Théorèmes limites pour des processus faiblement ou fortement dépendants : applications statistiques
Thèses d'Orsay, no. 539 (1999) , 152 p.
@phdthesis{BJHTUP11_1999__0539__P0_0,
     author = {Ben Hariz, Samir},
     title = {Th\'eor\`emes limites pour des processus faiblement ou fortement d\'ependants : applications statistiques},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud U.F.R. Scientifique d'Orsay},
     number = {539},
     year = {1999},
     language = {fr},
     url = {http://archive.numdam.org/item/BJHTUP11_1999__0539__P0_0/}
}
TY  - BOOK
AU  - Ben Hariz, Samir
TI  - Théorèmes limites pour des processus faiblement ou fortement dépendants : applications statistiques
T3  - Thèses d'Orsay
PY  - 1999
IS  - 539
PB  - Université de Paris-Sud U.F.R. Scientifique d'Orsay
UR  - http://archive.numdam.org/item/BJHTUP11_1999__0539__P0_0/
LA  - fr
ID  - BJHTUP11_1999__0539__P0_0
ER  - 
%0 Book
%A Ben Hariz, Samir
%T Théorèmes limites pour des processus faiblement ou fortement dépendants : applications statistiques
%S Thèses d'Orsay
%D 1999
%N 539
%I Université de Paris-Sud U.F.R. Scientifique d'Orsay
%U http://archive.numdam.org/item/BJHTUP11_1999__0539__P0_0/
%G fr
%F BJHTUP11_1999__0539__P0_0
Ben Hariz, Samir. Théorèmes limites pour des processus faiblement ou fortement dépendants : applications statistiques. Thèses d'Orsay, no. 539 (1999), 152 p. http://numdam.org/item/BJHTUP11_1999__0539__P0_0/

[1] Arcones, Miguel A, Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22, No.4, 2242-2274 (1994). | MR | Zbl

[2] Arcones, Miguel A. and Gine, Evarist, Limit theorems for U-processes. Ann. Probab. 21, No.3, 1494-1542 (1993). | MR | Zbl

[3] Avram, Florin and Taqqu, Murad S. Noncentral limit theorems and Appell polynomials.", Ann. Probab. 15, 767-775 (1987). | MR | Zbl

[4] Ben Hariz, S. Density estimation for linear processes. Preprint (1998).

[5] Ben Hariz, S. Doukhan P. León J. Central Limit Theorem for the Local Time of a Gaussian Process. Preprint (1997). To appear in Ascona Proceeding. | MR | Zbl

[6] Ben Hariz, S. Uniform Central Limit Theorem for empirical processes indexed by classes of functions. C. R. Acad. Sci., Paris, Ser. I 326, No.4, 301-306, (1998). | MR | Zbl

[7] Bretagnolle, J. Lois limites du bootstrap de certaines fonctionnelles. Ann. Inst. Henri Poincare, Sect. B 19, 281-296 (1983). | MR | Zbl | Numdam

[8] Bretagnolle, J. and Huber, C. Estimation des densites: risque minimax. Z. Wahrscheinlichkeitstheor. verw. Geb. 47, 119-137 (1979). | MR | Zbl | DOI

[9] Berman, S. M. (1982) Local times of stochastic processes with positive definite bivariate densities. Stoch. Proc. and their Appl. 21, 1-26. | MR | Zbl

[10] Chambers D. Slud E. Central limit Theorems for nonlinear functional of stationary Gaussian processes. Probab. Th. Rel. Fields 80, 323-349, 1989. | MR | DOI

[11] Csörgő, S. and Mielniczuk, J., Density estimation under long-range dependence. Ann. Stat. 23, No.3, 990-999 (1995). | MR | Zbl | DOI

[12] Csörgő, S., Mielniczuk, J. The empirical process of a short-range dependent stationary sequence under Gaussian subordination. Probab. Theory Relat. Fields 104, No.1, 15-25, 1996. | MR | Zbl | DOI

