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Abstract

This thesis is dedicated to the study of various geometric properties of planar Brownian
motion and the SLE process (also known as stochastic Loewner evolution, or sometimes
as Schramm’s process).

We prove that, on a typical planar Brownian path, there almost surely exist “pivoting”
points, i.e. cut-points around which one half of the curve can rotate by a positive angle
without ever intersecting the other half of the path; the set of all pivoting points of a given
positive (small enough) angle is then of positive Hausdorff dimension. In fact, for every
subset A of the complex plane, we describe an exceptional subset E4 of the path, defined
in a geometric fashion. For each such A we define a generalized intersection exponent
£(A) and prove that dimg(E4) =2 —&(A), so that E4 is non-empty as soon as £(A) < 2.

About SLE, the main result we obtain in this thesis is the computation of the Hausdorff
dimension of its trace (i.e. of the curve generating it); that dimension is equal to 1+ /8,
where « is the parameter of the SLE — and this holds for any positive parameter smaller
than 8 and different from 4 (for k > 8, the trace is a Peano curve hence has dimension 2).
In passing we prove the almost sure existence of cut-points on every SLE with parameter
smaller than 8.

We also study the problem of the generalization of the SLE process to non-simply
connected domains; we show that the construction is doable for two particular values
of the parameter (x = 6 and k = 8/3), using in each case specific properties of the
corresponding SLE (respectively, the restriction property and locality), but the universality
property of usual SLE is then lost.

Keywords : (Planar) Brownian motion, SLE, conformal invariance, critical exponents,

Hausdorff dimension.
MSC2000 classification : 60D05, 60G17, 60G51, 60G57, 60G99, 28A80
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1.1 Position du probléme

Une des principales questions qui se posent en mécanique statistique est celle de la
détermination de limites d’échelle (scaling limits). D’une fagcon volontairement informelle,
le probléme est le suivant : on considére un modéle aléatoire discret défini sur un réseau,
et on cherche a obtenir des informations sur le comportement a grande échelle du systéme
— ou, ce qui est équivalent dans la plupart des cas, sur son comportement quand on fait
tendre le pas du réseau vers zéro. Deux phénoménes peuvent alors apparaitre :

— Qu bien le modéle devient déterministe, et on obtient des résultat comme des lois des
grands nombres et des estimées de grandes déviations qui décrivent la convergence
vers cet état déterministe;

— Qu bien la limite reste aléatoire, ce qui signifie que le systéme donne naissance a
un objet aléatoire continu que I'on cherche alors a identifier et a étudier de maniére
intrinséque ; ses propriétés fournissent alors en retour des informations sur le systéme
discret.

En pratique, le probléme de I'existence méme d’une limite ne semble pas avoir de
solution générale, la convergence de chaque modéle particulier réclamant une preuve diffé-
rente ; mais il est parfois possible, en admettant I'existence d'une limite, d’identifier cette
derniére de maniére exacte.
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La distinction entre ces deux cas est particuliérement apparente dans I'étude des transi-
tions de phase pour des systémes de particules sur un réseau. Le systéme physique dépend
alors d’'un paramétre réel qui mesure la force d’interaction entre les particules. Intuitive-
ment, si le paramétre est petit, le comportement a grande échelle du systéme est le méme
que celui de particules indépendantes, alors que s'il est grand, tous les sites vont avoir
tendance a s'aligner. Dans les deux cas, on observe alors une limite d’échelle détermi-
niste, mais pour des raisons différentes (on observe soit un comportement moyen, soit un
comportement commun).

Pour certains modéles, il existe alors un valeur particuliére du paramétre, dite point
critique, correspondant a la transition entre les deux régimes, et pour lequel aucun de ces
deux phénomeénes ne se produit. La limite d’échelle du systéme au point critique produit
alors un objet aléatoire continu.

Dans le cas ou le réseau considéré est de dimension 2, les physiciens ont développé
des outils particuliers pour décrire le comportement de tels systémes au point critique,
comme par exemple les théories de champs conformes ([18]) et la gravitation quantique
([14]). Le résultat le plus surprenant est que I'objet limite ne dépend pas du choix du
réseau mais seulement de la dimension du modéle. En particulier, il devient invariant pas
rotation, et comme il est défini par une limite d'échelle il se transforme de maniére simple
par homothétie.

Cela a amené les physiciens a la notion d’invariance conforme : comme le comportement
local d'une transformation conforme est essentiellement la composition d’'une rotation et
d’une homothétie, on obtient ainsi des informations sur I'image de I'objet continu par une
transformation conforme du domaine ou il est défini. En particulier, si cet objet est invariant
par homothétie, ces considérations heuristiques donnent une bonne raison de croire qu’il
est aussi invariant par transformation conforme.

Remarque : Le lien entre criticalité et invariance par changement d’échelle est parti-
culiérement visible dans le cadre des groupes de renormalisation. Le cas le plus simple est
I’opération de décimation dans Z¢, qui consiste & définir le modéle sur Z¢, pour un certain
paramétre A, et ensuite a ne conserver que les sites qui se trouvent sur un sous-réseau
(aZ)4, ou a un entier supérieur ou égal a 2. Cette opération correspond intuitivement 3
un changement d'échelle de facteur a pour la limite continue (toujours dans le cas ou
celle-ci existe) ; mais il se trouve que souvent le comportement du systéme discret sur le
sous-réseau est proche de son comportement sur le réseau initial pour une autre valeur du
parameétre, disons ¢, (). Il est alors naturel de considérer les paramétres qui sont les points
fixes de ¢,, car ils seront les seuls a fournir une limite continue invariante par changement
d’'échelle — I'équation ¢,(A) = A sert alors de définition du point critique. (Cf. par exemple
[13, ex. 111.38, p. 527] pour un calcul explicite dans le cas du modéle d’lsing.)

En admettant I'existence de la limite d’échelle ainsi que l'invariance de celle-ci par
transformation conforme, Schramm [43] prouve alors le résultat suivant : la limite est
décrite par un processus aléatoire qu'il nomme SLE (pour Stochastic Loewner Evolution),
et dont la loi ne dépend que d’un seul paramétre réel positif k. Autrement dit, 3 tout
systéme discret “raisonnable” (au sens ou il admet une limite d’échelle qui est invariante
par transformation conforme) il est possible d'associer une valeur de s, qui joue le méme
r6le que la charge centrale dans le formalisme physique, de telle sorte que la limite d’échelle
du systéme soit le processus SLE,.
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La question de la description de la limite se rameéne alors a trois problémes a priori
mieux posés : prouver qu'il y a effectivement convergence (en un sens a préciser), que le
systéme est bien invariant par transformation conforme a la limite, et identifier la valeur
du paramétre k correspondant.

La majeure partie de cette thése est consacrée a I'étude du processus SLE (en francais,
processus de Loewner stochastique ou processus de Schramm). Dans la suite de cette
introduction, nous introduisons ce processus ainsi que certains objets discrets et continus
dont les liens avec le SLE sont soit connus soit conjecturés; puis nous présentons les
résultats obtenus ainsi qu’'une rapide description des outils mathématiques utilisés. Enfin
nous donnons un plan général de la thése et un résumé du contenu de chacun des chapitres.

1.2 Le mouvement brownien plan

1.2.1 Invariance conforme

Le cas le plus simple pour lequel on sait décrire une limite d'échelle continue est celui
de la marche aléatoire simple. En effet, il est possible de prouver que, si I'on prend une
marche aléatoire (Sk)ock<n de longueur n dans le réseau carré Z?2, issue de 0, et qu'on
I'interpole par une fonction de [0,1] dans R? en posant

S\nt)

570 = n/2

)

alors la suite de fonctions (S™),>o converge en loi, pour la topologie de Skorohod, vers un
mouvement brownien plan (By)sep,1) issu de 0 (i.e. le processus limite s'écrit B, = (B}, B?)
ol (Bj}) et (B?) sont des mouvements browniens réels standards issus de 0).

C’est ici qu'un miracle se produit : la loi du mouvement brownien plan est invariante par
rotation (alors que celle de la marche aléatoire ne I'est pas, puisque le réseau lui-méme ne
I'est pas). De plus, I'effet d'un changement d’échelle de facteur A > 0 sur le mouvement
brownien est le méme que celui d’'un changement de temps linéaire de facteur \> — et la
loi de la courbe a paramétrisation prés est donc invariante. On est donc dans le cadre exact
ol I'on peut espérer I'invariance du processus par transformation conforme (en identifiant
R? au plan complexe C). C’est effectivement ce qui se produit :

Théoréme 1.1 (Invariance conforme du mouvement brownien plan) :

(i). Soit (Bt)tz0 un mouvement brownien plan issu de 0, et soit ® une fonction
entiére telle que ®(0) = 0. Alors, il existe un mouvement brownien plan (W,):>0
issu de 0 tel que

V20 ®(Be) =Wiptias,)p2 a5

(ii). Soient Q et Q' deux ouverts bornés simplement connexes de C contenant 0, ®
une application conforme de 2 sur ' fixant 0 et (B;) un mouvement brownien
plan issu de 0. Soit 7 (resp. 7') le premier temps de sortie de  (resp. Q') par
B. Alors,

(B, € (0,7} 2 (B, € 0,7}
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1.2.2 Points exceptionnels de la courbe brownienne

Il est alors naturel de s'intéresser a des propriétés géométriques de la courbe brow-
nienne plane, en en particulier 3 celles qui sont préservées par transformation conforme.
Nous reviendrons plus tard a la description de la frontiére brownienne, pour donner ici la
description de quelques sous-ensemble particuliers de la trajectoire. Soient donc a nou-
veau 2 un ouvert borné simplement connexe de C contenant 0, et (B;);>o un mouvement
brownien plan; soit 7 son premier temps de sortie de 2. On notera K = By 5 la courbe
décrite par B. K est un compact connexe de C, et on sait qu'il est de dimension 2 et de
mesure nulle.

Définition :

On dit que B; € K est un point de coupure (resp. que t € [0, 7] est un temps de
coupure) de la trajectoire si K \ {B;} n’est pas connexe. (En particulier, 0 et 7 ne
sont pas des temps de coupure.)

Il est facile de voir que, pour tout temps ¢ > 0 fixé, la probabilité que ¢ soit un temps
de coupure est égale a 0. Le théoréme de Fubini nous dit alors que I'’ensemble 7" des temps
de coupure est presque sirement de mesure nulle (on parle d’'un ensemble exceptionnel),
et on peut se demander s'il est vide ou non.

Théoréme 1.2 (Burdzy [7]; Lawler-Schramm-Werner [25, 31, 32]) :
L'ensemble 7 est presque slrement non vide; sa dimension de Hausdorff est
presque siirement égale a 3/8.

La preuve initiale du fait que 7 soit non vide, due 3 Burdzy, est trés technique et
ne donne pas d'information sur la dimension de 7. Nous décrivons ici celle de Lawler,
Schramm et Werner, car -la méthode générale est proche de celle que nous employons
pour calculer la dimension du processus de Schramm. L’idée, qui est due a Lawler, est de
calculer d'abord la dimension de Hausdorff de I'ensemble 7, puis de constater qu’elle est
strictement positive, ce qui implique en particulier que 7 est non vide.

De maniére générale, la détermination d'une borne supérieure pour la dimension d’un
ensemble E (aléatoire ou non) est souvent plus facile que celle d’'une minoration ; en effet,
il suffit d’exhiber, pour tout £ > 0, un recouvrement de E par au plus e~* disques de rayon
e pour prouver que la dimension de Minkowski (et donc aussi celle de Hausdorff) de E est
au plus égale a a. Dans le cas o E est un compact aléatoire contenu dans le carré [0, 1]2,
on peut procéder de la facon suivante.

Supposons que, pour tous z € |0, 1]2 et € >0, on ait

(Hy) P(ENB(z,e) # @) < €°

(ou le signe < signifie que le rapport des deux expressions est borné inférieurement et
supérieurement par des constantes indépendantes de z et ¢). Pour tout £ > 0 on peut
fixer un recouvrement du carré par au plus 42¢~2 disques de rayon e; chacun de ces
disques rencontre E avec une probabilité de I'ordre de &*, et par conséquent I'espérance
du nombre de ces disques qui rencontrent E est de I'ordre de £572.

Soit alors N (E) le nombre minimal de disques de rayon & nécessaires pour recouvrir
E :si (Hy) est réalisée, on a donc, pour une certaine constante C > 0,

E(N.(E)) < Ce™
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(En fait on pourrait, sous les mémes hypothéses, obtenir aussi une borne inférieure du
méme ordre — mais nous n'en aurons pas besoin ici.) Par conséquent, en appliquant
I'inégalité de Bienaymé-Tchébychev, on obtient pour tout n > 0 I'estimation suivante :

P(N.(E) > ¥ 21 < C.€m.

En choisissant alors une suite de rayons (ex) qui décroisse assez rapidement (par exemple
er = 27%), on peut alors appliquer le théoréme de Borel-Cantelli : presque stirement, pour
k assez grand, il est possible de recouvrir E par au plus 52’2"" disques de rayon gy, et par
conséquent, la dimension de E est presque slirement inférieure ou égale 3 2 — s + 7.
Comme cela est vrai dés que n > 0, on obtient une borne supérieure de la forme

(Hi) = P(dimg(E)<2-35)=1
ainsi qu'une bonne indication du fait que la dimension de E devrait étre égale 3 2 — s.

Pour obtenir une borne inférieure, la seule méthode praticable est la construction d’une
mesure de Frostman portée par E — i.e., d'une mesure positive u, de masse finie non
nulle, telle que pour tous z € [0,1]% et r > 0, on ait

w(B(z,r)) < C.r®

pour une certaine constante C > 0 et un certain exposant «. En effet il est facile de voir
que s'il existe une telle mesure de support inclus dans E, alors la dimension de Hausdorff

de E est au moins égale a o.
L’idée est alors la suivante : on a une famille de mesures “naturelles” u. définies par

dpe () = € Laz,B)<e |dz|

(ol |dz| est la mesure de Lebesgue sur le carré), qui ont une masse d’ordre 1 par I'hypothése
(H,), et qui satisfont, pour tous z € [0,1]* et r > 2¢,
E(pe(B(z,r))) r? s

E (pe(B(z,7))|pe(B(z, 7)) > 0) < PENBa £2) <

Autrement dit, u. se comporte en moyenne comme une mesure de Frostman d’exposant
2 — 5. Le but du jeu sera alors d’extraire de la famille (1) une sous-suite qui converge
faiblement vers une mesure u de masse totale positive, et de prouver que celle-ci est
vraiment une mesure de Frostman portée par E.

Pour ce faire, on a besoin d’informations sur le comportement typique de pu., connais-
sant son comportement moyen, autrement dit il nous faut une borne supérieure pour la
variance de u.(B(z,r)). Celle-ci sera fournie par une hypothése sur les moments d’ordre
deux de la loi de E'; plus précisément, si on a, pour tous z et y dans le carré et pour tout
>0,

2s

€
(Hs) P(ENB(z,e) # 2 et ENB(y,e) # @) < Ce’ A C.m,
alors on peut prouver que la construction précédente peut étre effectuée avec une proba-
bilité positive :
(Hl,H2) = P(dlmH(E) 22—8) > 0.
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On peut alors souvent obtenir un résultat presque sir en appliquant une loi du zéro-un
(souvent disponible puisque la définition de la dimension de Hausdorff est essentiellement

locale).

