@phdthesis{BJHTUP11_1998__0521__P0_0, author = {Moebs, Guy}, title = {Application de m\'ethodes spectrales multi-niveaux \`a diff\'erents probl\`emes de la physique math\'ematique}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e de Paris-Sud Centre d'Orsay}, number = {521}, year = {1998}, language = {fr}, url = {http://archive.numdam.org/item/BJHTUP11_1998__0521__P0_0/} }
TY - BOOK AU - Moebs, Guy TI - Application de méthodes spectrales multi-niveaux à différents problèmes de la physique mathématique T3 - Thèses d'Orsay PY - 1998 IS - 521 PB - Université de Paris-Sud Centre d'Orsay UR - http://archive.numdam.org/item/BJHTUP11_1998__0521__P0_0/ LA - fr ID - BJHTUP11_1998__0521__P0_0 ER -
Moebs, Guy. Application de méthodes spectrales multi-niveaux à différents problèmes de la physique mathématique. Thèses d'Orsay, no. 521 (1998), 226 p. http://numdam.org/item/BJHTUP11_1998__0521__P0_0/
[1] Study of an implicit scheme for integrating Maxwell's equations (1974) Computer Methods in Applied Mechanics and Engineering, vol 22, pp 327-346 | MR | Zbl | DOI
, , et ,[2] Nonlinear Fiber Optics Quantum Electronics, Principles and Applications | Zbl
,[3] A fast algorithm for the evaluation of Legendre expansion (1991) J. of Scientific and Statistical Computations, vol 12, pp 158-179 | MR | Zbl | DOI
et ,[4] Spectral element discretization of the Maxwell equations (1997) Publication du Laboratoire d'Analyse Numérique, Université Paris 6, vol 16 | MR | Zbl
et ,[5] A table of solutions of the one-dimensional Burgers equation (1972) Quarterly Journal of Mechanics and Applied Mathematics, vol 3, pp 201-230. | MR | Zbl
et ,[6] Approximations spectrales de problèmes aux limites elliptiques (1992) Mathématiques et Applications, 10, Springer Verlag | MR | Zbl
et ,[7] Convergence of the Keck-Boyer perturbation solution for plane waves of finite amplitude in a viscous fluid (1966) J. Acoust. Soc. Am., vol 39, pp 411-413. | DOI
,[8] Electromagnétisme en vue de la modélisation. (1993) Mathématiques et Applications, 14, Springer Verlag | MR | Zbl
,[9] The Fast Fourier Transform (1974) Prentice-Hall, Englewood Cliffs, NJ | Zbl
,[10] A mathematica model illustrating the theory of turbulence (1948) Advances in Applied Mechanics, vol 1, pp 171-199. | MR
,[11] The Nonlinear Diffusion Equation (1974), Ed. Reidel Boston. | Zbl | DOI
,[12] The numerical analysis of ordinary differential equations Runge-Kutta and general linear methods (1987), Ed. John Wiley & Sons | MR | Zbl
,[13] Spectral Methods in Fluid Dynamics (1987) Springer Series in Computational Physics, Springer Verlag | MR | Zbl
, , et ,[14] Feedback Control for unsteady flow and its application to the stochastic Burgers Equation (1993) J. of Fluid Mechanics vol 253, pp 509-544 | MR | Zbl | DOI
, , ,[15] On a quasi-linear parabolic equation occuring in Aerodynamics (1951) Quarterly in Applied Mathematics, vol 9, pp 225-236. | MR | Zbl
,[16] An algorithm for the Machine Calculation of complex Fourier Series (1965) Mathematics of Computation, vol 19, pp 297-301. | MR | Zbl
et ,[17] Sur l'approximation des équations différentielles opérationnelles linéaires. (1975), Thèse Paris
,[18] Stochastic Burgers' Equation (1994) Nonlinear Differential Equations and Applications, vol 1 pp 389-402. | MR | Zbl | DOI
, et ,[19] Analyse numérique matricielle pour les sciences et les techniques, tomes 1,2,3 (1984) Masson, Paris | Zbl
et ,Analyse numérique matricielle pour les sciences et les techniques, tomes 1,2,3 (1985) Masson, Paris | Zbl
et ,[20] Stability of Runge Kutta methods for stiff nonlinear differential equations (1984) CWI Monograpgs vol 2, North Holland, Amsterdam | MR | Zbl
et ,[21] Comparison of Time Integration (Finite Difference and Spectral) for the Nonlinear Burgers' Equation (1981) Proc 4th GAMM Conf. Numer. Methods in Fluid Mechanics ed Viviand H., Vieweg Braunschweig | Zbl
, et ,[22] Pressure and time treatment of Chebychev spectral solution of a Stokes problem (1984) J- of Numerical Methods in Fluids pp 1149-1163 | Zbl | DOI
, et ,[23] Simulation numérique d'écoulements homogènes et non-homogènes par des méthodes spectrales multi-résolution (1993), Thèse Université Orsay - Paris Sud
[24] Time Dependent Propagation Of High Energy Laser Beams through the Atmosphere (1976), Applied Physics, vol 10, pp 129-160.