[13] Dobrushin, R.L., Major, P. Non-central limit theorems for non-linear functional of Gaussian fields. Wahrscheinlichkeitstheorie verw. Gebiete 50, 27-52 (1979). | MR | Zbl | DOI

[14] Doukhan, P. and Massart, P. and Rio, E. Invariance principles for absolutely regular empirical processes. Ann. Inst. Henri Poincare, Probab. Stat. 31, No.2, 393-427 (1995). | MR | Zbl | Numdam

[15] Gine, Evarist, Decoupling and limit theorems for U-statistics and U- processes.Bernard, Pierre (ed.), Lectures on probability theory and statistics. Ecole d'ete de probabilités de Saint-Flour XXVI-1996. Lect. Notes Math. 1665, 1-35 (1997). | MR | Zbl

[16] Hall, P. and Hart, Jeffrey D., Convergence rates in density estimation for data from infinite-order moving average processes. Probab. Theory Relat. Fields 87, No.2, 253-274 (1990). | MR | Zbl | DOI

[17] Giraitis, Liudas and Leipus, Remigijus and Surgailis, Donatas. The change-point problem for dependent observations. J. Stat. Plann. Inference 53, No.3, 297-310 (1996). | MR | Zbl | DOI

[18] Giraitis L. and Surgailis D.. Asymptotics of the empirical process of a long memory linear sequence. Beitraege zur Statistik 24, Univ. Heidelberg (1994)].

[19] Koul, Hira L. and Surgailis, Donatas Asymptotic expansion of M-estimators with long-memory errors.", Ann. Stat. 25, No.2, 818-850 (1997). | MR | Zbl

[20] Ossiander, M. A central limit theorem under metric entropy with L 2 bracketing. Ann. Probab. 15, No.3, 897-919 (1987). | MR | Zbl | DOI

[21] Pollard, D. Empirical processes: theory and applications. Regional Conference Series in Probability and Statistics. Hayward, Alexandria: IMS-ASA, (1990). | MR | Zbl | DOI

[22] Taqqu, M. S. (1977) Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence. Z. Wahrsch. Verw. Gebiete 40, no. 3, 203-238. | MR | Zbl | DOI

[23] Taqqu, M. S. (1979) Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50, no. 1, 53-83. | MR | Zbl | DOI

[1] Berman, S. M. (1982) Local times of stochastic processes with positive definite bivariate densities. Stoch. Proc. and their Appl. 21, 1-26. | MR | Zbl

[2] Berman, S. M. (1992) Sojourns and extremes of stochastic processes. WSP. Wadworth (Belmont). | MR | Zbl

[3] Billingsley, (1968) Convergence of probability measures. SPM. Wiley (New York) | MR | Zbl

[4] Breuer P., Major P. (1983) Central Limit Theorems for Non-linear functional of Gaussian Fields. J. of Multiv. Anal. Vol. 13, 425-441. | MR | Zbl | DOI

[5] Dobrushin, R. L., Major, P. (1979) Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50, no. 1, 27-52. | MR | Zbl | DOI

[6] Doukhan P., León J. (1996) Asymptotics for the Local Time of Gaussian Random Fields. Acta. Math. Hungar. 70, 329-351. | MR | Zbl

[7] Geman, D., Horowitz, J. (1980) Occupation densities. Ann. Probab. 8, no.1, 1-67. | MR | Zbl | DOI

[8] Giraitis L., Surgailis D. (1986) Multivariate Appel polynomials and the Central Limit Theorem, in: Dependence in Probability and Statistics, 27-50. Ed. E. Eberlein and M. Taqqu, Boston. | MR | Zbl

[9] Imkeller, P., Perez-Abreu, V., Vives, J., (1995) Chaos expansions of double intersection local time of Brownian motion in 𝐑 d and renormalization. Stoch. Proc. and their Appl. 56, no.1, 1-34. | MR | Zbl | DOI

[10] Taqqu, M. S. (1977) Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence. Z. Wahrsch. Verw. Gebiete 40, no.3, 203-238. | MR | Zbl | DOI