Dans le cas des temps de coupure de la trajectoire brownienne, on doit en fait modifier
Iégérement la construction, en introduisant des temps de coupure approchés :

7; 'A— {t € [0,’7’] . B[O,t—e] N B[t+s,1'] = @'}_

L’hypothése (H;) est alors remplacée par une estimation de la probabilité que ¢ soit dans
7., mais le principe général de la preuve est le méme. En particulier, la condition (H;) est
une conséquence directe de (H;) et de la propriété de Markov, et donc il “suffit” de prouver
que (H;) est satisfaite et de calculer la valeur de s.

Par un retournement du temps en ¢, puis en appliquant le scaling brownien, on obtient
une définition équivalente de s, qui est la suivante. Soient B! et B? deux mouvements
browniens plans indépendants, issus respectivement de 1 et —1 (ou de points uniformé-
ments distribués sur le cercle-unité). On note T} (resp. TZ) le premier temps d’atteinte
du cercle C(0, R) par B! (resp. B?). Alors,

1 2 _ - —2s
P (Blypy N Bl =2) < R

(le doublement de I'exposant étant di au fait que les temps d’arrét utilisés ici sont définis a
partir de propriétés spatiales de la trajectoire ; ils sont en effet de I'ordre de R?). L'exposant
2s porte le nom d’exposant d’intersection brownien, et il est noté ailleurs £(1,1).

D’une maniére générale, dans de nombreux modéles de mécanique statistique pris au
point critique, la décroissance de certaines quantités (fonctions de corrélation, probabilités
de certains événements) est également gouvernée par de tels exposants, dits exposants
critiques. Au contraire, pour des systémes en dehors du point critique, le comportement
usuel de ces quantités présentera une décroissance exponentielle.

Il est possible, en utilisant un argument de sous-additivité, de prouver I'existence de s
(la méthode est présentée dans le chapitre 2 de cette thése dans un cas plus général) ;
Lawler prouve alors dans [25] que I'on a effectivement, avec probabilité 1,

dimy(7) =1 £01)
Comme on peut montrer (cf. par exemple [46]) que s est strictement inférieur 3 1 sans le
calculer explicitement, cela prouve I'existence de points de coupure. Le calcul de la valeur
exacte de I'exposant (s = 5/8 ici), et donc le calcul exact de la dimension de 7, repose sur
les rapports entre le mouvement brownien plan et le processus SLE, que nous décrivons
dans la prochaine section.

Par une méthode similaire, il est possible de relier la dimension de |a frontiére brownienne
a la valeur d'un exposant de déconnexion n, défini de la facon suivante : soient toujours
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B! et B% deux mouvements browniens plans, on note Q(t, ') I'unique composante connexe
infinie du complémentairre de B[lo,t] U Bﬁ),t,]. Alors, pour un certain n € (0,2), on a

P (0 € QTL,T2) < R

(i.e., I'exposant n décrit la décroissance de la probabilité que les deux trajectoires ne sé-
parent pas 0 de I'infini). On a alors un expression de la dimension de la frontiére brownienne,
elle aussi due a Lawler ([24]) :

dimp(89(1,0)) = 2 — 7.

Le calcul de n repose alors également sur les liens entre mouvement brownien et SLE,
qu'il est donc temps de décrire.

1.3 Le processus de Loewner stochastique

1.3.1 Le théoréme de Loewner

Fig. 1.1: Exploration d’'un modéle de percolation critique

L’intuition qui conduit a la construction du SLE provient de I'étude de courbes d’ex-
ploration définies a partir d’un systéme de mécanique statistique. Par exemple, considérons
un modéle de percolation critique par sites sur une discrétisation du demi-plan supérieur
par le réseau triangulaire (ce qui revient a considérer un réseau hexagonal et a en colorier
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chacune des faces, de maniére indépendante, en blanc ou en noir avec probabilité 1/2 —
cf. Fig. 1.1). Si I'on conditionne les hexagones situés le long de I'axe réel positif a étre
blancs et ceux situés le long de I'axe réel négatif a étre noirs, ceci définit alors une frontiére
entre les clusters blancs touchant I'axe réel positif et les clusters noirs touchant |'axe réel
négatifs (en gras sur la figure). Cette frontiére est une courbe, dite courbe d’exploration de
la frontiére, et elle constitue un des objets pour lesquels on recherche une limite d’'échelle.

On cherche alors un outil servant a décrire une courbe dans le demi-plan supérieur, issue
de I'origine, et qui n’a pas de croisements (en un sens a préciser). Soit donc «y une fonction
continue de R, dans H = {2 € C: Sz > 0}. A chaque instant ¢ > 0, le complémentaire
de v([0,t]) dans H est un ouvert qui a exactement une composante connexe infinie, H;;
on note K; le remplissage de ~([0,t]), qui est défini comme étant I'adhérence de H \ H,.
La condition de non-croisement peut alors s'écrire :

V0 < s <t, v(t) € H,

(ce qui signifie que la courbe aprés le temps s ne pénétre plus dans I'intérieur de Kj).

Pour tout t > 0, I'ouvert H; est simplement connexe. Par conséquent, on peut appliquer
le théoréme de Riemann : il existe une unique application conforme g; de H; dans H ayant
un développement asymptotique a I'infini de la forme g;(z) = z + o(1). Le terme suivant
du développement asymptotique est alors

g(2) =z + ga7(tl +0(27?),

ol a est une fonction continue croissante et positive ou nulle. Dans le cas ol a est
strictement croissante (ce qui se produit par exemple quand «y est une courbe simple), il est
alors possible de faire un changement de temps de facon a avoir, pour tout ¢t > 0, a(t) = ¢
— ce que nous supposerons dorénavant. Avec cette normalisation, la famille d’applications
conformes (g;):>0 satisfait une équation différentielle dite équation de Loewner dans le
demi-plan ; plus précisément on a le

Théoréme 1.3 (Loewner) :

Il existe une fonction réelle continue 3 : R, — R, avec 3(0) = 0, telle que (g;) soit

le flot de I'équation différentielle ordinaire dans le demi-plan supérieur :

(Lg) y'(t) = V) =80

On dira que la courbe v, ou la fonction 3, engendre le flot (g;).

Autrement dit, pour tout z € H on a g,(z) = 2, et pour tous z,¢ tels que I'équation (Lg)
avec condition initiale y(0) = z ait une solution jusqu'au temps ¢, on a

2
9:(2) — B(8)

Le théoréme de Loewner permet donc de décrire un objet bidimensionnel (une courbe dans
le plan complexe) par deux fonctions réelles, I'une décrivant une paramétrisation naturelle
de la courbe et I'autre décrivant la croissance de cette courbe suivant cette paramétrisation.
La plupart du temps on ne s’intéresse en fait 3 v qu'a paramétrisation prés, et on aboutit
alors a une description de la courbe par une fonction réelle.

0:9:(2) =
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On trouvera par exemple dans [15] un énoncé plus général du théoréme de Loewner (ou
I'on part d’une famille croissante de compacts (K;) satisfaisant une condition technique
“naturelle” exprimant que la croissance est locale, mais sans supposer |'existence de 7)
ainsi que sa preuve.

Remarque : Il est possible de généraliser la construction précédente & une courbe 3
I'intérieur d’'un domaine simplement connexe de C, pour décrire une courbe joignant deux
points du bord du domaine, en envoyant ce domaine de maniére conforme sur le demi-plan
supérieur (les deux points marqués correspondant alors a 0 et co). La courbe peut alors
étre décrite par une fonction continue a valeurs dans le bord du domaine.

Il existe également une version radiale de |'équation de Loewner, décrivant une courbe
joignant un point du bord d'un domaine a un point de I'intérieur (la version précédente est
dite chordale). Dans le cas du disque unité U, quand le point de I'intérieur est I'origine du
plan complexe, I'équation différentielle devient alors

, 1py — o Y8 + B

avec B : R, — 9U, et toues les applications conformes g; admettent 0 comme point fixe.

1.3.2 Deéfinition du processus SLE

Admettons pour l'instant que la courbe d'exploration de la percolation critique décrite
plus haut admette une limite continue qui soit une courbe dans le demi-plan supérieur.
On peut alors paramétrer cette courbe de maniére naturelle, et il existe alors une fonction
réelle continue (aléatoire) B qui lui est associée par I'équation de Loewner. L'hypothése
d’invariance conforme (cf. par exemple [23]) peut alors s’exprimer de la fagon suivante :
la courbe v sur I'intervalle de temps [t, +00], conditionnellement a v([0,¢]), a la méme loi
que I'image de la courbe dans le demi-plan par I'application conforme de H dans H, qui
envoie 0 sur (2).

Mais cette application n'est autre que z — g;'(z + B(t)). Autrement dit, I'hypothése
d’invariance conforme entraine naturellement la condition suivante :

e = B(t+9) 2 g~ BO) o [3. - Bs)] (L)

ou la famille (§,) est une copie indépendante de (g;) et ot 3 est la fonction réelle associée
a (gs). En considérant le développement asymptotique a l'infini de I'égalité précédente, on
obtient

Bt +3) "2 B(t) + Bs),

ce qui implique que 3 est stationnaire a accroissements indépendants. Comme de plus on
sait que 3 est continue, et que 8 et —3 ont méme loi (puisque la situation discréte fournit
une courbe dont la loi est clairement symétrique), ceci est suffisant pour dire que 3 est un
mouvement brownien réel, a un changement de temps linéaire prés.

Ceci fournit une justification heuristique 3 la définition suivante :
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Définition :
Soit (Bt)s>0 un mouvement brownien standard issu de 0, et soit kK un nombre réel
positif fixé. On appelle SLE chordal de paramétre k dans H, ou SLE, dans H, le
flot associé a I'équation différentielle de Loewner (Lg) avec B(t) = /kB;.

La condition (1.1) joue alors le réle d’une propriété de Markov pour le processus SLE.

Remarque : De maniére équivalente, on pourra aussi appeler SLE la famille croissante
de compacts (K;) associée a (g;).

Il est également possible de définir un SLE radial a partir de I'équation de Loewner
radiale (L), en prenant pour (8(t)) un mouvement brownien sur le cercle-unité — i.e. en
posant ((t) = exp(iv/kW;) ot (W;) est un mouvement brownien réel standard. Nous nous
concentrerons ici essentiellement sur la version chordale; les liens entre les deux versions
sont profonds et encore mal compris (cf. [32]). En particulier, la plupart des propriétés
géométriques du SLE chordal que nous décrivons par la suite sont vraies pour le SLE
radial de méme paramétre.

1.3.3 Quelques propriétés du SLE

Nous donnons ici sans démonstrations quelques propriété géométriques satisfaites par
le SLE chordal. Les preuves se trouvent essentiellement dans [42] pour k # 8 et dans [34]
pour Kk = 8.

Proposition 1.1 (Existence de la trace) :

Soit k¥ > 0, et soit (g¢) un SLE chordal de paramétre . Avec probabilité 1 il existe
une courbe continue sans croisements v : R, — H qui engendre le flot (g;), au sens
du Théoréme 1.3. Cette courbe est appelée trace du SLE.

Proposition 1.2 (Transitions de phase pour xk =4 et xk = 8) :

Soit 7 la trace d'un SLE,. Alors, presque sirement :

— Si 0 < k <4, la courbe «y est simple ;

— Si4 < k < 8, la courbe v a des points doubles mais elle est de mesure nulle ;
— Si 8 < «, la fonction v est surjective de R, sur H.

Ceci peut également se lire sur les compacts (K;) associés a (g:) : si & < 4, alors
K; = v([0,t]) est lui-méme une courbe; si 4 < k < 8, K, est de mesure positive, et
on a ¥([0,¢]) & K, i.e. K; est obtenu en prenant la réunion de ([0,¢]) et de toutes les
composantes connexes bornées de son complémentaire (les “bulles” formées par la courbe) ;
enfin si 8 < x on a a nouveau K; = ([0, t]).

Le SLE a été introduit pour décrire les limites d’échelle de certains modéles de mé-
canique statistique en dimension 2; et de fait la convergence est connue dans un certain
nombre de cas. (Toutes les convergences décrites ici sont en loi, dans un espace de courbes
continues définies a paramétrisation pres.)

Proposition 1.3 (Convergences vers le SLE) :

(i). La courbe d’exploration de la percolation critique par sites sur le réseau tri-
angulaire (décrite plus haut) converge vers la trace d'un SLE dans H pour le
paramétre Kk =6;

(ii). La marche a boucles effacées tuée a son premier temps de sortie du disque



1.4. RESULTATS OBTENUS ET PLAN GENERAL 19

unité (cf. [34]) converge vers un SLE radial dans U pour le paramétre k = 2;

(iii). La courbe de Peano uniforme, i.e. la courbe d’exploration d’un arbre couvrant
uniforme (cf. [34] aussi) converge vers la trace d’'un SLE pour le paramétre
K =38.
De plus, on conjecture (cf. [35]) que la marche auto-évitante uniforme de longueur
infinie dans le demi-plan (3 supposer qu’elle existe) converge vers un SLE de paramétre
k= 8/3.

Enfin, il existe un lien profond entre SLE et mouvement brownien plan. L'expression
exacte de ce lien nécessite l'introduction de plusieurs notations — mais “moralement” la
courbe du SLEg3, la frontiére du SLE; et la frontiére extérieure du mouvement brownien
plan ont la méme géométrie locale. En particulier, trois modéles discrets a priori trés
différents ont presque la méme limite d’échelle : la marche aléatoire simple, la marche
auto-évitante uniforme et la percolation critique. Ceci n'est en fait pas surprenant du
point de vue de la physique, puisque tous trois sont dans la méme classe d’universalité,
celle des modéles de charge centrale nulle.

Le lien entre SLEg/3 et SLEg est une instance d'une relation plus générale : on conjec-
ture que, pour tout k € (4, 8], la géométrie locale de la frontiére d'un SLE, est la méme
que celle de la courbe d'un SLE¢/,. Cela est connu pour k = 6 et pour k = 8 — dans ce
dernier cas, la preuve passe par la convergence des modéles discrets associés, et on peut
voir la dualité comme une conséquence de I'algorithme de Wilson.

1.4 Reésultats obtenus et plan général

1.4.1 Sur le mouvement brownien plan

Le chapitre 2 de cette thése est largement indépendant des autres, il est consacré a
I'étude de certains points exceptionnels sur la trajectoire d'un mouvement brownien plan,
qui sont une généralisation de la notion de point de coupure. Pour a > 0, on dit qu'un
point B, de la trajectoire brownienne (B;)cpo,1) €St un point pivot d’angle « si I'on a, pour
tout 0 € [—a/2,0/2],

[B[O,t) — Bt] N em [B(t,l] — Bt] = 0.

Autrement dit, B; est un point de coupure de la trajectoire, et I'image de I'une des deux
moitiés par une rotation d'angle @ autour de B, reste disjointe de I'autre moitié tant que
6 € [-a/2,a/2]. (Cf. Fig. 1.2 pour une image dans le cas a = 7/2.)

