de dissolution et de dépôt. Deuxième partie, J. de Chimie Physique, 1985, 82, no4.
,[12] I- Geometric models of crystal growth, Acta metall. mater. Vol. 40, No 7, p. 1443-1474, 1992.
, , ,[13] II- Mean curvature and weighted mean curvature, Acta metall. mater. Vol. 40, No 7, p. 1475-1485, 1992.
, , ,[1] On a dissolution-growth problem with surface tension in the neighborhood of a stationary solution, SIAM J. Math. Anal., Vol. 24, No. 2 (1993), p. 299-316. | MR | Zbl
, et ,[2] On classical solvability of the multidimensional Stefan problem for convective motion of a viscous incompressible fluid, Math. USSR Sbornik, Vol. 60, No. 1 (1988), p. 1-17. | Zbl
et ,[3] Stability of steady states in some solid-liquid systems, React. Solids, 2 (1986), p. 1-21. | DOI
and ,[4] Linear and Quasi- linear Equations of Parabolic Type, Translations of Mathematical Monographs Volume 23, Providence R.I, American Mathematical Society 1968. | MR | Zbl
, et ,[1] On a dissolution-growth problem with surface tension in the neighborhood of a stationary solution, SIAM J. Math. Anal., Vol. 24, No. 2 (1993), p. 299-316. | MR | Zbl | DOI
, , ,[2] On classical solvability of the multidimensional Stefan problem for convective motion of a viscous incompressible fluid, Math. USSR Sbornik, Vol. 60 (1988), No. 1. | Zbl | DOI
, ,[3] Philo. Trans. R. Soc. London, Ser. A, 243 (1951) 299. | MR | Zbl
, , ,[4] Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling, J. Math. Anal. Appl. 164 (1992), p. 350-362. | MR | Zbl | DOI
, ,[5] Géométrie contemporaine, Méthodes et applications, Tome I, Edition Mir, Moscou, 1982.
, , ,[6] Stability of steady states in some solid- liquid systems, React. Solids, 2 (1986), p. 1-21.. | DOI
, ,[7] Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs Volume 23, Providence R.I, American Mathematical Society 1968. | MR | Zbl
, , ,[8] Tension superficielle et adsorption, Edition Desoer, Liège, 1951.
, ,[1] Philo. Trans. R. Soc. London, Ser. A, 243 (1951) 299. | MR | Zbl
, and ,[2] Numerical approach to interfacial dynamics, Proc. of Workshop on nonlinear PDE and appli. (1989)
and ,[3] Tension superficielle et adsorption, Edition Desoer, Liège, 1951.
, ,[4] Modeling crystal growth in a diffusion field with fully-facetted crystals, Ph. D. thesis, 1993. | MR
,[5] GMRES : a generalized minimal residual algorithm for solving nonsymetric linear systems, SIAM Jurnal Sci. Stat. Comput. Vol.10, pp36-52 (1989)
and ,[6] Private communication.
,[7] I- Geometric models of crystal growth, Acta metall. mater. Vol. 40, No 7, pp 1443-1474, 1992
, and ,[8] II- Mean curvature and weighted mean curvature, Acta metall. mater. Vol. 40, No 7, pp 1475-1485, 1992
, and ,[9] CGSTAB : a more smoothly converging variant of CG-S, Delft University of Technology, Delft. Netherlands, May 21, 1990
and ,