[11] Taqqu, M. S. (1979) Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50, no.1, 53-83. | MR | Zbl | DOI

[1] Arcones, Miguel A. Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22, No.4, 2242-2274 (1994). | MR | Zbl

[2] Berman, Simeon, M. Sojourns and extremes of stochastic processes. Wadworth (Belmont) 1992. | MR | Zbl

[3] Billingsley, P. Convergence of probability measures. Wiley j. (New York) 1968. | MR | Zbl

[4] Breuer, P., Major, P. Central limit theorems for non-linear functional of Gaussian fields. J. Multivariate Anal. 13, 425-441 (1983). | MR | Zbl | DOI

[5] Chambers D. Slud E. Central limit Theorems for nonlinear functional of stationary Gaussian processes. Probab. Th. Rel. Fields 80, 323-349, 1989. | MR | DOI

[6] Csörgő, S., Mielniczuk, J. The empirical process of a short-range dependent stationary sequence under Gaussian subordination. Probab. Theory Relat. Fields 104, No.1, 15-25, 1996. | MR | Zbl | DOI

[7] Dobrushin, R.L., Major, P. Non-central limit theorems for non-linear functional of Gaussian fields. Wahrscheinlichkeitstheorie verw. Gebiete 50, 27- 52 (1979). | MR | Zbl | DOI

[8] Doukhan, P. and Massart, P. and Rio, E. Invariance principles for absolutely regular empirical processes. Ann. Inst. Henri Poincare, Probab. Stat. 31, No.2, 393-427 (1995). | MR | Zbl | Numdam

[9] Giraitis, L., Surgailis, D. Multivariate Appel polynomials and the Central Limit Theorem. In: Dependence in probability and statistics, A survey of recent results. Eberlein, E Ed Taqqu, M S. Col: Progress in probability and statistics. 1986. | MR | Zbl | DOI

[10] Hall, P., Heyde, C C. Martingale limit theory and its application. Academic Press (New York) 1980. | MR | Zbl

[11] Ibragimov, I, A. Linnik, J V. Independent and stationary sequences of variables random. Wolters (Groninger) 1971. | MR | Zbl

[12] Petrov, V V. Sums of independent random variables. Springer (Berlin) 1975. | MR | Zbl

[13] Shao, Q. Yu, H. Weak convergence for weighted empirical processes of dependent sequences. Ann. Probab. Vol.24 n 4 2098-2127 (1996). | MR | Zbl | DOI

[14] Taqqu, Murad S. Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence. Z. Wahrscheinlichkeitstheorie verw. Gebiete 40, 203-238 (1977). | MR | Zbl | DOI

[15] Taqqu, Murad S., Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50, 53-83 (1979). | MR | Zbl | DOI

[1] Arcones, Miguel A. Limit theorems for nonlinear functional of a stationary Gaussian sequence of vectors. Ann. Probab. 22, No.4, 2242-2274 (1994). | MR | Zbl

[2] Andrews, Donald W.K. Asymptotics for semiparametric econometric models via stochastic equicontinuity. Econometrica 62, No.1, 43-72 (1994). | MR | Zbl | DOI

[3] Andrews, Donald W.K. and Pollard D., An introduction to functional central limit theorems for dependent stochastic processes. Int. Stat. Rev. 62, No.1, 119-132 (1994). | Zbl | DOI

[4] Breuer, P., Major, P. Central limit theorems for non-linear functional of Gaussian fields. J. Multivariate Anal. 13, 425-441 (1983). | MR | Zbl | DOI

[5] Csörgő, S., Mielniczuk, J. The empirical process of a short-range dependent stationary sequence under Gaussian subordination. Probab. Theory Relat. Fields 104, No.1, 15-25, (1996). | MR | Zbl | DOI

[6] Doukhan, P., Massart, P., Rio, E. Invariance principles for absolutely regular empirical processes. Ann. Inst. Henri Poincare, Probab. Stat. 31, No.2, 393-427 (1995). | MR | Zbl | Numdam