On prouve alors le résultat suivant :

Théoréme 1.4 :
Pour tout a > 0 suffisamment petit, il existe presque slirement sur la courbe

brownienne plane des point pivots d’angle «, et ceux-ci forment un ensemble de
dimension de Hausdorff strictement positive.
Si a, désigne le plus grand angle pour lequel de tels points existent, alors on a

(log 2)?
a, = or
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Fig. 1.2: Un point pivot d'angle 7/2
(En gris : I'image d’une moitié de la trajectoire par une rotation d’angle +/2.)

Il semble que I'angle limite soit plutot de I'ordre de 37 /4, donc beaucoup plus grand
que la borne obtenue de maniére rigoureuse ici. La méthode générale est similaire a celle
présentée plus haut dans le cas des points pivots, avec plusieurs complications techniques
essentiellement dues au fait que le centre de la rotation qui intervient dans la définition
est lui-méme aléatoire.

On prouve en fait |'existence, pour tout «, d'un exposant d’intersection généralisé &(a),
défini de la facon suivante. Soient (B}) et (B?) deux mouvements browniens plans, issus
de —1 et +1 respectivement, et soit T (resp. T3) le premier temps d’atteinte du cercle
C(0,R) par B! (resp. B2). Par un argument assez technique on prouve que la probabilité

Pr é P I:B[IO,T}z] N U ewB[%’TI%] = Z]
lbl<a

satisfait une relation de sous-multiplicativité “dans les deux sens”, de la forme

C_PRPR & PRR' S C+DPRPR

avec 0 <c- < cy < oo. Il existe par conséquent un exposant £(a) décrivant la décroissance
de pr quand R tend vers +oo, i.e. défini par

Pr X R-—ﬁ(a).

On a alors a prouver que £(«) dépend de o de maniére continue, et a utiliser ceci 3 deux
reprises par la suite :
— Pour prouver que la dimension de |'ensemble des points pivots d’angle « est égale a
2 —&(a) (Cest la continuité de & qui permet de prendre en compte I'aspect aléatoire
du centre de rotation) ;
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— Pour prouver que &(a) est strictement inférieur & 2 pour o assez petit, en effet
I'exposant £(0) est I'exposant d'intersection pour deux mouvements browniens plans,
noté ailleurs £(1,1), et on sait (cf. [32]) qu'il est égal a 5/4.

Puisqu’'un point pivot est nécessairement sur la frontiére extérieure de la trajectoire,
et que I'on sait que la frontiére brownienne est étroitement reliée a celle du SLEg et 3
la trajectoire du SLEqgs, les résultats de ce chapitre s’appliquent également 3 ces deux
objets ainsi qu’aux modéles discrets associés. En particulier, si on admet la convergence de
la marche auto-évitante vers le SLEg/3 et le fait que o, > /2, on a prouvé |'existence de
“beaucoup” de points pivots d'angle 7/2 (donc visibles au niveau discret) sur une marche
auto-évitante typique.

Fig. 1.3: Une marche auto-évitante uniforme
(obtenue par la méthode du pivot)

Cela donne alors des informations sur |'algorithme du pivot, qui est le seul algorithme
efficace pour simuler une telle marche auto-évitante. Il s’agit d’un algorithme de Monte-
Carlo, ot I'on procéde de la maniére suivante. On part d'un chemin simple (wk)ogkgn
quelconque dans Z2, et a chaque étape on choisit un point wy uniformément sur ce chemin
et un angle o uniformément dans {0, /2, w, 37 /2}. Si, aprés rotation de {wg, ... ,w,} d'un
angle a autour de wy, le chemin obtenu est encore simple, on le garde, et sinon on annule
la rotation.

On obtient ainsi une chaine de Markov dans I'espace §2,, des chemins simples de longueur
n dans Z2. |l est facile de voir que la mesure uniforme sur §, est réversible pour cette
chaine de Markov ; il n'est pas facile de voir que la chaine est irréductible (et en fait elle
ne I'est pas si on exclut la rotation d'angle @ — cf. [39]) mais c’est bien le cas. Par
conséquent il y a convergence en loi vers la mesure uniforme. C'est ainsi que la figure 1.3
a été obtenue.

Le fait qu'il y ait “beaucoup” de pivots sur la courbe (de I'ordre d'une puissance de n)
dit alors que la vitesse de convergence de la chaine est assez rapide; inversement, les
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estimations de la vitesse de I'algorithme présentées dans [39] suggérent qu’on a effective-
ment ¢, > 7/2 — ce qui est d'ailleurs cohérent avec les simulations présentées a la fin du

chapitre 2.

1.4.2 Sur le processus de Schramm

Le principal résultat obtenu ici sur le processus SLE concerne la dimension de Hausdorff
de la courbe . On prouve en effet le théoréme suivant :

Théoréme 1.5 :
Soit 7y la trace d’'un SLE, avec k > 0, k # 4. Presque slirement, la dimension de

Hausdorff de I'image (R, ) de la courbe est égale a

1

dimgy(Ry) = (1 + g) A 2.

On calcule également la dimension du bord du compact K; dans certains cas :

Théoréme 1.6 :
Soit (K;) un SLE, avec k € {6,8}. Alors pour tout ¢ > 0, presque sdrement, la

dimension de Hausdorff du bord de K est égale a

2

Dans le chapitre 3, nous étudions plus particuliérement le cas du processus de Schramm
pour le paramétre k = 6. Dans ce cas les preuves des conditions (H;) et (H;) (énoncées
plus haut) dans le cas de la trace — et donc aussi la preuve du théoréme 1.5 — sont rendues
plus faciles par deux propriétés spécifiques au SLEg, que nous décrivons ici rapidement.

e L'équivalence entre SLEg radial et SLEg chordal : tant que v ne sépare pas un
point marqué de l'intérieur du domaine d'un point marqué sur le bord du domaine, les deux
versions correspondantes du SLEg ont méme loi a changement de temps prés. Ceci permet
de réécrire I'événement présent dans la condition (H;) (toucher une boule de centre z et
de rayon £) comme portant sur un SLE radial croissant en direction de z. La probabilité
de I'événement peut alors s'interpréter comme probabilité de survie pour une diffusion
dans un intervalle, ce qui se raméne a une détermination de la valeur propre principale du
générateur associé.

e La propriété de localité du SLEg : elle exprime en substance que la croissance de
(K3) au temps t dans le cas k = 6 ne dépend pas de la forme globale du domaine mais
seulement de sa géométrie locale au voisinage de (t). Cela permet de dire que les deux
événements définissant (Hz) (toucher respectivement B(z,¢) et B(y, €)) sont “moralement
indépendants”, ce qui permet de voir la condition (Hz) comme conséquence de la condition
(Hy).

Puis nous appliquons les mémes propriétés du processus SLFEs pour obtenir directement
la dimension du bord de K, dans ce cas. On a toujours (H;) = (H,) par localité, mais
le calcul de I'exposant s décrivant la probabilité de toucher un disque de rayon ¢ est ici
plus problématique. On est en fait amené a étudier un probléme annexe portant sur une
diffusion réelle dans un intervalle, qui est assez naturel dans le cadre présenté ici mais ne
semble pas avoir été traité indépendamment.
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Le probléme est le suivant. Soit (X;) la diffusion sur (—1,1) définie par
(D) dXt = O'dBt + f(Xt)dt,

avec 0 > 0 et f:(—1,1) — R qui fasse de chaque extrémité de I'intervalle une frontiére
absorbante pour X, et satisfasse quelques conditions de régularité (une liste est donnée
dans la section 3.1.2, mais elle est loin d’&tre optimale). Cette diffusion définit un flot (g;),
r.e. pour tout ¢ > 0 I'application g; est un difféfomorphisme d'une partie I; de I sur une
partie J; de I, de sorte que pour tout = € I, (g:(z)) soit une solution forte de (D) issue
de z.

L'estimée usuelle porte sur la probabilité de survie en temps long ; on prouve de maniére
générale que P(0 € I;) décroit exponentiellement vite,

P0el) <e™

ou —\ est la valeur propre principale du générateur de la diffusion. On prouve également,
en utilisant la formule de Feynman-Kac, que pour tout b > 0,

B ((64(0))") = ™"

ou cette fois —\(b) est la valeur propre principale de I'opérateur
02
Lo:hms Zh' + (@) = bf'h

(de sorte que A(0) = A). On s'intéresse alors a I'image J; = g:(I;) du flot au temps ¢. Sa
longueur [; est égale a l'intégrale de g; le long de I;, donc on peut utiliser I'inégalité de
Jensen pour relier E(I%) 3 E(g;(x)®) (on obtient soit une majoration, soit une minoration
suivant que b est inférieur ou supérieur a 1). En fait, on prouve ici le résultat plus fort
suivant :
Proposition 1.4 :

Pour tout b > 0, on a I'estimation suivante quand ¢ tend vers +oo :

E (I8) < exp (—A(b).t).

La méme diffusion que pour le cas de la trace 7, étudiée sous cet angle avec b =1/3,
fournit en fait I'exposant A\(b) = 2/3 qui permet d’obtenir la condition (H;) dans le cas du
bord d'un SLFEg. On obtient ainsi une preuve plus directe du fait, conjecturé par Mandelbrot
et prouvé par Lawler, Schramm et Werner, que la dimension de la frontiére brownienne (qui
est égale a celle du bord d'un SLEs) est presque sirement égale a 4/3 — en particulier,
on n’utilise pas ici les exposants d’intersection browniens.

Il existe un autre cas ou la condition (H;) implique la condition (Hs), celui de certains
ensembles de temps exceptionnels. En effet, la propriété de Markov permet souvent de
montrer que les deux événements définissant (H;) sont vraiment indépendants, ce qui
donne une estimation du bon ordre. Nous utilisons cette approche dans deux cas ou les
temps considérés ont une interprétation géométrique sur la courbe. Si « est la trace d'un
SLE,, on dit que t est un temps de frontiére pour  si y(t) € 0K;, et que t est un temps
de coupure pour v si K7\ {7y(¢)} n’est pas connexe.



24 CHAPITRE 1. INTRODUCTION

Théoréme 1.7 :
Soit « la trace d'un SLE; soient D I'ensemble de ses temps de frontiere T

I’ensemble de ses temps de coupure. Alors, presque siirement,

_4+l‘& 8 —k

dlmH(D) = Al et dlmH(T) = [

A 1] \VAIR
2K

En particulier, si k < 8, T est non vide, ce qui prouve que K; a presque siirement
des points de coupure.

Une question naturelle est alors la suivante : étant donné un ensemble de temps A C R
borélien, aléatoire ou non, progressivement mesurable ou non a fortiori, y a-t-il une relation
simple entre dimy A et dimg y(A) ? Dans le cas du mouvement brownien plan, on sait
qu'une telle relation existe, et que la dimension de I'image est le double de celle de A
(cf. [22]). Dans le cas du SLE, il semble qu'il n'existe pas en général de telle relation, car
le comportement métrique de -y au temps t dépend fortement de la géométrie de K.

Il'y a cependant un cas ou ce probléme ne se pose plus, celui ot I'ensemble A est marko-
vien, au sens suivant : pour tout ¢, I'ensemble AN |t,00) est indépendant de o(y(s),s < t)
et a méme loi que {a +t,a € A}. Dans ce cas, et pour k = 6, la méthode décrite dans
le chapitre 3 pour le calcul de la dimension du bord donne une bonne motivation pour la
conjecture suivante :

7+ 8dimpg(A) — /49 — 48dimpy(A)
8 )

dimg(y(4)) =

avec les notation précédentes, cela revient a un calcul explicite de A(b) ou b serait I'exposant
permettant de déterminer dimgy A, i.e. :

Dans le chapitre 4, nous achevons la preuve des théorémes 1.5 et 1.6 dans le cas
(presque) général k # 4. Tout ce qui facilitait la preuve dans le cas précédent (k = 6)
devient faux, et en particulier (Hy) n’est plus une conséquence directe de (H;). En fait,
deux preuves séparées de (H,) sont nécessaires, suivant que k est dans (0, 4) ou dans (4, 8)
(notons qu’il n’y a rien & démontrer dans le cas x > 8 puisqu’alors 7 est une courbe de
Peano, donc de mesure pleine, et donc de dimension 2).

Dans le dernier cas (k = 4) il n’est pas clair que (H>) soit vraie. Ceci peut étre interprété
en termes de propriétés métriques de I'application conforme g; : on sait en effet (cf. [42])
que celle-ci est holdérienne si et seulement si k # 4, et il est possible de relier cela a
des propriétés géométriques du bord de K, (absence de “fjords” arbitrairement profonds)
qui rappellent fortement les estimées servant a prouver (H,). On trouvera en appendice
une discussion plus formelle de ce lien, qui suggére I'existence d'une preuve plus simple du
théoréme 1.5 — au moins dans le cas « < 4.

Au passage, le cas k = 8/3 est particuliérement intéressant : on obtient en effet di-
rectement la dimension 4/3 du SLEg3, sans passer ni par le SLEg ni par les exposants
browniens. On peut alors en déduire une troisiéme preuve, plus directe que les deux précé-
dentes, du fait que la frontiére brownienne est presque strement de dimension 4/3.
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Dans le chapitre 5, nous étudions le probléme de la généralisation du SLE au cas d’'un
domaine non simplement connexe. Cela pose probléme puisque la définition du processus
initial repose sur le théoréme de Riemann — et donc sur I'existence d'un domaine de
référence (le demi-plan supérieur, le disque-unité) qui pour tout ¢ sera I'image de g;. Cela
permet alors d’exprimer la propriété de Markov du SLE de maniére naturelle, et d'obtenir
le résultat d'universalité au sens ou la famille des processus obtenus est d’écrite par un
seul paramétre réel x, qui joue le méme rdle que la charge centrale dans le formalisme des
théories de champs conforems.

Nous montrons que quand le domaine Q2 considéré est un ouvert multiplement connexe,
il existe un analogue du processus de Schramm dans les cas k = 8/3 et k = 6. La construc-
tion utilise dans chacun des cas une propriété spécifique du processus correspondant dans
un domaine simplement connexe (respectivement, la propriété de restriction et la propriété
de localité).

Dans le premier cas, le processus est simplement un SLEg/3 usuel dans le domaine
obtenu en “remplissant les trous” de €2, conditionné a rester dans . La propriété de
restriction montre alors que la courbe obtenue satisfait une propriété markovienne similaire
acelledu SLE. Dans le second cas, on considére un SLEg dans le domaine rempli, jusqu’au
premier instant 7 (qui est fini presque sirement) od K; n’est plus contenu dans § et on
le prolonge par un SLE dans 2\ K. La propriété de localité permet de prouver qu'on a
également une propriété markovienne dans ce cas.

Il est a noter toutefois que ces deux processus sont “artificiels” puisqu’ils nécessitent de
considérer le domaine rempli (ils ne sont par définis de maniére intrinséque). En fait, dans
le cas ou €2 a la topologie d'un anneau, la famille des lois de courbes aléatoires, entre deux
points de la méme composante de 9€2, satisfaisant la propriété de restriction, conserve un
degré de liberté (alors qu'elle est réduite a SLEjg/3 dans le cas simplement connexe) : on
n'a plus d’universalité dans ce cas.

