Sur quelques problèmes elliptiques non-linéaires
Thèses d'Orsay, no. 604 (2001) , 122 p.
@phdthesis{BJHTUP11_2001__0604__P0_0,
     author = {Mari\c{s}, Mihai},
     title = {Sur quelques probl\`emes elliptiques non-lin\'eaires},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud U.F.R. Scientifique d'Orsay},
     number = {604},
     year = {2001},
     language = {fr},
     url = {http://archive.numdam.org/item/BJHTUP11_2001__0604__P0_0/}
}
TY  - BOOK
AU  - Mariş, Mihai
TI  - Sur quelques problèmes elliptiques non-linéaires
T3  - Thèses d'Orsay
PY  - 2001
IS  - 604
PB  - Université de Paris-Sud U.F.R. Scientifique d'Orsay
UR  - http://archive.numdam.org/item/BJHTUP11_2001__0604__P0_0/
LA  - fr
ID  - BJHTUP11_2001__0604__P0_0
ER  - 
%0 Book
%A Mariş, Mihai
%T Sur quelques problèmes elliptiques non-linéaires
%S Thèses d'Orsay
%D 2001
%N 604
%I Université de Paris-Sud U.F.R. Scientifique d'Orsay
%U http://archive.numdam.org/item/BJHTUP11_2001__0604__P0_0/
%G fr
%F BJHTUP11_2001__0604__P0_0
Mariş, Mihai. Sur quelques problèmes elliptiques non-linéaires. Thèses d'Orsay, no. 604 (2001), 122 p. http://numdam.org/item/BJHTUP11_2001__0604__P0_0/

[1] L. A. Abramyan, Yu. A. Stepanyants and V. I. Shrira, Multidimensional solitons in shear flows of the boundary-layer type, Sov. Phys. Dokl. 37(12) (December 1992), pp. 575-578.

[2] J. P. Albert, J. Bona and J.-C. Saut, Model equations for waves in stratified fluids, Proc. R. Soc. Lond. A, 453 (1997), pp. 1233-1260. | MR | Zbl | DOI

[3] I. V. Barashenkov, A. D. Gocheva, V. G. Makhankov, I. V. Puzynin, Stability of soliton-like bubbles, Physica D. 34, 1989, pp. 240-254. | MR | Zbl | DOI

[4] I. V. Barashenkov, V. G. Makhankov, Soliton-like "bubbles" in a system of interacting bosons, Phys. Lett. A 128, 1988, pp. 52-56. | MR | DOI

[5] D. J. Benney and J. C. Luke, Interactions of permanent waves of finite amplitude, J. Math. Phys., 43 (1964), pp. 309-313. | MR | Zbl | DOI

[6] H. Berestycki, P.-L. Lions, Nonlinear Scalar Field Equations, I: Existence of a Ground State, and II: Existence of Infinitely Many Solutions, Arch. Rational Mech. Anal. 82, 1983, pp. 313-375. | MR | Zbl | DOI

[7] H. Berestycki, P.-L. Lions, L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in 𝐑 N , Indiana Univ. Math. J. 30, 1981, pp. 141-167. | MR | Zbl | DOI

[8] J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, Berlin 1976. | MR | Zbl | DOI

[9] O. V. Besov, V. P. Il'In and S. M. Nikolskii, Integral representations of functions and imbedding theorems, Vol. I, Wiley, New York, 1978.

[10] F. Bethuel, H. Brezis, F. Hélein, Ginzburg-Landau vortices, PNLDE 13, Birkhäuser, Boston, 1994. | MR | Zbl

[11] F. Bethuel, J.-C. Saut, Travelling waves for the Gross-Pitaevskii equation I, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 70, No. 2, 1999, pp. 147-238. | MR | Zbl | Numdam

[12] J. L. Bona and Yi A. Li, Decay and analyticity of solitary waves, J. Math. Pures Appl., 76 (1997), pp. 377-430. | MR | Zbl | DOI

[13] A. De Bouard, Instability of stationary bubbles, SIAM J. Math. Anal. 26, May 1995, No. 3, pp. 566-582. | MR | Zbl | DOI

[14] A. De Bouard and J. C. Saut, Solitary waves of the generalized Kadomtsev-Petviashvili equations, Annales de l'Institut Henri Poincaré, Analyse Non Linéaire, 4 (1997), pp. 211-236. | MR | Zbl | Numdam | DOI

[15] A. De Bouard and J. C. Saut, Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves, SIAM J. Math. Anal., Vol 28, No. 5, September 1997, pp. 1064-1085. | MR | Zbl | DOI

[16] J. Bourgain, H. Brezis, P. Mironescu, Lifting in Sobolev spces, Journal d'Analyse Mathématique, vol. 80, 2000, pp. 37-86. | MR | Zbl | DOI

[17] H. Brezis, T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures et Appl., 58, 1979, pp. 137-151. | MR | Zbl

[18] T. Cazenave, An introduction to nonlinear Schrödinger equations, third edition, Instituto de Matematica - UFRJ, Rio de Janeiro, 1996.