[7] Doukhan, P., Massart, P., Rio, E. The functional central limit theorem for strongly mixing processes. Ann. Inst. Henri Poincare, Probab. Stat. 30, 63.82 (1995). | MR | Zbl | Numdam

[8] Massart, P. Invariance principles for empirical processes: the weakly dependent case. Chapter 1B of Ph.D. dissertation. University of Paris South. (1987)

[9] Ossiander, M. A central limit theorem under metric entropy with L 2 bracketing. Ann. Probab. 15, No.3, 897-919 (1987). | MR | Zbl | DOI

[10] Peligrad, M. On the central limit theorem for ρ -mixing sequenses of random variables. Ann. Probab. 15, No.4, 1387-1394 (1987). | MR | Zbl | DOI

[11] Pollard, D. Empirical processes: theory and applications. Regional Conference Series in Probability and Statistics. Hayward, Alexandria: IMS-ASA, (1990). | MR | Zbl | DOI

[12] Rio, E. Théorèmes limites pour des variables aléatoires faiblement dépendentes. Preprint, Orsay n°97/81. (1997).

[13] Shao, Q. Maximal inequalities for partial sums of ρ -mixing sequences.", Ann. Probab. 23, No.2, 948-965 (1995). | MR | Zbl | DOI

[14] Shao, Q. Yu, H. Weak convergence for weighted empirical processes of dependent sequences. Ann. of Proba. Vol.24 n 4 2098-2127 (1996). | MR | Zbl

[15] Van Der Vaart A., and Wellner, J.A. Weak Convergence and Empirical Processes. Springer, Berlin. (1996). | MR | Zbl | DOI

[1] Arcones, Miguel A. Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22, No.4, 2242-2274 (1994). | MR | Zbl

[2] Baum, L.E. and Katz, M., Convergence rates in the law of large numbers, language English, Trans. Am. Math. Soc. 120, 108-123 (1965). | MR | Zbl | DOI

[3] Billingsley, P. Convergence of probability measures. Wiley j. (New York) 1968. | MR | Zbl

[4] Breuer, P., Major, P. Central limit theorems for non-linear functional of Gaussian fields. J. Multivariate Anal. 13, 425-441 (1983). | MR | Zbl | DOI

[5] Bulinskii, A. and Doukhan, P. Inegalites de melange fort utilisant des normes d'Orlicz. (Strong mixing moment inequalities using Orlicz norms)., C. R. Acad. Sci., Paris, Ser. I 305, 827-830 (1987)., | MR | Zbl

[6] Chambers D. Slud E. Central limit Theorems for nonlinear functional of stationary Gaussian processes. Probab. Th. Rel. Fields 80, 323-349, 1989. | MR | DOI

[7] Csörgő, S., Mielniczuk, J. The empirical process of a short-range dependent stationary sequence under Gaussian subordination. Probab. Theory Relat. Fields 104, No.1, 15-25, 1996. | MR | Zbl | DOI

[8] Dobrushin, R.L., Major, P. Non-central limit theorems for non-linear functional of Gaussian fields. Wahrscheinlichkeitstheorie verw. Gebiete 50, 27-52 (1979). | MR | Zbl | DOI

[9] Doukhan, P. and Portal, F. Moments de variables aléatoires mélangeantes. C. R. Acad. Sci., Paris, Ser. I 297, (1983)., | MR | Zbl

[10] Giraitis, L., Surgailis, D. Multivariate Appel polynomials and the Central Limit Theorem. In: Dependence in probability and statistics, A survey of recent results. Eberlein E, Ed Taqqu, M S. Col: Progress in probability and statistics. 1986. | MR | Zbl | DOI

[11] Gajek, Leslaw and Lenic, Elzbieta, Moment inequalities for order and record statistics under restrictions on their distributions., language English, Ann. Univ. Mariae Curie-Sklodowska, Sect. A 47, 27-35 (1993). | MR | Zbl

[12] Petrov, V V. Sums of independent random variables. Springer (Berlin) 1975. | MR | Zbl