Il est possible d’adapter la preuve de Smirnov ([44]) au cas d’'un domaine non simple-
ment connexe, et de prouver que la trace du SLEg généralisé est encore la limite d’échelle
d’un modéle de percolation critique sur le domaine (avec les conditions au bord idoines le
long des “trous” du domaine). Toutefois le probléme de Dirichlet-Neumann qui apparait
dans la preuve n’est pas bien posé, puisque I'on peut fixer arbitrairement la valeur de la
solution le long des trous — ce qui correspond encore une fois a un défaut d’universalité
dans le cas des domaines non simplement connexes : la géométrie locale du modéle a3 la
limite (ou, ce qui est équivalent par le théoréme 1.5, sa charge centrale) ne détermine
plus entiérement la loi de la limite d'échelle et on doit prendre en compte des paramétres
globaux comme (la loi de) la classe d’"homotopie de 7.

Nous décrivons dans ce méme chapitre le comportement de SLE, quand le paramétre
tend vers 0 ou vers +oo. Dans le premier cas, la courbe ([0, 1]) converge (pour la topologie
de Hausdorff) vers celle d'un SLEjy, qui est une courbe déterministe — un segment vertical
dans le cas du demi-plan supérieur, une géodésique pour la géométrie hyperbolique dans le
cas général — et si on la renormalise convenablement, on obtient a la limite une courbe
d’équation £ = f(y), ol f est la convolution de la fonction qui conduit le SLE avec un
noyau déterministe que nous explicitons.

Le cas k — oo est plus intéressant. On doit alors renormaliser K par un facteur /k
dans la direction verticale, et par un facteur 1/4/k dans la direction horizontale. Le compact
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renormalisé converge alors, toujours dans la topologie de Hausdorff, vers I"hypographe du
temps local du mouvement brownien réel qui conduit K. Plus précisément, si (L¥) est une
version bicontinue de ce temps local, le compact limite est

K={z+iy:z€R 0<L? 0<y<2rL?}.

Ceci relie la trace du SLE quand « tend vers +oco a la courbe de Peano du temps local,
définie par
4(t) = By + 2mi.LP*
(qui est bien une courbe continue surjective car L est bicontinu). Il est probable (mais pas
encore démontré) que la trace v du SLE converge en loi vers 7.

On présente également un objet amusant qui est une version discréte du SLE (ou plus
exactement un SLE conduit par un processus discret, plus précisément par une interpola-
tion constante par morceaux de la marche aléatoire simple dans Z), et qui converge vers
le SLE quand le pas de discrétisation tend vers 0. Ce “SLE discret” présente lui aussi
une transition de phase (ou du moins un changement d’aspect) pour le paramétre k = 4,
qui semble similaire. a la transition de phase du SLE usuel : on passe de “quelque chose
qui ressemble a une courbe simple” a “quelque chose qui ne ressemble pas a une courbe
simple”.

Cet aspect de la géométrie de |'objet discret ne suffit pas a obtenir la transition de I'ob-
Jjet continu — ce qui est bien dommage, car I'idée d’obtenir des informations topologiques
sur K; a partir de propriétés algébriques issues du cadre discret était plutdt attirante. Tou-
tefois, une telle reconstruction du SLE a partir de la composition aléatoire de déformations
infinitésimales simples (ici de la forme /22 + 4¢) pourrait étre plus facile a généraliser.

L'annexe A regroupe les preuves de quelques résultats techniques ainsi que deux lemmes
sur les domaines holdériens qui pourraient constituer une part significative de la “vraie
preuve” du résultat du chapitre 4 — mais qui ne sont pas utilisés dans cette thése.

Enfin, I'annexe B contient la description d'un algorithme de simulation du SLE et les
images obtenues pour différentes valeurs de «, ainsi que le code source du programme
utilisé et quelques images des processus discrets associés (marche a boucles effacées,
marche auto-évitante uniforme, et différents clusters de percolation critique).
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Introduction

Theoretical physicists have conjectured for more than twenty years that conformal invari-
ance plays an important role in understanding the behaviour of critical two-dimensional
models of statistical physics. They justify by a mathematically non-rigorous argument
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involving renormalization, that in the scaling limit these models behave in a conformally
invariant way; they have then been able to classify them via a real-valued parameter corre-
sponding to the central charge of the associated Virasoro algebra, and to predict the exact
value of critical exponents that describe the behaviour of these systems. Different models
(for instance, self-avoiding walks and percolation) with the same central charge have the
same exponents.

Recently, Schramm ([43]) introduced a family of new mathematical objects that give
insight into these conjectures. These are random, set-valued, increasing processes (K;):>o
which he named Stochastic Loewner Evolution processes. For each positive number x,
there exists one such process of parameter «, denoted SLE,. He proved that for various
models, if they have a conformally invariant scaling limit, then this limit can be interpreted
in terms of one of the SLE,’s — the parameter x would then be related to the central
charge of the model. One can then interpret the conjectures of the theoretical physicists
in terms of properties of SLE.

In particular, Lawler, Schramm and Werner ([31, 32]) showed that for one specific value
of the parameter x (namely k = 6) which conjecturally corresponded to the scaling limit
of percolation cluster interfaces, the SLFEg has the remarkable restriction property which
relates its critical exponents to the so-called intersection exponents of planar Brownian
motions. This led ([31, 32, 33, 36]) to the derivation of the exact value of the intersection
exponents between planar Brownian paths. Furthermore, it was later shown ([48]) that,
in fact, the outer boundary of a planar Brownian curve has exactly the same law as that
of an SLEg. In other words, the geometry of critical two-dimensional percolation clusters
in their scaling limit should be exactly that of a planar Brownian outer frontier.

In a very recent paper, Smirnov ([44]) showed that critical site percolation in the
triangular lattice is conformally invariant in the scaling limit, so that the geometry of
critical two-dimensional percolation cluster boundaries, in their scaling limit, is identical to
that of a planar Brownian outer frontier.

Before all these recent developments, geometric properties of planar Brownian paths
had already been the subject of numerous studies (see e.g. [38] for references). In par-
ticular, the Hausdorff dimension of various geometrically defined subsets of the planar
Brownian curve had been determined. For instance, Evans ([16]) showed that the Haus-
dorff dimension of the set of two-sided cone points of angle 6 (i.e. points B; such that
both By and By are contained in the same cone of angle 6 with endpoint at B;) is
2—27/6. In a series of papers (see e.g. the review in [27]), Lawler proved that the dimen-
sion of various important subsets of the planar Brownian curve can be related to Brownian
intersection exponents. In particular ([25]), he showed that the dimension of the set C of
cut points (i.e. points B; such that Bygj \ {B;} is not connected) is 2 — £ where ¢ is the
Brownian intersection exponent defined by :

PR =P(Bypy N By =) = R0 (2.1)

(for independent Brownian paths B! and B? starting respectively from 1 and —1, T}c and
T? standing for their respective hitting times of the circle C(0, R)).

In order to derive such results, and in particular the more difficult lower bound d > 2—¢,
the strategy is first to refine the estimate (2.1) to pr < R~¢ (we shall use this notation
to denote the existence of two positive constants ¢ and ¢ such that cR™¢ < pr < ¢/R7%),
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then to derive second-moment estimates and finally to use these estimates to construct a
random measure of finite r-energy supported on C, for all r < 2 — £. The determination
of the values of the critical exponents via SLEg ([31, 32]) then implies that the dimension
of C'is 3/4. Similarly ([24]), the Hausdorff dimension of the outer frontier of a Brownian
path can be interpreted in terms of another critical exponent, and the determination of
this exponent using SLEs then implies (see [30] for a review) that this dimension is 4/3
as conjectured by Mandelbrot.

In the present paper we define and study a family of generalizations of the Brownian
intersection exponent £ parameterized by subsets of the complex plane. For each A C C,
we define an exponent £(A) as follows. Let B! and B? be two independent planar Brownian
paths starting from uniformly distributed points on the unit circle. Then £(A) is defined
by

pr(4) = P(Blozy N A-Bjy gy = @) = RN (2.2)

(with the notation Ey.E; = {zy : z € Ey,y € E»}). Note that the case A = {1}
corresponds to the usual intersection exponent. In Section 2.1 we first show that for a
wide class of sets A

pr(A) < R~¢A). (2.3)

In Section 2.2 we study regularity properties of the mapping A — £(A). In particular
we prove its uniform continuity (with respect to the Hausdorff metric) on certain families
of sets. One important tool for this result is the fact that the constants implicit in (2.3)
can in fact be taken uniform over these families of sets.

In Section 2.3 we associate to each set A a geometrically defined subset £4 of the
planar Brownian curve:

gA = {Bt :de > 0, (B[t—s,t] — Bt) N A-(B(t,t+s] e Bt) = @}

Using the strong approximation and continuity of the mapping A — £(A), we then show
that the Hausdorff dimension of this subset of the planar Brownian curve is almost surely
2—£(A) when €(A) < 2 (and is 0 when £(A) > 2). For example, when A = {€?,0 < § < o}
the corresponding subset C, of the Brownian curve is the set of (local) pivoting points, i.e.
points around which one half of the path can rotate by any angle smaller than o without
intersecting the other half.

When A C A’, then €4 C 4. In particular, if A contains 1, then £4 is a subset of the
set of (local) cut points and therefore the shape of the path in a neighbourhood of such
a point is the same as that of the Brownian frontier in the neighbourhood of a cut-point.
This shows in particular that (at least some of) the exponents £(A) also describe the
Hausdorff dimension of sets of exceptional points of the scaling limit of critical percolation
clusters.

In Section 2.4 we derive some bounds on the exponents £(A) for small sets A, by
a technique similar to that used by Werner ([47]) to estimate disconnection exponents.
In particular, for small o, we show that the exponent £(C,) is strictly smaller than 2,
which implies the existence of pivoting points of any angle less than «, > 0 on the planar
Brownian curve. We then briefly present results of simulations which suggest that the
maximal angle ¢, is close to 3w /4.
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It is actually easy to define other “generalized” exponents in a similar fashion, by studying
non-intersection properties between Brownian motions and some of their images under
isometries and scalings, i.e. one can view A as a subset of the linear group GLy(R). One
can also consider non-intersection properties between B and its image f(B) by a conformal
map. For instance it is easy to see using the function z — 22 that the exponent describing
the non-intersection between B and —B is in fact twice the disconnection exponent. The
methods of the present paper can then be adapted to such situations.

Similarly, one could extend the definitions to higher dimensions (the cases d > 4 can
also be interesting if the set A is sufficiently large), but conformal invariance then cannot
be used, so that some of the tools in the present paper do not apply.
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Notations

Throughout this paper, we will use the following notations for the asymptotic behaviour
of positive functions (and sequences, with the same meaning):
f(®)

o f~gif lim—<=1-—and f and g are said to be equivalent;
t—00 g(t)

. ... log f(t)
~gifl ~ .e.
o fxgiflogf ~logg, ie. if tlirgo log g(0)

= 1 — f and g are then logarithmically

equivalent;

o f < g if f/g is bounded above and below, i.e. if there exist two positive finite
constants ¢ and C such that for all ¢, cg(t) < f(t) < Cg(t) — which we call strong
approximation of f by g.

2.1 Generalized intersection exponents

2.1.1 Definition of the exponents

Proposition and Definition :

Let A be a non-empty subset of the complex plane and B!, B2 be two independent
Brownian paths starting uniformly on the unit circle C(0,1); define the hitting time
T} of C(0, R) by B* and let 7, = T}, .,

exp

En = En(A) = {B[lﬂ,‘r,ll] N AB[20,T121] = @},

@n(A) = P(E,) and pr(A) = P(Eiogr)-

Then, assuming the existence of positive constants ¢ and C such that pr(4) > cR~°,
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there exists a real number £(A) such that, when R — oo,

pr(A) =~ R¢A).

// This is a standard sub-multiplicativity argument. If B is a Brownian path
starting on C(0, 1) with any law p, then the law of B, (g on the circle C(0, e)
has a density (relative to the Lebesgue measure) bounded and bounded away
from zero by universal constants (i.e. independently of x). Combining this
remark with the Markov property at the hitting times of the circle of radius
e™ shows that:

Vm,n >1 Gmin < CqnGm—1-

Hence the family (cg,-1) is sub-multiplicative, and using Proposition 2.7 we
have ¢, ~ e~", with £ € (0, c0), as well as a lower bound g, > c~2e~¢(+1). //

Remarks: For some choices of A there is an easy geometric interpretation of the event
E,.(A): £({1}) is the classical intersection exponent; if A = (0,00), the E,(A) is the event
that the paths stay in different wedges.

If A is such that no lower bound pgr(A) > cR~C holds, we let £(A) = oco. However, in
most of the results presented here, we will restrict ourselves to a class of sets A for which
it is easy to derive such lower bounds:

Definition :
A non-empty subset A of the complex plane is said to be nice if it is contained in
the intersection of an annulus {r < |z| < R} (with 0 < r < R < co) with a wedge of
angle strictly less than 27 and vertex at 0.

Indeed, let A be such a set and let a < 27 be the angle of a wedge containing A: B!
and AB? will not intersect provided each path remains in a well-chosen wedge of angle
(2 — @)/2, and then it is standard to derive the following bound:

pr(A) > cR™/@T=), (2.4)

The fact that A be contained in an annulus will be needed in the following proof. The only
usual case where this does not hold is when A is a wedge itself; but in this case a direct
study is possible, based on the derivation of cone exponents in [16] and the exact value of
€ is then known (cf. next section for details).

We will often consider the case where A is a subset of the unit circle. For such sets,
A is nice if and only if A ¢ U (it is in fact easy to prove that for A C 9U, £(A) = oo if
and only if A = 9U).

2.1.2 Strong approximation

This whole subsection will be dedicated to the refinement of pr ~ R~¢ into pr < R7¢.
This is not anecdotal, since this “strong” approximation will be needed on several occasions

later.
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Theorem 2.1 :
For every nice A, pr(A) < R~¢(4), j.e. there exist positive constants c¢(A4) < C(A)

such that

cR™™ < pr(A) < CR™W,

Moreover, the constants c(A) and C(A) can be taken uniformly on a collection A of
subsets of the plane, provided the elements of A are contained in the same nice set.

// Note that since A € A is nice, the exponents £(A) exist and are uni-
formly bounded for A € A. The sub-additivity argument showed that
gn = ce §A@-(+1) \which implies readily the lower bound in the theorem.
It is more difficult to derive the upper bound. By Proposition 2.7, it will be
sufficient to find a finite constant c¢_(A) (that can be bounded uniformly for
A € A) such that

Vn,n' Gnin' = C_QnGp'. (2.5)

In order to make the proof more readable, it is carried out here for a fixed
A; however it is easy to see that, at each step, the constants can be taken
uniformly for all A contained in some fixed nice set A,. Moreover, we shall
first assume that A, is a subset of the unit circle: We briefly indicate at the
end of the proof what are the few modifications needed to adapt it to the
general case.

The basic method is adapted from Lawler’s proof for non-intersection
exponents in [26], with some technical simplifications made possible using the
absence of the X exponent. The main idea is to obtain a weak independence
between the behaviour of the paths before and after they reach radius e™.
The first step is an estimate concerning the probability that the paths are
“well separated” when they reach radius €™ (more precisely, that they remain
in two separated wedges between radius e®~! and radius e"). Let F, stands
for the o-field generated by both paths up to radius e (so that for instance
E,isin F,).

