Etude des propriétés de rectifiabilité des sous-ensembles de n
Thèses d'Orsay, no. 453 (1996) , 172 p.
@phdthesis{BJHTUP11_1996__0453__P0_0,
     author = {Pajot, Herv\'e},
     title = {Etude des propri\'et\'es de rectifiabilit\'e des sous-ensembles de $\mathbb{R}^n$},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {453},
     year = {1996},
     language = {fr},
     url = {http://archive.numdam.org/item/BJHTUP11_1996__0453__P0_0/}
}
TY  - BOOK
AU  - Pajot, Hervé
TI  - Etude des propriétés de rectifiabilité des sous-ensembles de $\mathbb{R}^n$
T3  - Thèses d'Orsay
PY  - 1996
IS  - 453
PB  - Université de Paris-Sud Centre d'Orsay
UR  - http://archive.numdam.org/item/BJHTUP11_1996__0453__P0_0/
LA  - fr
ID  - BJHTUP11_1996__0453__P0_0
ER  - 
%0 Book
%A Pajot, Hervé
%T Etude des propriétés de rectifiabilité des sous-ensembles de $\mathbb{R}^n$
%S Thèses d'Orsay
%D 1996
%N 453
%I Université de Paris-Sud Centre d'Orsay
%U http://archive.numdam.org/item/BJHTUP11_1996__0453__P0_0/
%G fr
%F BJHTUP11_1996__0453__P0_0
Pajot, Hervé. Etude des propriétés de rectifiabilité des sous-ensembles de $\mathbb{R}^n$. Thèses d'Orsay, no. 453 (1996), 172 p. http://numdam.org/item/BJHTUP11_1996__0453__P0_0/

[A] L. Ahlfors, Bounded analytic functions, Duke Math. Journal 14 (1947), p 1-11. | MR | Zbl | DOI

[B1] C.J. Bishop, Harmonic measure supported on curves, Thèse, Université de Chicago (1987). | MR

[B2] C.J. Bishop, Some conjectures concerning harmonic measure, dans "PDE with minimal smoothness", vol 42 of IMA, Springer Verlag (1991). | MR

[BJ] C.J. Bishop, P.W. Jones, Harmonic measure, L 2 estimates and the schwarzian derivatives, Journal d'analyse mathématique 62 (1994), p 77-113. | MR | Zbl | DOI

[C] L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of math. 76 (1962), p 547-559. | MR | Zbl

[Ch1] M. Christ, Lectures on singular integral operators, Regional Conference Series in Math. 77, AMS (1990). | MR | Zbl

[Ch2] M. Christ, A T(b) theorem with remarks on analytic capacity and Cauchy integral, Colloq. math. 60/61 (1990), p 601-628. | MR | Zbl | DOI

[CMM] R. Coifman, A. Mc Intosh, Y. Meyer, L'intégrale de Cauchy définit un opérateur borné sur les courbes lipschitziennes, Ann. of Math. 116 (1982), p 361-387. | MR | Zbl

[Da1] G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. ENS 17 (1984), p 157-189. | MR | Zbl | Numdam

[Da2] G. David, Wavelets and singular integrals on curves and surfaces, LNM 1465, Springer Verlag (1991). | MR | Zbl

[DS1] G. David, S. Semmes, Singular integrals and rectifiable sets in n : Au-delà des graphes lipschitziens, Astérisque 193 (1991). | MR | Zbl | Numdam

[DS2] G. David, S. Semmes, Analysis of and on uniformly rectifiable sets, Mathematical surveys and monographs, vol 38, AMS (1993). | MR | Zbl

[DS3] G. David, S. Semmes, On the singular sets of minimizers of the Mumford-Shah functional, à paraitre au Journal de math. pures et appliquées (1995). | MR | Zbl

[Fa] K.J. Falconer, Geometry of fractal sets, Cambridge University Press (1984). | MR | Zbl

[Fe] H. Federer, Geometric measure theory, Springer Verlag (1969). | MR | Zbl

[Ga1] J. Garnett, Positive length but zero analytic capacity, Proc. AMS 21 (1970), p 696-699. | MR | Zbl | DOI

[Ga2] J. Garnett, Analytic capacity and measure, LNM 297, Springer-Verlag (1972). | MR | Zbl

[Ga3] J. Garnett, Bounded analytic functions, Academic Press (1981). | MR | Zbl

[GJ] J. Garnett, P.W. Jones, The corona theorem for Denjoy domains, Acta Math. 155 (1985), p 29-40. | MR | Zbl

[J1] P.W. Jones, Square functions, Cauchy integrals, analytic capacity, and harmonic measure, in "Harmonic measure and PDE", LNM 1384, Springer Verlag (1989), p 24-68. | MR | Zbl

[J2] P.W. Jones, Rectifiable sets and the travelling salesman problem, Invent. Math. 102 (1990), p 1-15. | MR | Zbl

[Jo] J.L. Journé, Calderon-Zygmund operators, Pseudo-differential operators and the Cauchy integral of Calderon, LNM 994, Springer-Verlag (1983). | MR | Zbl

[Ma] P. Mattila, Geometry of sets and measures in euclidean spaces, Cambridge studies in advanced mathematics, vol 44, Cambridge University Press (1995). | MR | Zbl

[MMV] P. Mattila, M. Melnikov, J. Verdera, The Cauchy integral, analytic capacity and uniform rectifiability, preprint (1995). | MR | Zbl

[M] Y. Meyer, Ondelettes et opérateurs, Tome II, Hermann (1990). | MR | Zbl

[Ok] K. Okikiolu, Characterization of subsets of rectifiable curves in n , Journal of London math. soc. 46 (1992), p 336-348. | MR | Zbl | DOI

[P] D. Preiss, Geometry of measures in n : Distribution, rectifiability, and densities, Ann. of Math. 125 (1987), p 537-643. | MR | Zbl

[Se] S. Semmes, Nonlinear Fourier analysis, Bulletin of the AMS 20 (1989), p 1-18. | MR | Zbl | DOI

[St] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press (1971). | MR | Zbl

[SZ] E.M. Stein, A. Zygmund, On differentiability of functions, Studia math. 23 (1964), p 247-283. | MR | Zbl