[13] Pinelis, Iosif, Optimum bounds for the distributions of martingales in Banach spaces., language English, Ann. Probab. 22, No.4, 1679-1706 (1994). | MR | Zbl

[14] Rio, Emmanuel, Inegalites de moments pour les suites stationnaires et fortement melangeantes. Moment inequalities for stationary and strongly mixing sequences)., C. R. Acad. Sci., Paris, Ser. I 318, No.4, 355-360 (1994)., | MR | Zbl

[15] Shao, Q. Yu, H. Weak convergence for weighted empirical processes of dependent sequences. Ann. Probab. Vol.24 n 4 2098-2127 (1996). | MR | Zbl | DOI

[16] Utev, S.A., Cumulants and moment inequalities., Theory Probab. Appl. 34, No.4, 742-747 (1989); translation from Teor. Veroyatn. Primen. 34, No.4, 810-815 (1989) | Zbl | DOI

[17] Lau, Taishing, Moment inequalities., Stat. Probab. Lett. 8, No.1, 9-16 (1989)., | MR | Zbl | DOI

[18] Roussas, G. and Ioannides, D. , Moment inequalities for mixing sequences of random variables., Stochastic Anal. Appl. 5, 61-120 (1987). | MR | Zbl | DOI

[19] Serfling, R.J., Moment inequalities for the maximum cumulative sum. Ann. math. Statistics 41, 1227-1234 (1970). | MR | Zbl | DOI

[20] Taqqu, Murad, S. Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence. Z. Wahrscheinlichkeitstheorie verw. Gebiete 40, 203-238 (1977). | MR | Zbl | DOI

[21] Taqqu, Murad S., Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50, 53-83 (1979). | MR | Zbl | DOI

[22] Utev, S.A., Sums of random variables with ϕ -mixing. Sib. Adv. Math. 1, No.3, 124-155 (1991); translation from Tr. Inst. Mat. 13, 78-100 (1989). | MR | Zbl

[23] Pinelis, I., Optimum bounds on moments of sums of independent random vectors., language English, Sib. Adv. Math. 5, No.3, 141-150 (1995). | MR | Zbl

[24] Talagrand, Michel, A new look at independence., language English, Ann. Probab. 24, No.1, 1-34 (1996). | MR | Zbl | DOI

[25] Talagrand, Michel Isoperimetry and integrability of the sum of independent Banach-space valued random variables. Ann. Probab. 17, No.4, 1546-1570 (1989). | MR | Zbl

[26] Withers, C.S., Central limit theorems for dependent variables. Z. Wahrscheinlichkeitstheor. Verw. Geb. 57, 509-534 (1981). | Zbl | DOI

[1] Abdul-Al, Khaled I Estimating functionals of probability density for uniform mixing processes Sankhya, Ser. A 54, No.1, 40-52 (1992) | MR | Zbl

[2] Abdous, Belkacem and Berlinet, Alain Strong uniform consistency of random kernel-type density estimates. C. R. Acad. Sci., Paris, Ser. I 303, No.15, 761-764 (1986) | Zbl | MR

[3] Ango Nze, Patrick and Doukhan, Paul Estimation fonctionnelle de series temporelles melangeantes. (Functional estimation for mixing time series) C. R. Acad. Sci., Paris, Ser. I 317, No.4, 405-408 (1993) | MR | Zbl

[4] Ben Hariz, S. Density estimation for linear processes. Preprint (1998)

[5] Beran, Jan On a class of M-estimators for Gaussian long-memory models Biometrika 81, No.4, 755-766 (1994) | MR | Zbl | DOI

[6] Bosq, D. Nonparametric statistics for stochastic processes. Lecture Notes in Statistics (Springer) (1996). | MR | Zbl

[7] Chanda, Kamal C., Density estimation for linear processes. Ann. Inst. Stat. Math. 35, 439-446 (1983). | MR | Zbl | DOI

[8] Csörgő, S. and Mielniczuk, J., Density estimation under long-range dependence. Ann. Stat. 23, No.3, 990-999 (1995). | MR | Zbl | DOI