Lemma (Technical) :
Let » > 0 and o < 27 — 7 such that A is contained in a wedge of
angle less than a. Define

— . 0. Lo
Wa—{re .’r>0,|01<2},
0n = e "[d(B}y, ABf o)) A d(AB? By, ,1;)] and the following events:

2
75

U; = {B[IO,T,{] N {IZ! = e”"l} C ‘—W27r—a-17} ’
U2 = {ABY o 0 {l2] > ) C W),

and U, = UL NUZ2. Then:

3
Je,>0Ve >0Vr e [5,3] P(Epir,Unir| Fry Eny 6 =€) > ceP.
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/// The proof is easy and uses only simple estimates on Brownian Motion in
a wedge, we omit the details. ///

we now prove that paths conditioned not to intersect up to radius e™t?
have a good chance to be well separated at this radius, uniformly with respect
to their behaviour up to radius e":
Lemma (End-separation) :
There exists ¢ > 0 such that, for every n > 0:

P(Un+2|En+2; ]:n) 2 c

(in other words, the essential lower bound of P(Un+QIEn+2,]-',,), as an
Fn.-measurable function, is not less than c).

/// The technical lemma states that start-separation occurs if the starting
points are sufficiently far from each other; more precisely, applying it for
r = 2, we obtain for all € > 0:

P(Uny2|Eni2, Fny 0 > €) > c£8. (2.6)

Hence, what is to be proved is that two paths conditioned not to intersect
have a positive probability to be far from each other after a relatively short
time. To prove this fact, one has to use conditioning on the value of §,,.

Fix k > 0, and assume that 2-*+1) < §, < 27%; let 7 be the smallest
r such that one of the following happens: either 6,., > 2% or E,,, does
not hold. It is easy to use scaling to prove that for some A > 0,

P(re > 27%) <272,

meaning that with positive probability (independent of £ and n) the paths
separate or meet before reaching radius e"*27" . Hence, by the strong Markov
property applied k? times, this leads to

P(r > k227F|2~ 1) < 6, < 27F) < 270, (2.7)

The technical lemma states that P(Ep 3|6, > 2~ *+1) > ¢27%%: combining
both estimates then leads to

P(1i > K227%| Epya, 6, > 27 1) 2862 (2.8)

Consider now a generic starting configuration at radius e”, satisfying E,
and hence 6, > 0. Fix also ky > 0 and introduce the radii 74, (for ky < k < 00)
defined by

7 = Inf{r : 6,4, > 27F}
(so that 7, = 0 as long as 27% < §). Equation (2.8) can be rewritten (using
the fact that the technical lemma is valid for all r > 3/2) as

o

P(7% — k41 = k*27F|Enia, 1 < 2) < C2Ok—AK? (2.9)

N
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Fix ko such that

ad 1
E K227k < =,
» 2
k=ko

and sum this estimate for ky < k < oo: this leads to

o0
P(Vk 3> ko, Tk — it < K227F|Eppp) 21—y 2573,
k=ko

In particular, if ko is taken large enough, this probability is greater than 1/2,

and we obtain

1 1
P(7, < ilEn+2) P 3

It is then sufficient to combine this and Equation (2.6) to get
P(Upy2|Enya) = c27P% > 0,

and is can be seen that the obtained constant does not depend on the
configuration at radius e™ — provided F, is satisfied. ///

The first consequence of the end-separation lemma is P(E,,U,) X< gn;
but it is easy to see, using estimates on Brownian motion in wedges again
and the strong Markov property, that

P(En+1|En, Un) 2 c>0

(with c independent of n), and combining both estimates leads to g,+1 > cgp,
I.e. @ny1 < gn. Now if g, stands for the upper bound for the non-intersection
probabilities, namely

7. = Sup P(E.|B!, B,
Bé,BgeU

the previous remark concerning the law of W, ) can be used to prove that
dn < Cgn—1: hence,

dn X Qn.

Now that we know that paths conditioned not to intersect have a good
chance to exit a disk at a large distance from each other, what remains to
be proved is that paths starting from distant points on C(0, ") remain well
separated for a sufficiently long time and become (in a sense to be specified

later) independent from their behaviour before radius e™.

Lemma (Start-separation) :
| Let o and 7 be as in the technical lemma, 7 = 1/2 and o/ = (27 +
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«)/2; introduce

J/; = {B[IO,T%] m B(O, 2) C —W27r——al—-7)’ \ B(O7 1 - n,)} ’
J2 = {AB} 5N B(0,2) C War \ BO,1 - 1)},
and En =FE,N Jnl N Jg Define ¢, as
Gn(z,y) = P(Ea|B) = z,B] = y).

Then there exists ¢ > 0 such that, for all n > 2 and uniformly on all
pairs (z,y) satisfying U, (i.e., both having modulus 1 and such that U,
holds when B; =z and B? =y):

Gn(z,y) 2 cgn.
/// Introduce the following (“forbidden™) sets:

Kl = (6(07 2) \ "'W27r—a'—n’) U B(Oa 1- 77,);
K? = (B(0,2) \ Wo) UB(0,1 7).

For all n we have J; = {Bj, ., N K' = @} and J; = {AB}, , N K’ = 2}.
For the rest of the proof we shall fix n, and condition the paths by their
starting points; introduce the following stopping times (for positive values of
k):

T, = Inf{t > 0: By 4 N C(0,3) # @},
Sy =Inf{t > Ty, : By 4NK' # 2},
Ty = Inf{t > S : Bjg; ,NC(0,3) # &},

and S2, TZ similarly, replacing all occurrences of B! by AB? and K* by K.
We shall also use the notation N* for the number of crossings by B! (resp.
AB?) between K* and C(0, 3), defined as

N* £ Max{k : Si < 7i}.

With those notations, J: = Ji N {N* = 0} and a.s. N* < co. Moreover,
uniformly on the starting points considered here (satisfying the condition
U,), we have P(J{) > ¢ > 0 by the technical lemma, where ¢ depends only
on 1.

First, we split the event E, according to the value of, say, N?: we write
P(E,) = Y12, P(E,, N? = k). By the Beurling estimate, on {N? > k},
the probability that B[lo’r,ﬂ and AB[";%’T:] do not intersect is bounded by some
universal constant A < 1 (which can even be chosen independent of A),
independently of B! and the two remaining parts of B2 By the strong
Markov property at time T2, when N2 = k the probability that AB? after T
does not intersect B is bounded by P(B! ﬂABng,T,Z,] =@, N? =0) (i.e. the
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path after T2 when N? = k is the same as the entire path when N? = 0).
Introducing those two estimates in the sum leads to

MNeP(E,, N?=0) = —1—P(En, N?=0).

<
P(E,) < —

o0

k=0

Doing this decomposition again according to N! (with the same constant
A < 1) we then obtain

1

H:—/\—)EP(En’Nl :N2 :0),

P(Ey) <
ie. P(N' = N?=0|E,) > (1-X)? > 0. This, and the previous remark that
P(Ji|N* = 0) is bounded below by a constant provided that the starting
points satisfy U,, gives:

P(E,|B! = z,B? =y) > cP(E,|B! =1,B? = ). (2.10)
Conditioning on B? shows that the map
f:z v P(E,|B! =z,B? =1) (2.11)

is harmonic and does not vanish on the complement of A. Moreover, its
supremum on the unit circle is equal to g, by definition: Applying the Harnack
principle then proves that f is bounded below by cg, on the set of z satisfying
U,, which completes the proof. ///

 Another estimate can be obtained using the very same proof: Only keep-
ing the conditions involving disks and relaxing those involving wedges, we
obtain

P (Bl N B(0,1 1) = &, AB} 5 N B(0,1—n) = g}B;,Bf,En) >c>0, (2.12)

where ¢ does not depend on the initial positions B} and B2, nor on n (it
clearly depends on 7, though, and a closer look at the proof shows that we
can ensure ¢ > 7® as 7 — 0, for some 8 > 0). This estimate will be needed
in the derivation of Hausdorff dimensions, cf. Section 2.3.

We now have all the needed estimates to derive the lower bound in the
sub-additivity condition, and hence the conclusion of the theorem. Take
two paths with independent starting points uniformly distributed on the unit
circle and killed at radius e™*", conditioned not to intersect between radii 1
and e™. This happens with probability ¢,. With large probability (i.e. with a
positive probability, independent of m and n) the paths up to radius e" end
up “well separated” in the sense of the end-separation lemma. In particular,
the points where they reach radius e®, after suitable rescaling, satisfy the
hypothesis of the start-separation lemma: Hence with probability greater
that cg,,, the paths between radii €® and ™™ remain separated up to radius
e™*1, do not reach radius (1 —n)e™ anymore and do not intersect up to radius



2.2. PROPERTIES OF THE FUNCTION A — &(A) 37

e™*™™, Under those conditions, it is easy to see that the paths do not meet
at all. So ¢n4n = cqmg, for some positive ¢, and we get the conclusion.

Some adaptations are needed if A is included in an annulus, say {r <
|z| < R} with r < 1 < R. First, replace all occurrences of e by e,, with
e, chosen larger than 10R/r, and in the start-separation lemma, replace
B(0,1—mn) by B(0,7/2R) in the definition of the J,. As long as r and R are
fixed, this changes nothing to the proof, except that the constants we obtain
will then depend on R/r — which itself is bounded provided A remains a
subset of some fixed nice set.

A more serious problem arises if the complement of A is not connected
(i.e., if A has holes), since the natural domain of the function f (as defined
by Equation (2.11)) is itself not connected. However, since A is nice, its
complement has exactly one unbounded component, and it is easy to see
that if z is not in this component then f(z) vanishes for n > 1. Hence,
nothing changes (as far as non-intersection properties are concerned) when
Ais replaced by the complement of the infinite component of its complement
(i.e. when filling the holes in A). //

In fact, a stronger result can be derived: If the starting points Bg and Bf are fixed,
then P(E,|B?, B?) is equivalent to ce™™(*), where c is a function of B! and B? satisfying
c < cod(B(},ABg)ﬁ. This estimate is related to a strong convergence result on the law of
paths conditioned by B! N AB? = &. However, proving this result would be much more
involved (cf. [37] for the proof in the case A = {1}).

2.2 Properties of the function A — £(A)

We first list a few simple properties of the function A — &(A). For p € Z and A C C,
introduce AP = {2?,2 € A} and let A* = {z,z € A}.

Proposition 2.1 :

Is these statements, all sets are assumed to be non-empty but do not need to be

nice:

(i). & is non-decreasing: if A C A’ then £(A) < &(A');

(ii). & is homogeneous: if A € C* then {(AA) = £(A);
(ii). € is symmetric: £(A™!) = £(A%) = €(A);
(iv). & has the following property: if n > 1 then

¢ (U e2ik7r/nA) = ng(Am).

// (i): This is a trivial consequence of pgr(A) > pr(4').

(ii): Applying the scaling property with factor || to B? proves that one
can suppose |A| = 1; in which case we have pr(A) = pr(AA) (because the
starting points are uniformly distributed on the unit circle).
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(iii): Simply exchange B! and B? for A~!, and say that the complex
conjugate of a Brownian path is still a Brownian path to get A*.

(iv): This is a consequence of the analyticity of the mapping z — 2"
(hence the fact that ((W;)") is a Brownian path if W is one) together with
the remark that the existence of s, ¢t > 0 and z € A™ with (B)" = 2(B2)" is
equivalent to the existence of 2’ in |Je**™/" A with B! = 2’ B? — note that
the mapping also has an influence on R, hence the factor n. //

We now turn our attention toward reqularity properties of the function A — £(A) —

the following result being a key step toward the derivation of dimensions in the next section.
Introduce the Hausdorff distance between compact subsets of the plane (cf. Section 2.5 for
details). It will be convenient here to define neighbourhoods by V;(A4) = {ze*,z € 4, |z| <
r} instead of the usual A+ B(0,r) — leading to the logarithmic Hausdorff distance. The
(logarithmic) Hausdorff topology is the metric topology derived from this distance.
Proposition 2.2 :

& is continuous on the collection of nice sets, endowed with the logarithmic Haus-
dorff topology. For any nice set Ay, £ is uniformly continuous in {A : A C Ap}.

// The proof relies on the uniformity of the strong approximation in Theo-
rem 2.1: fix a nice set A, and assume all sets considered here are subsets of
A,. The constants ¢, c_ and c, appearing during the proof may only depend
on A,.

First, fix R > 1 and condition all events by Bf(m 1 i.e. fix the second
path. For all A C A4,, let .

dr(A) = dH(B[lo,T}{]’AB[Zo,Tﬁ]) ,
for all € > 0 introduce the stopping time
S, = Inf{t : dgy(B}, AB[QO’T}%]) <e}.

Note that {dgr(A) < €} = {S: < TE}. On this event, the strong Markov
property shows that B , is a Brownian path starting e-close to AB%. By
Beurling’s theorem, the probability that they do not meet before radius R+1
is smaller than the corresponding probability for a path near a half line; hence,

P(B[lse’T}l?'H] n AB[20’T}21+1] = Q,IdR(‘A) < 8) < \/E7
so that, considering the whole path, P(Egry,|dr(A) <€) < /€. Apply the
Bayes formula:

P(dR(A) < 8)

P(dR(A) < 8|‘ER-‘}‘1) = P(ER+1)

P(ERr+1|dr(4) <e);
since we know that P(Egy1) > c—(R+ 1)) with £(A) < €(A4,) we finally

obtain
P(dr(A) < €|Ery1) < cRIM) (/6.
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From now on, we shall assume that ¢ is sufficiently small to make the
obtained bound smaller that 1. Taking the complement leads to

P(dr(A) > €|Ery1) > 1 — cRM ) /6.

Now, remark that when dg(A4) > € and dg (A, A’) < €/R, we have B[lo iy N
o]

A’B[20 2) = @: from this and the previous equation it follows that, as long

as A and A’ remain subsets of A,

dH(A,A’)<% = pr(A) > (1 - cRE4)/E) pryi(A).

We can apply the estimates on pr we derived in Theorem 2.1 — j.e.
pr(A) < pry1(A) < R76A: still for dy (A4, A") < /R and A, A’ inside A,
we get

chR—é’(z‘l’) > (1 — CRE(AO)\/E) c_R‘E(A),
and taking the logarithm of each side of the inequality leads to
logcy — &(A") log R > logc_ + log (1 — cRS M)\ /e) — £(A) log R,

hence after suitable transformations:

c log (1 — cR8“0) /g)

logR logR (2.13)

£(A) <€(A)+

Fix n > 0, and choose R such that ¢/logR < n/2. It is then possible
to take ¢ sufficiently small so that |log(1 — cR¢()\/z)| < (nlog R)/2; for
dr(A, A') < /R we then have £(A’) < €(A)+n, hence by symmetry |£(A")—
&(A)| < n. This proves that & is uniformly continuous on P.(A4,), for all 4,
hence continuous on the family of nice sets. //

Remark 1: Equation (2.13) allows the derivation of an explicit modulus of continuity
for £ inside A, of the form

, C(4,)
€(A) = €A S ozt )

(take R = d~1/%(4)). But since C(A,) is not known, this does not provide numerical
bounds for &.

