This thesis contains two independent parts, both based on the Cox model.
In the first chapter which presents a joint work with Gwénaëlle Castellan, the Cox model is considered when the regression function of the covariates is not necessarily linear. To estimate this regression function, we devise a nonparametric estimation by model selection. A model is defined as a -ball of some finite-dimensional linear space of functions. In each model, the regression function is estimated by maximizing the Cox partial log-likelihood. We define then some penalized maximum partial log-likelihood estimator, from this collection of estimators. We give a risk bound for our estimator, in comparison to the smallest risk bound over the considered estimators collection.
In the second chapter, we propose a semiparametric shock model in order to model situations in demography where the biographies of a pair of individuals cannot be considered as independent. For that purpose, we construct two dependent counting processes representing these biographies in such a way that, whenever either one of both counting processes jumps, the hazard rate of the other one is instantaneously multiplied by a constant, called a shock parameter. Moreover, these counting processes may be censored. In such a context, assuming a Cox model, we propose maximum partial log-likelihood estimators for the shock parameters and for the Cox regression parameters, from a sample of independent and identically distributed, possibly censored pairs. Consistency and asymptotic normality of these estimators are established. We illustrate our results with simulations.
Keywords: Bivariate censored data, Bivariate survival analysis, Cox model, Kullback-Leibler Information, Model selection, Nonparametric estimation, Penalization.
@phdthesis{BJHTUP11_2000__0583__P0_0, author = {Letu\'e, Fr\'ed\'erique}, title = {Mod\`ele de {Cox} : estimation par s\'election de mod\`ele et mod\`ele de chocs bivari\'es}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e de Paris-Sud U.F.R. Scientifique d'Orsay}, number = {583}, year = {2000}, language = {fr}, url = {http://archive.numdam.org/item/BJHTUP11_2000__0583__P0_0/} }
TY - BOOK AU - Letué, Frédérique TI - Modèle de Cox : estimation par sélection de modèle et modèle de chocs bivariés T3 - Thèses d'Orsay PY - 2000 IS - 583 PB - Université de Paris-Sud U.F.R. Scientifique d'Orsay UR - http://archive.numdam.org/item/BJHTUP11_2000__0583__P0_0/ LA - fr ID - BJHTUP11_2000__0583__P0_0 ER -
Letué, Frédérique. Modèle de Cox : estimation par sélection de modèle et modèle de chocs bivariés. Thèses d'Orsay, no. 583 (2000), 144 p. http://numdam.org/item/BJHTUP11_2000__0583__P0_0/
[1] Nonparametric inference in connection with multiple decrement models. Scand. J. Statist. 3, 1 (1976), 15-27. | MR | Zbl
[2] Nonparametric inference for a family of counting processes. Ann. Statist. 6, 4 (1978), 701-726. | MR | Zbl
[3] Interaction between life history events. Nonparametric analysis for prospective and retrospective data in the presence of censoring. Scand. J. Statist. 7, 4 (1980), 161-171. | MR | Zbl
, , , and[4] Information theory and an extension of the maximum likelihood principle. 267-281. | MR | Zbl
[5] Statistical models based on counting processes. Springer-Verlag, New York, 1993. | MR | Zbl | DOI
, , , and[6] Cox's regression model for counting processes: a large sample study. Ann. Statist. 10, 4 (1982), 1100-1120. | MR | Zbl | DOI
, and[7] Asymptotic equivalence between the Cox estimator and the general ML estimators of regression and survival parameters in the Cox model. Ann. Statist. 12, 2 (1984), 730-736. | MR | Zbl | DOI
[8] Risk bounds for model selection via penalization. Probab. Theory Related Fields 113, 3 (1999), 301-413. | MR | Zbl | DOI
, , and[9] Approximation of density functions by sequences of exponential families. Ann. Statist. 19, 3 (1991), 1347-1369. | MR | Zbl | DOI
, AND[10] Efficient and adaptive estimation for semiparametric models. Johns Hopkins University Press, Baltimore, MD, 1993 | MR | Zbl
, , , and[11] A generalized criterion for gaussian model selection. Tech. rep., En préparation.
, and[12] Model selection from a non-asymptotic point of view. En préparation.
, and[13] Rates of convergence for minimum contrast estimators. Probab. Theory Related Fields 97, 1-2 (1993), 113-150. | MR | Zbl | DOI
, and[14] Gaussian model selection. Preprint 2000.05, Université de Paris-Sud, 2000. | MR | Zbl
, and[15] How many bins should be put in a regular histogram. Technical report, Université Paris VI, 1999. | Zbl | Numdam
, and[16] Covariance analysis of censored survival data. Biometrics 30 (1974), 89-99. | DOI
[17] A large sample study of the life table and product limit estimates under random censorship. Ann. Statist. 2 (1974), 437-453. Collection of articles dedicated to Jerzy Neyman on his 80th birthday. | MR | Zbl | DOI
, and[18] Processus ponctuels. Cours de DEA, Université de Paris Sud, 1997-98.
[19] Modified Akaike's criterion for histogram density estimation. Preprint 99.61, Université de Paris-Sud, 1999.
[20] Density estimation via exponential model selection. Preprint 2000.25, Université de Paris-Sud, 2000. | MR | Zbl
[21] Sélection d'histogrammes ou de modèles exponentiels de polynômes par morceaux à l'aide d'un critère de type Akaike. Thèse 6039, Université de Paris-Sud, 2000.