[9] Doukhan, P., Surgailis, D. Functional central limit theorem for the empirical process of short memory linear processes. C.R. Acad. Sci Paris, T. 326. (1997). | MR | Zbl

[10] Gyoerfi, Lazlo and Haerdle, Wolfgang and Sarda, Pascal and Vieu, Philippe Nonparametric curve estimation from time series Lecture Notes in Statistics, 60. Berlin etc.: Springer-Verlag (1989) | MR | Zbl

[11] Giraitis, L. Surgailis, D. A central limit theorem for the empirical process of a long memory linear sequence. Preprint (1994). | MR | Zbl

[12] Hall, P. and Hart, Jeffrey D., Convergence rates in density estimation for data from infinite-order moving average processes. Probab. Theory Relat. Fields 87, No.2, 253-274 (1990). | MR | Zbl | DOI

[13] Koul, Hira L. and Surgailis, Donatas Asymptotic expansion of M-estimators with long-memory errors.", Ann. Stat. 25, No.2, 818-850 (1997). | MR | Zbl

[14] Ho, H. On the central and the non-central limit theorem... Stochastic Processes Appl. 63 (1996), 153-174. | MR | Zbl | DOI

[15] Ho, H. and Hsing, T., On the asymptotic expansion of the empirical process of long-memory moving averages. Ann. Stat. 24, No.3, 992-1024 (1996). | MR | Zbl

[16] Ho, Hwai-Chung and Hsing, Tailen, Limit theorems for functionals of moving averages. Ann. Probab. 25, No.4, 1636-1669 (1997). | MR | Zbl

[17] Ho, Hwai-Chung and Hsing, Tailen, On the asymptotic expansion of the empirical process of long-memory moving averages. Ann. Stat. 24, No.3, 992-1024 (1996). | MR | Zbl

[18] Hart, Jeffrey D. and Vieu, Philippe Data-driven bandwidth choice for density estimation based on dependent data. Ann. Stat. 18, No.2, 873-890 (1990) | MR | Zbl

[19] Masry, Elias Multivariate probability density deconvolution for stationary random processes IEEE Trans. Inf. Theory 37, No.4, 1105-1115 (1991) | MR | Zbl | DOI

[20] Meloche, J. Asymptotic behaviour of the mean integrated squared error of kernel density estimators for dependent observations. Can. J. Stat. 18, No.3, 205-211 (1990) | MR | Zbl | DOI

[21] Peligrad, Magda Properties of uniform consistency of the kernel estimators of density and of regression functions under dependence assumptions Stochastics Stochastics Rep. 40, No.3/4, 147-168 (1992) | MR | Zbl | DOI

[22] Penev, S Stability of nonparametric procedures against dependence Theory Probab. Appl. 37, No.2, 353-355 (1992); translation from Teor. Veroyatn Primen. 37, No.2, 383-386 (1992) | Zbl | MR | DOI

[23] Pham, Tuan Dinh and Tran, Lanh Tat Kernel density estimation under a locally mixing condition Nonparametric functional estimation and related topics, NATO ASI Ser., Ser. C 335, 419-430 (1991) | MR | Zbl

[24] Robinson, P.M Rates of convergence and optimal spectral bandwidth for long range dependence Probab. Theory Relat. Fields 99, No.3, 443-473 (1994) | MR | Zbl | DOI

[25] Robinson, P.M Log-periodogram regression of time series with long range dependence. Ann. Stat. 23, No.3, 1048-1072 (1995) | MR | Zbl | DOI

[26] Roussas, George G Asymptotic normality of the kernel estimate under dependence conditions: Application to hazard rate J. Stat. Plann. Inference 25, No.1, 81-104 (1990)) | MR | Zbl | DOI

[27] Tran, Lanh Tat Kernel density estimation under dependence Stat. Probab. Lett. 10, No.3, 193-201 (1990) | MR | Zbl | DOI

[28] Roussas, George G Hazard rate estimation under dependence conditions. J. Stat. Plann. Inference 22, No.1, 81-93 (1989) | MR | Zbl | DOI