Remark 2: Inside a nice set, the usual and logarithmic Hausdorff topologies are equiv-
alent, so the introduction of “exponential neighbourhoods” in Proposition 2.2 can seem
artificial; however, it leads to constants that do not vary when A is multiplied by some
constant (as in Proposition 2.1, point (ii)), hence uniform continuity holds on the collec-
tion of nice sets contained in a fixed wedge and in some annulus {r < |z| < cr} for fixed ¢
— which is wrong for the usual Hausdorff topology, as a consequence of the homogeneity
of £ applied for small [A].

Note that uniform continuity cannot hold on the family of nice sets contained in a
given annulus since £ would then be bounded (by a compactness argument), which it is
not: the exponent associated to a circle is infinite.
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2.3 Hausdorff dimension of the corresponding subsets of
the path

2.3.1 Conformally invariant subsets of the Brownian path

It is well-known that the Brownian path is invariant in law under conformal transformations;
in this section, we study subsets of the Brownian curve that are also invariant under
conformal maps. A first example is the set of so-called Brownian cut-points, i.e. points
B such that By and By are disjoint; these points form a set of Hausdorff dimension
2 — &({1}) = 3/4. Related to those are local cut-points, i.e. points such that there exists
€ > 0 satisfying B ;)N B(s,.+.) = @ — the dimension is the same as for global cut-points.
Other examples are given by Lawler in [27]: in particular the set of pioneer points (such
that B, lies on the frontier of the infinite component of the complement of Bjgy), related
to the disconnection exponent 7;; frontier points (points of the boundary of the infinite
component of the complement of By ;;), related to the disconnection exponent for two
paths in the plane. Another exceptional subset of the path is the set of cone points (such
that By is contained in a cone of endpoint B;), related to the cone exponents (studied
in [38] for example).

We will use the exponents introduced in the previous sections to describe a family of
exceptional sets, indexed by a subset A of the complex plane, having dimension 2 — £(A),
and that are invariant under conformal transformations, as follows. Fix a Brownian path
Byo,1), a subset A of the complex plane, and introduce the following times for all ¢ € (0, 1)
and r > 0:

T.(t) =Inf{s > t:|Bs — By| =1}, Sr(t) =Sup{s < t:|Bs — Bi| =r}.
Definition :
lfO<e<Randte(0,1), let

7R (B) = { St s € [T, Tal0), ' € [Sa(t), Se<t>1} ;

and introduce £§’R] ={B;: Zt[E’R] N A= g@}. Then, letting £ go to 0:

zR= 2", Z=MNzF  Z=OZF

e>0 R>0 R>0

define £&, £4 and €, accordingly.
We shall also use the notation T4 = {t : B; € £}, for the set of A-exceptional
times, and Ty = {t : B; € £4}, for the set of A-strongly exceptional times.
Note that, since 0 is polar for planar Brownian motion, Z is well-defined for almost any
t. For A = {1}, €4 is the set of local cut-points; more generally, B; is in 4 if, and only
if, for some £ > 0, we have

(B(t1t+5] - Bt) m A'(B[t'-E,t) - Bt) = g:»

so the setup looks similar to the definition of the exponent £(A). It is easy to see that for
all fixed ¢t > 0, a.s. Z; = C* and Z; = C, so that for A # @, P(t € T4) = 0, leading to
E(u(Ta)) =0 ie. u(Ty) = 0 almost surely — hence the term “exceptional points”.
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The set £4 of A-exceptional points is generally not conformally invariant. However, it
is the case for strongly exceptional points:
Proposition 2.3 :

Let ® be a conformal map on a neighbourhood € of 0, with ®(0) = 0, and let B®
be B stopped at its first hitting of 0€2. By conformal invariance of planar Brownian
motion, ®(B?) is a Brownian path stopped at its first hitting of 0®(2). Moreover,
we have

Ea(2(B") = ®(£a(BY)).

// We prove that Z is invariant. It is sufficient to prove the following char-
acterization:

2z € Zy(B) <= 3(sy) 40, () L0:

as conformal maps conserve the limits of such quotients. Such a sequence
is easily constructed using the very definition of Z. //

Note that nothing in the preceding uses the fact that B be a Brownian path, except
for the remark about P(t € 7). The remaining of the present section is dedicated to
deriving the Hausdorff dimension of £4 and £4. It will be more convenient to work in the

time set, so introduce
7;£E’R] = {t € [O) 1] : (B[t—R,t—e] - Bt) N A'(B[t+s,t+R] - Bt) = @}

The scaling property of Brownian motion can then be used to show, as in [25, lemmas
3.14-3.16], that Theorem 2.1 implies the following, provided A is nice:

€(A)/2
¢ ) . (2.14)

P(t S 716,1{]) = (E

2.3.2 Second moments

Fix R > 0. The purpose of this subsection is to give an estimate of the probability that
two times t and t' are A-exceptional times, i.e. are both in 7:£5’R]. To get an upper bound
on this probability, the idea will be to dissociate the microscopic and macroscopic scales,
giving respectively the first and second factor in the following estimate:

€(4)
Pt e TEM < ¢ [%] [1V |t —¢'|78A/2]

If t < ¢ are two times, introduce the “mesoscopic” scale d = |t' — t|, and separate the
following three cases:

e If d > 2R (long-range interaction), the events E; L{te 7;£€’R]} and Ey are inde-
pendent, leading to the right second-order moment;

o If R/2 < d < 2R (medium-range interaction), the trivial bound P(E;, E,) <
C(2e/d)¥4 (obtained by forgetting what happens after radius d/2) gives the needed
contribution.
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e If d < R/2 (short-range interaction), a little more work is required. Introduce the
following times:

T.(z) = Min(z 4 7, Inf{z’ > z : |B, — By| = r'/?}),

S.(z) = Max(z — r,Sup{z’ < z : |B; — By| = ri/2y).

First, E; and Ey imply two independent events:

E;: (B[t+s,f‘d/2(t)] - Bt) N A. (B[S'd/z(t),t—e] _ Bt) =9,
B (B[t'+e’Td/2(t')1 - B;) n4. (B[Sd/z(t’),t’—a] - BQ) =9;

as in [25], it can be proved that P(E;) < P(t € T.5%%) < (¢/d)§®/2. Let
6 = Max ((d/2)"/%, Bz, ) -

§ is stochastically dominated by the sum of (d/2)'/% and a Gaussian variable A'(0, d)
(accounting for the behaviour of B between the times Ty/5(¢) and Sy/2(t')). More-
over, conditionally to the value of 4, the joint distribution of B at times Sy5(¢) and

T' 2 Inf{z > ¢ : |B, — t| = 26}

is absolutely continuous with respect to the Lebesgue measure on C(0,268)2, and its
density is bounded above and below by absolute constants. Lastly, F; and E; imply
that

(B[T’,t+R] - Bt) nA. (B[t—R,Sza(t)l - Bf) =4,

and (still conditionally on d) the probability of this event is bounded above by
C.(20)¢™) by Theorem 2.1. But the previous remark on the law of § shows that

E(6¢W) < € d¢A/2,

hence finally the correct estimate:

€ E(A) EE(A)
€ (a2 o &7
P(E,Br) <C.(5) " d@2=C A

So in the case of exceptional points defined locally, bounds on second moments are not
difficult to derive (and this “scale separation” construction can be used in various setups).
In contrast, if the whole path was to influence every single point, interactions would not
be that easy to classify.

2.3.3 Hausdorff dimensions

The main result of this section is the following:
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Theorem 2.2 :
Let (Bt)sefo,1) be a planar Brownian path. If A is any nice subset of the complex

plane such that £(A) < 2, then almost surely

dimp (£4(B)) = dimg (£4(B)) = 2 — £(A).

In particular, both subsets are a.s. non-empty and dense in the path if £(A4) < 2. If
€(A) > 2, E4(B) = €4(B) = @ almost surely.

// The first step in the proof is the statement of a zero-one law:

Lemma 2.1 :
The dimension of the set of all A-exceptional points (resp. of A-

strong exceptional ~points) has an almost sure value. More precisely,
there exist §4 and d4 in [0, 2] such that

Moreover, the following holds with probability 1 (and the same for £4
also):

Vs <t dimH(EA(B[s’t])) = 5,4.

/// The proof is the same in both cases; we perform it here for d4.
Introduce the following random variables in [0, 2J:

Z = dirnH(é'A), Z_ = dimH(gA(B[o’l/;;])), Z+ = dimH(gA(B[Q/s,ll)).

The scaling property, associated with the Markov property, shows that these
three variables have the same law; basic properties of the Hausdorff dimen-
sion imply that Z > Z_V Z,; and locality proves that Z_ and Z. are
independent.

0 < Z_ < Z < 2 with the same mean value: from here follows that
P(Z_ = Z) = 1. By the same arqument P(Z, = Z) = 1, hence P(Z_ =
Z,) = 1; Z_ and Z, being independent, this is only possible if they are
deterministic: thus giving the existence of d4 as their common almost sure
value.

Now if 0 < s < t < 1 the dimension of £4(Bj,,4) is (almost surely) d4.
This holds at the same time for all rational s, t; then it suffices to note that
dimg (E4(By)) is increasing in I to extend the equality to all s < ¢. ///

From this lemma follows that as soon as £4 has positive dimension it is
dense in the path.

For convenience we will prove the result in the time set, i.e. we shall
compute the dimension of Ty; it is known that planar Brownian motion dou-
bles Hausdorff dimensions (i.e. with probability 1, for any Borel subset I of
[O, 1], dlmH(BI) = 2d1mH(I) — cf. [22]), whence dlmH(SA) = 2d1mH(7;;)
Moreover, to avoid problems niear 0 and 1 we shall suppose that B is defined
for t € R — this will not change 74 since the definition is local.

First step: lower bound. Fix R > 0 and let A, be the following set:

A = {t: (By_rt_2-n — B:) N A(Bjyya-n11r) — Br) = @}
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For shorter notations, let s = £(A)/2; moreover, assume from now on that

€ (0,1) (if s > 1 there is nothing to prove, and since A # & we have s > 0
anyway). From the previous estimates for first- and second-moments, we
obtain

E(lg,(z) <27 E(1a,(z) 14,(y)) < 272" [1 V ™ —1$|3J .

Introduce the (random) measure p, having density 2°"1,_ with respect to
the Lebesgue measure. It is not hard to derive the following estimates:

E(llmll) = / 2" E(14,(x)) dz < 1, (2.15)
E(aIP) // #B(L, (5) L, (1)) d dy

z+2"" 1-2—n 1 2—snd
< 2 / dx/ dy + / dx/ J
0 z 0 ri2-n (Y — T)°

1-2-n 1— s—1
< 6 4 c/ (1-2)™ - 267 dz
0 1 — S 1 - S

<+ 2670 4 el Lo, (2.16)

Hence, ||pn|| has finite expectation and finite variance, independent of n:
there exists ¢ > 0 satisfying P(||un|| > €) > € for all positive n. Con-
sequently, it-is possible, with positive probability, to extract a subsequence
(kn,,) such that, for all k, ||un,|| = €. By a compactness argument, another
extraction leads to a converging subsequence, the limit u of which satisfies
llul] = €. pis supported on the intersection of the A,, this intersection is
non-empty: hence P([ A, # @) > 0.

Introduce then the notion of r-energy of a measure: if v is some mass
measure supported on a metric space X, let

A dv(z) dv(y)
012 [

[t is known that if X supports a mass measure of finite r-energy, then its
Hausdorff dimension is not less than r (cf. [21]). Let then r € (0,1 — s): a
calculation analogous to the derivation of (2.16) leads to

E(&(ptn)) < ¢+ c20r+s=ln y colrts=2n (2.17)

Performing another subsequence extraction, it is possible to obtain u sup-
ported on [ A, and having finite r-energy: hence

Vr<1l-s P(dimg([)A4n) >7)>0.

By definition 74 is the increasing union, for R going to 0, of [, A»(R): hence
for all 7 < 1—s we have P(dimg(74) > r) > 0. Combining this and the zero-
one result (Lemma 2.1) then proves that almost surely dimg(74) > 1 —s.
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Second step: upper bound. This step is usually the easier one, but
in the present case a complication arises due to the fact that the “non-
intersection” event we consider at B; depends on the position of B, — which
is not the case for instance in the case of cut-points [27]. This explains why
we need one more argument, namely the continuity of £ : A — £(A).

Fix a nice set A, ¢ > 0, R > 0 and a sequence (\,)n>o of positive
numbers, tending slowly to 0 (in the following sense: for all positive 7,
2™ = o(\,) — for instance, take A\, =1/n). Now suppose some time ¢ is
in A,. With positive probability, the following happens:

Bit_x,2-7 t42,2-7] C B(B:, )\31/22_"/2)

|B;_g-n — By| = 272

|Brya-n — By| > 2772

(Bit—r,t~2-7 U Bitra-ng4m) NB(B;, (1 —€)27"?) = &

(the first three conditions are a consequence of scaling, and the fourth one
is the start-separation lemma, more precisely the weakened version of it as
stated in equation (2.12)). Introduce A™ = {az :a € A,z € B(1,7n,): we
have

P(By-gt-2-») — Bt) N A" (Blya-nt1r — B:) = D | t € Ap)

9-nE(ATm)/2

= S = o—nlg(Am)—£(A))/2. (2.18)

It is easy to see that under the previous conditions, if ¢ € Ty, then every
t' € [t—An27",t+ A\ 27"] isin A,, as soon as 1, > 18),/(1—¢). From now
on we shall assume that this holds, and that n,, — 0. Putting these estimates
together, we obtain the following (where [ is the Lebesgue measure on R):
for all interval I,

PI(AnNI) > M27"Ap N1 # @) 2 c.27"EA™)—4A1/2, (2.19)

The Markov inequality then states that

?

P(I(A, N 1) > 327) < w

and E(I(A, N 1)) < 27A/2((]). From this and (2.19) follows that

2-mE(A/2|(T) 1

A2~ 2-nlE(Am)—¢(A)/2° (2.20)

P(A.NI#2)<C

By continuity of &, for large n we have |£(A™) —€&(A)| < €; by the hypothesis
on ), still for large n we have \, > 27"/2. Hence for large n:
1)

P(A, NI # @) < C 227 E(A)/2 o (2.21)
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Cover the interval [0, 1] with the I} = [k27", (k + 1)27"], and let X, be the
number of such intervals intersecting A,,. Then
I7)

= ZP(I,? NTa# )L 2" C2" 9—n&(A)/2 220/ I < Coem on{1-€(4)/2]
h 2-n
k

By another application of the Markov inequality,
P(Xn > 2n[1—§(A)/2+25]) < C o,

Hence by the Borel-Cantelli theorem, for sufficiently large n, A, is covered
by at most 271-¢(A)/2+2¢] intervals of length 2= — and this implies that
dimg (N An) < 1 —&(A)/2 + 2¢. Letting € tend to O then leads to (a.s.)
dimg () An) < 1—&(A)/2. This is true for all R > 0, hence remains true in
the limit R — 0: together with the first step of the proof this gives (a.s.)
dim(73) =1 — £&(A)/2 hence dim(€4) = 2 — £(A).

Then, €4 is contained in €4 and besides it contains every €4x for positive
n (with the previous notations): another use of the continuity of £ then gives

dimg(€4) = dimg(E4) =2 — £(A //

As a consequence, we get a second result:

Theorem 2.3 :

If A is any nice subset of the complex plane, then the set of globally A-exceptional
points, i.e. points B, satisfying

(Bog —B) NA.(Bgy — By) =@

has Hausdorff dimension 2—£(A) — and in particular it is a.s. non-empty for £(A) < 2
and a.s. empty for £(A) > 2.