[19] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8, 1971, pp. 321-340. | MR | Zbl | DOI

[20] A. Floer, A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69, 1986, pp. 397-408. | MR | Zbl | DOI

[21] N. Ghoussoub, D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. Henri Poincaré, Analyse non-linéaire, Vol. 6, No. 5, 1989, pp. 321-330. | MR | Zbl | Numdam | DOI

[22] J. Grant and P. H. Roberts, Motions in a Bose condensate III. The structure and effective masses of charged and uncharged impurities, J. Phys. A: Math., Nucl. Gen., Vol. 7, No. 2, 1974, pp. 260-279. | DOI

[23] V. Hakim, Nonlinear Schrödinger flow past an obstacle in one dimension, Physical Review E, Vol. 55, No. 3, 1997, pp. 2835-2845. | DOI

[24] O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Springer-Verlag, 1993. | MR | Zbl

[25] M. K. Kwong, Uniqueness of positive radial solutions of Δ u - u + u p = 0 , Arch. Rational Mech. Anal. 105, 1989, pp. 243-266. | MR | Zbl

[26] Yi A. Li and Jerry L. Bona, Analyticity of solitary-wave solutions of model equations for long waves, SIAM J. Math. Anal., 27 (1996), pp. 725-737. | MR | Zbl | DOI

[27] E. H. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, Vol. 14, AMS, 1997. | MR

[28] Zhiwu Lin, Slow travelling bubbles in two and three dimension, preprint, 1999.

[29] Zhiwu Lin, Stability and instability of travelling solitonic bubbles, preprint, 1999. | MR | Zbl

[30] P. I. Lizorkin, Multipliers of Fourier integrals, Proc. Steklov Inst. Math., 89 (1967), pp. 269-290. | Zbl

[31] O. Lopes, Nonlocal variational problems arising in long wave propagation, ESAIM : Control, Optimization and Calculus of Variations, No. 5, 2000, pp. 501-528. | MR | Zbl | Numdam

[32] M. Mariş, Analyticity and decay properties of the solitary waves to the Benney-Luke equation, Differential and Integral Equations, Vol. 14, No. 3, March 2001, pp. 361-384. | MR | Zbl

[33] M. Mariş, On the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation, to appear in Nonlinear Analysis TMA. | MR | Zbl | DOI

[34] M. Mariş, Stationary solutions to a nonlinear Schrödinger equation with potential in one dimension, to appear in Proc. Royal Soc. Edinburgh A. | MR | Zbl

[35] M. Mariş, Existence of nonstationary bubbles in higher dimensions, in preparation. | Zbl | DOI

[36] K. Mcleod, Uniqueness of positive radial solutions of Δ u + f ( u ) = 0 in 𝐑 N , II, Transactions of the American Mathematical Society, Vol 339, No. 2, Oct. 1993, pp. 495-505. | MR | Zbl

[37] C. Nore, M. E. Brachet, S. Fauve, Numerical study of hydrodynamics using the nonlinear Schrödinger equation, Physica D 65, 1993, pp. 154-162. | MR | Zbl | DOI

[38] R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69, 1979, 19-30. | MR | Zbl | DOI

[39] R. L. Pego, J. R. Quintero, Two dimensional solitary waves for a Benney-Luke equation, Physica D: Nonlinear Phenomena, No. 132, 1999, pp. 476-496. | MR | Zbl | DOI

[40] L. A. Peletier, J. Serrin, Uniqueness of positive solutions of semilinear equations in 𝐑 N , Arch. Rational Mech. Anal. 81, 1983, pp. 181-197. | MR | Zbl

[41] D. E. Pelinovsky and V. I. Shrira, Collapse transformation for self-focusing solitary waves in boundary-layer type shear flows, Physics Letters A, 206 (1995), pp. 195-202. | DOI

[42] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7, 1971, pp. 487-513. | MR | Zbl | DOI

[43] M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. I and IV, Academic Press, New York, 1972-1979. | Zbl

[44] J. Riordan, Combinatorial identities, John Wiley & Sons, New York, 1968. | MR | Zbl

[45] E. A. Spiegel, Fluid dynamical form of the linear and nonlinear Schrödinger equations, Physica D, Vol. 1, 1980, pp. 236-240. | MR | Zbl | DOI

[46] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, 1970. | MR | Zbl

[47] E. M. Stein, G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971. | MR | Zbl

[48] M. Struwe, Variational Methods, Springer-Verlag, 1996. | MR | DOI

[49] M. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16, No. 3, May 1985, pp. 472-491. | MR | Zbl | DOI

[50] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhäuser, 1996. | MR | Zbl