, et ,[25] Polynomial Approximation of Differential Equations (1992), Spriger Verlag, Berlin-Heildelberg | MR | Zbl | DOI
,[26] Numerical Analysis of Spectral Methods : Theory and Applications (1977), SIAM-CBMS 26, Philadelphia | MR | Zbl
et ,[27]
, Communication privée.[28] Numerical experience with the nonlinear Schroedinger Equation (1985), J. of Computational Physics, vol 60, pp 282-305. | MR | Zbl | DOI
, et ,[29] Split Step Methods for the solution of the Nonlinear Schroedinger Equation (1986), SIAM J. of Numerical Analysis, vol 23 num 3, pp 485-507. | MR | Zbl | DOI
, et ,[30] The Partial Differential Equation , (1950) Communications in Pure and Applied Mathematics, vol 3, pp 201-230. | MR | Zbl
,[31] Résolution numérique des équations de Navier-Stokes instationnaires par méthodes spectrales. Méthode de Galerkin non linéaire. (1990), Thèse Université Orsay - Paris Sud
,[32] Turbulence statistics in fully developed channel flow at low Reynolds number (1987) J. of Fluids Mechanics, vol 77, pp 133-166. | Zbl | DOI
, , ,[33] Initial-Boundary Value Problems and the Navier-Stokes Equations (1974), Ed. Academic Press. | Zbl | MR
et ,[34] Stability of the Fourier Method (1979) SIAM J. Numerical Analysis, vol 16, pp 421-433. | MR | Zbl | DOI
et ,[35]
, Communication privée.[36] Analyse numérique matricielle appliquée à l'art de l'ingénieur, tomes 1,2 (1986), Masson, Paris | MR | Zbl
et ,Analyse numérique matricielle appliquée à l'art de l'ingénieur, tomes 1,2 (1987), Masson, Paris | MR | Zbl
et ,[37] Channeling of intense electromagnetic beams (1981) J. of Applied Physics, vol 52, pp 109-125. | DOI
, et ,[38] Viscosity Effects in Sound Waves of Finite amplitude (1956), Cambridge Univ. Press, Cambridge | MR
,[39] Introduction to Spectral Methods (1986) Van Karman Institute Lecture Series 1986-04, Rhode-St Genese, Belgique
,[40] Conservative and nonconservative schemes for the solution of the nonlinear Schroedinger equation (1986) IMA, J. of Numerical Analysis, vol 6, pp 25-42 | MR | Zbl | DOI
et ,[41] Efficient spectral- Galrkin method I. Direct solvers for second- and fourth-order equations by using Legendre polynomials. (1994) SIAM, J. of Scientific Computing, vol 15, pp 1489-1505. | MR | Zbl | DOI
,[42] Efficient Chebyshev-Legendre Galerkin Methods for Elliptic Problems (1996) Proceedings of the third ICOSAHOM, Houston Journal of Mathematics, University of Houston
,[43] On the construction and comparison of difference schemes (1968) SIAM, J. of Numerical Analysis, vol 5, pp 506-517 | MR | Zbl | DOI
,[44] nonlinear Wave Equation (1989), SIAM-CBMS 73, Philadelphia
,[45] Korteweg-de-Vries Equation and Generalizations : III Derivation of the Korteweg-de-Vries Equation and Burgers Equation (1969) J. of Mathematical Physics, vol 10, pp 536-539. | MR | Zbl | DOI
,[46] Analytical and Numerical Aspects of certain Nonlinear Evolution Equations. II Numerical, Nonlinear Schroedinger Equation (1984) J. of Computational Physics, vol 55, pp 203-230 | MR | Zbl | DOI
et ,[47] Navier-Stokes Equations, Theory and Numerical Analysis (1977), Ed North Holland, Amsterdam | MR | Zbl
,[48] Navier-Stokes Equations and Nonlinear Functional Analysis (1983) SIAM-CBMS 41, Philadelphia | MR | Zbl
,[49] Infinite Dimensional Systems in Mechanics and Physics, (1988) Applied Mathematica Sciences 68, Springer Verlag | MR | Zbl
,[50] Low storage Runge-Kutta schemes (1980), J. of Computational Physics, vol 35, pp 48-56 | MR | Zbl | DOI
,[51] Spectral simulations of Electromagnetic Wave Scattering (1997) J. of Computational Physics, vol 134, pp 216-230 | Zbl | DOI
, et ,[52] Numerical simulation of initial boundary value problems involving Maxwell's equations in isotropic media (1966) IEEE Antennas and Propagation, vol 14, pp 302- 307 | Zbl | DOI
,[53] Etude de divers schémas pseudo-spectraux de type collocation pour la résolution des équations aux dérivées partielles. Applications aux équations de Navier-Stokes (1985), Thèse Université de Nice
,