// Again, extend B to (B;)cr defined on the entire real line. The set 7}
of A-exceptional times up to the scale R =1 (as was introduced previously)
in [0,1] is exactly the set of globally exceptional points. Therefore, the
previous proof can be applied directly. The upper bound is immediate: since
every globally exceptional point is locally exceptional we have dimy(7}) <
dimg(74) < 1—-¢&(A)/2 ass.

The lower bound requires a little more work, indeed we do not have a zero-
one law for the dimension of 7}. It can be seen that in fact Equation (2.17)
can be refined, the proof being exactly the same, into the following (with
the same notations as previously):

C

3 - ST
C>0 Vre(0,1—s) VYn>0 E(g’('u"))\l—(r+s)’

where C' may only depend on A. Hence, with the same constant and for all
A>1:
AC ) 1

P(&(un) < T=oTs >1- =
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one can then perform the subsequence extraction (cf. proof of Theorem 2.2)
in a way which ensures that, for all r,

AC
P Oand E;(p) € +———= ) 2 ¢, :
(1> om0 B30 < %) > ¢ (222

with ¢ > 0 and A > 1 independent of 7. Moreover, & (i) being a non-
decreasing function of r (since the set [0,1] is of diameter 1), we finally
obtain, with positive probability, a mass measure p supported on 7 satisfying

AC

1—(r+s) < oo

Vr<l—s Er(p) <

Hence, with positive probability, dimg(74) > 1 —s = 1 — £(A)/2, and
combining this to the previous paragraph leads to

P (dimH(TA) =1- f(—;Q) > 0.

It is then possible to conclude using the same method as in [25, pp. 8-9]. //

2.3.4 A remark about critical cases

In cases where £(A) = 2, the previous theorem is not sufficient to decide whether A-
exceptional points exist. We shall see in the next paragraph that &((—o0,0)) = £((0,00)) =
2. In fact these two cases are very different:
Proposition 2.4 :

Almost surely, £4 is empty for A = (0, 00) and non-empty (with Hausdorff dimen-
sion 0 though) for A = (—o0,0).

// The second point is easier: if ¢ is such that R(B;) is maximal in the path,
then By lies inside a half-plane whose border goes through B;. Since a.s.
B, is the only point having this real part, this proves that (B;— B;)/(Bs — B;)
is never in (—oo,0), which is precisely what we wanted.

The first point is more problematic. The method used to derive the value
of & for a wedge with end-point at the origin (cf. next paragraph) allows to
prove the following: Let a and G be in (0,2x), then the probability that,
given independent paths B! and B? starting from the unit circle, there exist
two wedges of angles a and 3, and containing respectively B! and B? up to
radius R, decreases as

pr(e, B) ~ R-(/e¥7/0),

Hence, as soon as 7w/a + m/3 is greater than 2, there is a.s. no point B; on
the path such that By lies in a wedge of angle o and By y lies in a wedge
of angle 3 (there is no “asymmetric two-sided cone point” of those angles
on the path).
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For all « € (0, ), introduce a; = 27 — @ and a» as the biggest angle in
(0, 27| satisfying /o + m/a2 > 2. Note that a; > a;: denote then

a1 + oo

Bla) = T2

Note that m/a + 7/8(c) > 2 and B(a) + a > 27 for all & € (0,7). From
this follows that, almost surely, for all « € (0, 7) NQ, there is no asymmetric
cone point with angles o and §().

Let now A = (0, 00) and suppose there is a point B; in £4. That is, there
exist two half-lines starting from B, whose reunion separates Byg 4 from By ;.
Then we are in one of two cases:

e Either these half-lines form a straight line, i.e. there is a straight line
cutting the path. This cannot happen, as recently proved by Bass and
Burdzy [3] — and the proof is very difficult.

e Or there are disjoint wedges of angles @ € (0,7) and 27 — «, each
containing one part of the path. Then, there exists o, € Q such that
a, > a and f(a,) > 27 — «, and B; is an asymmetric cone point with
angles ¢, and ((«,). We just saw that such a point cannot exist.

Hence £4 = 2. //

2.4 Bounds and conjectures on the exponent function

2.4.1 Known exact values of ¢

Proposition 2.5 :

(i). £&({1}) = 5/4, hence for all z # 0 and n > 0:

£ ({ze2ik”/",k =1,...,n}) =5n/4;

(ii). Letting W, be a wedge of angle 0 < a < 27

in particular £((0,00)) = £((—o0,0)) = 2;

// (i): The value of £({1}) = 5/4 has recently been derived by Lawler,
Schramm and Werner [32], and the proof is far beyond the scope of this
paper. The result for all n is then a straightforward consequence of Propo-
sition 2.1, point (iv).

(ii): Suppose A = W, is centered around the positive axis, so that
A = {re?,r > 0,0 < a/2}; introduce the symmetrical wedges Wy =
{re,r > 0,0 — x| < B/2}. If B! stays in Wy_o/» and B? remains in
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W,’r_aﬂ, then B'N AB? = @: The probability of staying in a wedge of angle
B until radius R being strongly approximated by R~"/# (the exponent is
obtained through the gambler’s ruin estimate combined with the analyticity
of the exponential function; the strong approximation is true but in fact not
needed here, cf. [16]), we get a lower bound:

pR(Wa) >c (R—-ﬂ'/(?l’—&/2))2 ,

hence £(W,) < 47/(2m — a).

Now remark that the condition B! N AB? = & means that the com-
plement of the paths contains an “hourglass”, i.e. the union of two disjoint
wedges of angle a/2. So introduce 7 > 0 and a (finite) family (S;);cicn
of hourglasses with angles a/2 — 7, such that any hourglass with angle o/2
contains one of the S;. If qg(%) is the probability that the paths are sepa-
rated from each other by S;, then pr(W,) < Y qr(i). Noticing that if §;
and (] are the angles of the wedges forming the complement of S;, we obtain
as previously gg(i) < R~™#~7/5 and optimizing this under the constraint
Bi + B = 27 — (a — 2n) — where the greatest value is for 8 = ' — we
finally get the following estimate:

pr(W,) < CN R~2/(m+n—a/2)

From this follows that £(W,) > 47 /(27 + 21— ), and letting n go to 0 then
gives the conclusion — at least for o > 0. But in fact the same method still
applies for a > 0: simply inflate the complement of the hourglass instead of
introducing angle a/2 — 7, the fact that the wedges to consider may overlap
does not change anything to the proof. //

Remark: If we denote A* = {ze”,z € A, |6] < a/2} (thatis, A “thickened” by an angle
@), then it can easily be proved that

ha(a)
A%) = 2.2
§(am) = A2, (2.23)
where h, is continuous (until the angle ¢, < 27 when £(A®) tends to infinity), non-
decreasing, and satisfies h(0) = 27€(A); in the wedge case, h is constant.

2.4.2 An upper bound for the exponent

From continuity of £ and the exact value £({1}) = 5/4 < 2, one can deduce that there
are “pivoting points” of any sufficiently small angle on the Brownian path (that is, points
around which one half of the path can rotate of a small angle without intersecting the
other half — the associated A being C, = {€®,0 € [0,a]}). The following proposition
gives a (bad but) quantitative bound for such values of & — without usage of the exact
value for a = 0:

Proposition 2.6 :
For all positive a;, we have the following upper bound:

4 [1 B (log2)2] _

2T — o 472

£(Ca) <
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// The proof is adapted from [46], where an upper bound for the classical
disconnection exponent for one path, i.e. £(1,0), was obtained. The method
is the following: First, estimate the extremal length of a strip bounded by
Lipschitz functions; then describe a sufficiently large subset of Eg, using
such strips, and use the previous estimate to derive a bound for P(ER).
Lemma :

Let f be a continuous, M-Lipschitz function on R, satisfying f(z) +
f(—z) = 2f(0) for all z, and let B > 0. Introduce the strip of width 3
and length 2r around f as

B() = {+ i el <r - sl < 5}

let W be a planar Brownian path starting at :f(0), and denote Aﬂ( )
the event that the point z + iy where W first reaches 957 (1) satnsﬂes
|z| = r (i.e. W exits B by one of the vertical parts of |ts boundary).
Then

P > oo [T+ 09|

/// This is an easy consequence of the following estimate, which can be
found in [1] and is a consequence of Proposition 2.9: If L is the extremal
distance between both vertical parts of 9B in B, then

L< 2[;(1 + M?);

using this together with the classical estimate for Brownian motion in a strip
provides the right estimate. ///

For the rest of this proof, we shall consider paths in the logarithmic
space, denoted by the letter W; the actual path B is obtained from W by
applying the exponential map — conformal invariance of Brownian motion
then proves that B is a Brownian path. Let f be a function such as in the
lemma: it is clear that if W' remains in B}(r) and W? stays in B} (r),
then B! and B? do not intersect up to the flrst time they reach radius e”
or e~". Together with the fact that P(A}'(r)) = P(A},,(r)). this leads to

P(Er({1})) > (P(A%(log R))/2)?, hence using the lemma:

P(Eg({1})) > cR™204M%), (2.24)
Doing the same with strips of width 3 = 7 — /2 (for which it can be
seen that B! and B? can rotate around 0 by an angle at least a/2 in each
direction) leads to

P(Eg(C,)) > cexp (1+ M?*logR|, (2.25)

71'_

hence, letting f = 0, a first bound on the exponent:

£(Ca) < =T

2T — o
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(this is also a direct consequence of C, C W, and the exact value of £&(W,,),
which happens to be precisely the upper bound we just obtained). Note that
the bound is never less than 2, hence we proved nothing useful yet.

We now want to consider families of strips. Keep 8 = 7 — «/2 and fix
v > 0; let Uy = {£1}" and for u € Uy let f, be constructed as follows:

e f,(0)=0,and for 1 <n <N, fu(ny) 2Zuk,

o f is affine on each [nv, (n + 1)y], satisfies fu(z) = fu.(Nv) for all
z > Nv and f,(—z) = —fu(z) for all z.

Then for u # ' the intersection of Bﬂ and Bﬁf, is not connected, hence
Aff and Aff are disjoint. This leads to

P(ERC) > ¢ 3 exp | -1+ (52 og ]
ueUy

for all N, where R = eM?. Then using P(Eg(C,)) < R™¢(), noticing that
all the terms of the sum are equal (there are 2V of them) and applying a

logarithm:
2
£(Ca)N7Y < —;—r(l +(8/27)*)Ny - Nlog2 — logc. (2.26)
Divide by N+ and let N go to infinity to obtain
8 (1)’ 1\ 2«
c <_(_) o 2(..)+_. 227
This is true for all v > 0; the optimal value is v = 73/ log 2, leading to

47 (log2)?
§(Ca) < 2T — [1— 4m? } ’

which is precisely what we wanted. //

Remark: The same proof gives a bound on £(A) if A is included in a small ball centered
at 1, as a function of the radius. But since it does not make use of the value of £({1}),
no modulus of continuity for £ can be obtained this way. Cf. however equation (2.23) for
another bound, which does provide such a modulus but is not quantitative.

As a consequence of this bound, we obtain the following

Theorem 2.4 :
For all a < log? 2/2m, the following holds: With probability 1, the set of local

pivoting points of angle o on a planar Brownian path is non-empty and has a positive
Hausdorff dimension.

Remark: The bound given in the theorem (log®2/27 ~ 0.076) is certainly not the best
one; simulations suggest that there are pivoting points of any angle less than 37 /4 ~ 2.356
— cf. next subsection for details and figure 2.1 for a picture of a pivot of angle 7/2. In
particular, the maximal angle is conjectured to be greater than 27/3, and this seems to
indicate that a discrete analogue of (local) pivoting points will appear on the exploration
process of a critical percolation cluster on the triangular lattice [43, 44].
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Figure 2.1: A pivoting point of angle 7/2
(in gray is the image of one half of the path by a rotation of angle +/2)

2.4.3 Conjectured and experimental values

Some exact values of £(A) are known, cf. subsection 2.2. However, heuristic arguments
seem to indicate that the formula giving the exponent for wedges is close to apply in other
cases such as notably the “weak pivot” exponent, namely:

iy . Om/2
§{L,e") = 5=

for all @ € [0, 7] — corresponding to a continuous version of Proposition 2.1, point (iv).
This is confirmed by simulations, at least for 8 = /2 and 6 = arctg(3/4) (cf. table 2.1),
based on the following
Conjecture

Let A be a bounded, non-empty subset of Z2\ {0}; let B! and B? be independent
Brownian paths starting respectively from 0 and 1, and S! and S? be independent
standard random walks starting respectively from 0 and (a, 0) with a sufficiently large
(so as not to make the probability in the formula equal to 0). Then,

P(Blyy N AB 1y = @) < P(Shy N ASh 1y = @) < T-6/2,

// There is no known direct proof of the existence of a non-intersection
exponent for random walks, the only way to obtain the desired behaviour
is coupling with Brownian motion — cf. [28]. The present generalization
can certainly be obtained in a similar way, note however that walks appear
that are not standard simple random walks but take steps in {a, ia, —a, —ia}
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for some a € C N Z2; exponents for such walks are the same as for SRW's
(cf. [11]), but strong approximation in not yet proved. //

The most severe restriction is the assumption that A C Z2\ {0}, in particular simula-
tions cannot (yet) be performed if A is connected, except for very special cases such as
wedges (where the exact exponent is known). However homogeneity can sometimes be
used when A € Q* (as for A = {5,4 + 3i} which has the same exponent as {1,e*} for
6 = arctg(3/4)).

conjectured number | computed | relative

A exponent | of samples | exponent error
{1} ~ 2.5 2.610° 2.501293 | +0.05%
{1,1} ~5/3 3.0108 1.662239 | —0.27%
1.668242x | +0.09%
{5,4+3i} | ~1.392679 1.2108 1.382311 | —0.74%
1.394610% | +0.14%
{5,4 + 34, 5¢} ~5/3 1.6107 1.662964 | —0.22%
1.665650% | —0.06%

Table 2.1: Some simulated values of ¢
(100 000-step walks — exponents marked with a star
are obtained after a non-rigorous correction)

2.5 Appendix
2.5.1 Sub-additivity

The following proposition is well known and included here only for completeness (note
however that the bounds are not asymptotic and that the constants are exactly known,
which is needed to derive continuity of £). A proof can be found e.g. in [12, Lemma
6.1.11].

Proposition 2.7 (Sub-additivity) :

Let f:[1,00) — (0,00) be some function such that:

e f is bounded and bounded away from 0 on any [0,!], > 0;
e There exist €, 4, cand C in (0,00) such that for all t > 1, ct=4 < f(t) < Ct™*;

e There exist 0 < c_ < ¢y < oo, at least one of which finite and positive, such

that
c-f(R)f(t) < f(#) < e fFR)F ().