[22] A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65, 1 (1978), 141-151. | MR | Zbl | DOI
[23] Multivariate generalizations of the proportional hazards model. J. Roy. Statist. Soc. Ser. A 148, 2 (1985), 82-117. | MR | Zbl | DOI
, and[24] Multivariate smoothing spline functions. SIAM J. Numer. Anal. 21, 4 (1984), 789-813. | MR | Zbl | DOI
[25] Regression models and life-tables. J. Roy. Statist. Soc. Ser. B 34 (1972), 187-220. With discussion by F. Downton, Richard Peto, D. J. Bartholomew, D. V. Lindley, P. W. Glassborow, D. E. Barton, Susannah Howard, B. Benjamin, John J. Gart, L. D. Meshalkin, A. R. Kagan, M. Zelen, R. E. Barlow, Jack Kalbfleisch, R. L. Prentice and Norman Breslow, and a reply by D. R. Cox. | MR | Zbl
[26] Analysis of survival data. Chapman & Hall, London, 1984. | MR
, and[27] Kaplan-Meier estimate on the plane. Ann. Statist. 16, 4 (1988), 1475-1489. | MR | Zbl | DOI
[28] Kaplan-Meier estimate on the plane: weak convergence, LIL, and the bootstrap. J. Multivariate Anal. 29, 2 (1989), 308-325. | MR | Zbl | DOI
[29] The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Functional Analysis 1 (1967), 290-330. | MR | Zbl | DOI
[30] Inefficient estimators of the bivariate survival function for three models. Ann. Inst. H. Poincaré Probab. Statist. 31, 3 (1995), 545-597. | MR | Zbl | Numdam
, , and[31] Survival distributions: Reliability applications in the biomedical sciences. Wiley Series in Probability and Mathematical Statistics., New York, 1975. | Zbl
, and[32] Matched pair experiments: Cox and maximum likelihood estimation. Scand. J. Statist. 14, 1 (1987), 27-41. | MR | Zbl
, and[33] Generalized additive models. Chapman and Hall Ltd., London, 1990. | MR | Zbl
, and[34] Modelling multivariate survival. Scand. J. Statist. 14, 4 (1987), 291-304. | MR | Zbl
[35] On the stochastic intensity of a random point process over the half line. Technical report 15, Department of Statistics, Princeton University, 1973.
[36] Multivariate point processes: predictable projection, Radon-Nikodým derivatives, representation of martingales. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31 (1974/75), 235-253. | MR | Zbl | DOI
[37] An extension of Cox's regression model. Internat. Statist. Rev. 51, 2 (1983), 165-174. | MR | Zbl | DOI
[38] The statistical analysis of failure time data. John Wiley and Sons, New York-Chichester-Brisbane, 1980. Wiley Series in Probability and Mathematical Statistics. | MR | Zbl
, and[39] Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. 53 (1958), 457-481. | MR | Zbl | DOI
, and[40] Statistical inference in the Lexis diagram. Philos. Trans. Roy. Soc. London Ser. A 332, 1627 (1990), 487-509. | MR | Zbl | DOI
[41] Statistical models and methods for lifetime data. John Wiley & Sons Inc., New York, 1982. Wiley Series in Probability and Mathematical Statistics. | MR | Zbl
[42] Analyse biographique des groupes, les avancées d'une recherche en cours. Population 4 (1997), 803-830. | DOI
, , and[43] Inference for a nonlinear counting process regression model. Ann. Statist. 18, 3 (1990), 1172-1187. | MR | Zbl | DOI
, and[44] The asymptotic distribution of the estimator for the regression parameter in Cox's regression model. Scand. J. Statist. 9, 2 (1982), 107-115. | MR | Zbl
[45] Hazard plotting for incomplete failure data. J. Qual. Technol. 1 (1969), 27-52. | DOI
[46] Theory and applications of hazard plotting for censored failure data. Technometrics 14 (1972), 945-965. | DOI
[47] A counting process approach to maximum likelihood estimation in frailty models. Scand. J. Statist. 19, 1 (1992), 25-43. | MR | Zbl
, , , and[48] Bivariate survival models induced by frailties. J. Amer. Statist. Assoc. 84, 406 (1989), 487-493. | MR | Zbl | DOI
[49] Nonparametric estimation in the Cox model. Ann. Statist. 21, 1 (1993), 124-145. | MR | Zbl
[50] A test of independence between two censored survival times. Scand. J. Statist. 13, 3 (1986), 173-185. | MR | Zbl
[51] Tests of independence for bivariate censored data based on the empirical joint hazard function. Scand. J. Statist. 18, 1 (1991), 21-37. | MR | Zbl
, and[52] La méthode des martingales appliquée à l'étude de la convergence en loi de processus. Bull. Soc. Math. France Mém., 62 (1979), v+125 pp. (1980). | MR | Zbl | Numdam
[53] Problème d'identification dans le modèle de Cox. Ann. Inst. H. Poincaré Probab. Statist. 26, 1 (1990), 45-64. | MR | Zbl | Numdam
[54] Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10, 4 (1982), 1040-1053. | MR | Zbl
[55] A large sample study of Cox's regression model. Ann. Statist. 9, 1 (1981), 93-108. | MR | Zbl
[56] Efficient estimation in the bivariate censoring model and repairing NPMLE. Ann. Statist. 24, 2 (1996), 596-627. | MR | Zbl
[57] Asymptotic statistics. Cambridge University Press, Cambridge, 1998. | MR | Zbl
[58] Semiparametric statistics. Cours, École d'Été de Probabilités de Saint-Flour XXIX, 1999. | Zbl
[59] Weak convergence and empirical processes. Springer-Verlag, New York, 1996. With applications to statistics. | MR | Zbl | DOI
, and[60] The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16 (1979), 439-454. | DOI
, , and[61] Spline models for observational data. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. | MR | Zbl