Then, there is a € > 0 such that f(t) ~ t~¢. Moreover, for all t > 1,

vt t' € [1,00)

i f(R) STt

In particular, if both c_ and c are in (0, c0) we get strong approximation: f(t) < t7¢.
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2.5.2 Extremal distance

Many of the known estimates for exponents (apart from cases where the exact value in
known — such as the exponent of a cone here, and the intersection exponents in the half-
plane in [31]) come from the corresponding estimates for Brownian paths in rectangles,
using conformal invariance. The introduction of extremal distance generalizes the notion
of aspect ratio of a rectangle and hence provides a natural parameter in this process.
Theorem and Definition :

Let Q be an open, bounded, simply connected subset of C, the frontier of which
(oriented in the usual direct sense) is a Jordan curve v : [0,1] — 0%; fix four real
numbers 0 < a < b < c < d < 1. Then there exist a unique positive real number L
and a unique conformal map @ : Q — (0,L) x (0,1), with natural extension to £,
such that ®(y(a)) =1, ®(y(b)) =0, ®(y(c)) = L and &(vy(d)) = L + 1.

L is called extremal distance between 9; = v([a,b]) and 8 = ¥([c,d]) in ©; it is
denoted dg (0, 02).

// For the proof of this result, and much more about conformal maps and
related topics (including the proofs of Propositions 2.8 and 2.9), cf. [1]. //

Examples: The extremal distance between both sides of length a in an a x b rectangle is
b/a. By the analyticity of the logarithm in C\(—oc0,0], if @ = {pe?? : r < p < R,0 < § < a}
with 0 <7 < R < oo and 0 < a < 2m, then the extremal distance in 2 between both circle
arcs is o !log(R/r). Finally, if L is the extremal distance in Q between two connected parts
0, and 8, of 0%, then the extremal distance between the two components of 9\ (0; U3,)
is L1,

Proposition 2.8 :

Let p: Q — [0,00) be a continuous function, and denote A,(Q) = [[,, p* and for
any continuous arc v in €, L,( f p(z)|dz| (this defines the Rlemannlan metric
associated with p). Then we have thus giving a justification to the term extremal
length, the following characterization of dg:

dq(0:1,0:) = Sup Inf (7)2
’ o 7:01~+02 Ap("}/)

(where v : 8; ~ 0, means that v is a continuous path in Q with first and second
endpoints respectively in 8, and ;).

In many cases, it is sufficient to apply this with a finite family of p's to obtain a
fairly good lower bound for dg — usually even p =1, i.e. takmg the Euclidean metric, is
sufficient. Another estimate for dg, is the following:

Proposition 2.9 :
Let L be a positive real number and f;, f»: [0, L] — R be two continuous functions

such that for all ¢ in [0, L] we have fi(t) < fa(t). Introduce Q ={z+1y:0< z <
L, fi(z) <y < fo(z)}, and let & and &, stand for the vertical components of 9.

Then: ; ;
i
dQ(alaa2) 2 /0 m
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Moreover, if f; has a continuous derivative and f; = f; + a, then

L

da(01,0,) < 2 [1+ I £111%]-

2.5.3 Some topological tools

In this section, all sets considered will be assumed non-empty.
Definition :
If Ais a subset of the set C of complex numbers (or of any Banach space), note

Vi(A)={z € C:d(z,A) <r} = A+ B(0,r);

if A and B are two bounded subsets of C, introduce the Hausdorff distance between
A and B as
dy(A,B) =Inf{r: AC V,(B),B C V.(4)}.

It is easy to see that dg is nonnegative and satisfies the triangle inequality (namely
dy(A,B) < du(A,C) +du(C, B) for any A, B, C); moreover dg(A, B) = 0 if and
only if A = B. Hence, dy defines a metric topology on the set of compact subsets
of C, known as the Hausdorff topology.

We will need the following standard property about the Hausdorff topology on the
subsets of some fixed set, describing the compact case:
Proposition 2.10 :

Let K be a compact subset of C. Then the set P.(K) of all (non-empty) closed
subsets of K, equipped with the topology induced by the Hausdorff distance, is
compact.

Remark: It is still true (and the proof is basically the same) that for any complete space
E the set P.(E) is complete. Moreover, if E is locally compact, so is P.(E). However, it
is generally not bounded, hence not compact.
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Chapter 3

Hausdorff dimensions for SLEjg
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Introduction

It has been conjectured by theoretical physicists that various lattice models in statistical
physics (such as percolation, Potts model, Ising, uniform spanning trees), taken at their
critical point, have a continuous conformally invariant scaling limit when the mesh of the
lattice tends to 0. Recently, Oded Schramm [43] introduced a family of random processes
called Stochastic Loewner Evolutions (or SLE) which are the only possible conformally

57



58 CHAPTER 3. HAUSDORFF DIMENSIONS FOR SLE;

invariant scaling limits of random cluster interfaces (which are very closely related to all
above-mentioned models).

An SLE process is defined using the usual Loewner equation, where the driving function
is a time-changed Brownian motion: More specifically, in the present paper we will be
mainly concerned with SLE in the upper-half plane (sometimes called chordal SLE),
defined by the following PDE:

2

09(9) = e (e = (3.1)
where (B;) is a standard Brownian motion on the real line and & is a positive parameter. It
can be shown that this equation defines a family (g;) of conformal mappings from simply
connected domains (H;) contained in the upper-half plane, onto H. We shall denote by
K, the complement of H; in H: then for all £ > 0, K; is a compact subset of H and the
family (K¢) is increasing. For each value k > 0, this defines a random process denoted by
SLE, (see e.g. [42] for more details on SLE).

In three cases, it has now been proved that SLE, is the scaling limit of a discrete
model. Smirnov [44] proved that SLEg (which is one of the processes we will focus
on in the present paper) is the scaling limit of critical site percolation interfaces on the
triangular grid, and Lawler-Schramm-Werner [34] have proved that SLE, and SLEjg are
the respective scaling limits of planar loop-erased random walks and uniform Peano curves.
In fact, we will use Smirnov’s result as a key argument in the present paper.

It is natural to study the geometry of SLE,, and in particular, its dependence on k. It
is now known (see Rohde and Schramm [42] for k # 8 and Lawler-Schramm-Werner [34]
for k = 8) that there almost surely exists a continuous curve + : [0,00) — H (called the
trace of the SLFE) that generates K, in the following sense: H; is the infinite component
of H \ ¥([0,¢]). Furthermore (see [42]), v is a simple curve when k < 4, and it is a
space-filling curve when k > 8.

It is possible, for each = € H, to evaluate the asymptotics when ¢ — 0 of the probability
that «y intersects the disk of radius € around z. When « < 8, this probability decays like
e* for some a = a(k) > 0. This (loosely speaking) shows that the expected number of
balls of radius ¢ needed to cover 7[0,1] (say) is of the order of e=2**, and implies that
the Hausdorff dimension of v is not larger than 2 — . Rohde and Schramm [42] used
this strategy to show that almost surely the Hausdorff dimension of the SLE| trace is not
larger than 1+ x/8 when k < 8.

This exponent « and various other exponents describing exceptional subsets of ~ are
closely related to critical exponents that describe the behaviour near the critical point of
some functionals of the related statistical physics model. Actually, in the physics litera-
ture, the derivation of the exponent is often announced in terms of (almost sure) fractal
dimension, thereby omitting to prove the lower bound on the dimension. Indeed, it may
a priori be the case that the value e72*2 is due to exceptional realizations of SLE, with
exceptionally many visited balls of radius €, while “typical” realizations of SLE, meet much
less disks. One usual way to exclude such a possibility and to prove that 2 — a corresponds
to the almost sure dimension of a random fractal is to estimate second-moments, i.e.
given two balls of radius ¢, to estimate the probability that the SLE trace intersects both
of them.
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It is conjectured that for all ¥ € [0, 8], the Hausdorff dimension of the trace of SLE, is
indeed almost surely 1 4 x/8. Up to the present paper, this is known to hold for x = 8/3
for reasons that will be described below. We prove that it is the case for k = 6:
Theorem 3.1 :

| Almost surely, the dimension of the SLEs trace is 7/4.

Note that the discrete analog of this Theorem in terms of percolation is an open
problem, while it is known that the expected number of steps of a discrete exploration
process is N7/* (cf. [45] for further reference).

Another natural object is the boundary of an SLE, namely OK; NH. For k < 4, since
7 is a simple curve, the boundary of the SLE is the SLE itself; for k > 4, it is a strict
subset of the trace, and its dimension is conjectured to have dimension 1 + 2/k. Again,
the first moment estimate is known to hold for all ¥, but the only value of k > 4 for which
the dimension is known rigorously is k = 6:
Theorem 3.2 (Lawler-Schramm-Werner [30]) :

|  Almost surely, the dimension of the SLEs boundary is 4/3.

It is known that SLEg is closely related to planar Brownian motion, so that this theorem
is equivalent to the same statement for the exterior boundary of a Brownian path. It was
first conjectured by Mandelbrot that the fractal dimension of the boundary should be 4/3;
the first mathematical proof is due to Lawler, Schramm and Werner (cf. [30] for a review)
and goes as follows.

First, note that to each point of the Brownian path, two independent Brownian motions
can be associated (the past and the future), and that this point is on the boundary of the
complete path iff the union of these two processes does not disconnect it from infinity.
This remark provides a relation between the dimension of the boundary and the non-
disconnection exponent for two paths. It is then necessary to compute the value of this
exponent, and this requires a long and very technical proof. In particular, it uses the
fact that the Brownian intersection exponents are analytic [33] and sharp estimates for
the probabilities of non-disconnection events (these estimates, up to the value of the
exponents, were obtained earlier by Lawler in a series of clever and technical papers).

It is conjectured (see [42] for a discussion) that the boundary of SLE., k > 4 is
very similar to the trace of SLE., and a precise statement of this duality is known
for k = 6 [29]: this and Theorem 3.2 provide the dimension of SLEjg/3, namely: With
probability 1, the dimension of the SLEg3 trace is 4/3.

In the present paper, we will reprove, without using the relation to planar Brownian
motion, that the dimension of the outer frontier of SLEg is almost surely 4/3. Combin-
ing this with the previously mentioned universality arguments, this implies also that the
dimension of the SLEjg/3 trace and that of the outer frontier of planar Brownian motion
are almost surely 4/3 and gives a shorter proof of these results. We should also mention
here that SLEjg3 is the natural candidate for the scaling limit of self-avoiding walks [35]
and therefore also an interesting object. )

Theorem 3.1 can be related to the dimension of pioneer points on a Brownian path
(i.e. points B; that are on the boundary at time t): It is known [32] that the set of pioneer
points has dimension 7/4, the same as the SLEs trace, and this is not surprising since
they play similar roles. However, it can be proved that they are different (note for instance
that Brownian motion can enter its past hull and the SLE trace cannot).
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The method described here cannot be extended directly to other values of k. Indeed,
two properties that are specific to SLEg are used, namely the chordal/radial equivalence
(in the computation of the hitting probabilities) and the locality property (in the derivation
of second moments). It should be possible to obtain second moments using only the
Markov property (at the cost of a more technical proof); however, the derivation of the
hitting probabilities will need a different approach.

It is also possible to compute the dimension of exceptional time-sets. This is in fact
easier than for subsets of the upper-half plane, since the distortion of space due to the
past does not influence the probability estimates — and this makes it possible to compute
dimensions for every k > 0. In the last section we compute the dimension of the set of
boundary times and that of the set of cut-times (i.e. times ¢ such that (¢) is, respectively,
a boundary point or a cut-point of K). In particular, we prove the following :
Theorem 3.3 :

| Let (K;) be an SLE, for k < 8. Then, almost surely, K; has cut-points.
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3.1 Ingredients

We provide in this section several estimates and tools which will be needed in the subse-
quent proofs, but are also (maybe) of more general interest.

3.1.1 Hausdorff dimension of random sets

We will use the following result to derive the value of Hausdorff dimensions from the values
of exponents. It is stated here in dimension d > 1, but we will use it only for d = 1 (for
time sets) or d = 2 (for subsets of the complex plane).

Suppose that A denotes the Lebesgue measure in [0,1]%. Let (C.).»o be a family of
random Borelian subsets of the cube [0,1]%. Assume that for ¢ < &' we have C, C C.,,
and let C = [ C.. Define the following conditions (where f < g means that there exist
positive numbers c_ and ¢, such that c_g < f < c,.g, and where the constants do not
depend on ¢, z nor y):

1. For all z € [0, 1]¢,
P(zeC,) x¢e*;

2. There exists ¢ > 0 such that for all z € [0,1]¢ and &,

P\C-NB(z,e)) >ce¥jz € C.) 2 ec>0;

3. There exists ¢ > 0 such that for all z, y € [0,1]¢ and &,
P({z,y} C Cc) < ce®¥|z —y|~*.
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Proposition 3.1 :

(i). If conditions 1. and 2. hold, then a.s. dimyz(C) < d — s;

(ii). If conditions 1. and 3. hold, then with positive probability dimg(C) > d — s.

// A detailed proof of this Proposition can be found in [5] (Theorem 2).
The outline goes as follows. First, if conditions 1. and 2. hold, they provide
an upper bound on the expected number of balls of radius ¢ needed to cover
C., hence C. By Borel-Cantelli, this gives an upper bound on the Minkowski
dimension of C, which is valid with probability 1.

To derive a lower bound one introduces the random measures p. having
density e™*1¢, with respect to the Lebesgue measure in [0,1]%. If 1. and
3. hold, with positive probability it is possible to extract a sub-sequence
e, CONverging to some measure u supported on C, and to prove that with
positive probability p is a Frostman measure with dimension d — s, which
implies that the Hausdorff dimension of the support of u is at least d — s. //

Each time we will derive almost sure Hausdorff dimension, we will in fact check these
three conditions and use a zero-one law to conclude.

Remark: A similar proposition can be found in [27], stated in a discrete setup in which
condition 2. does not appear. Indeed, in most cases, this condition is a direct consequence
of condition 1. and the definition of C. (for instance, if C; is a union of balls of radius ¢).

3.1.2 An estimate for diffusions

We will need estimates for stochastic flows in an interval, that we now state and prove.
For background on this topic cf. for instance [2].

Let (X;) be the diffusion process on the interval I = [—1,1] defined by the following
stochastic differential equation:

dX, = 0dB, + f(X,)dt, (3.2)

where o > 0 and f is a given smooth function satisfying f' < —a < 0 and:

— f(-1+2) ~ f(1—12) ~ —C,.z7?, (3:3)
fl(-1+z)~ f'Q—1z) ~ —Cr.z72, (3.4)
_ f(-143) ~ (1~ 2) ~ ~Caa™ (35)

as £ — 04 for some positive constants Cy, Cs, Cs.

Let (g;) be the stochastic flow associated to this stochastic differential equation, i.e.
()0 is the family of random functions from I to itself such that g;(x) is the value at
time t of the solution of (3.2) starting from z at ¢ = 0. Note that X is absorbed on the
points 1 and —1. This implies that, with probability 1, for all ¢ > 0, there is an interval
I, C I such that

9(I) ={-1,1} U L.
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We want to estimate the length [; of I;. Consider the following family of partial
differential equations, indexed by b > 0:

(Ey) h(t,z) = ?-;h"(t, z) + f(2)W (¢, ) — bf' (R)h(t, z).

Assume that for each b > 0, (E;) has a positive solution h(t, z) satisfying
ho(t, z) < [(1 4 z)(1 — 2)]9® 2O} (3.6)

It is then possible, using the Feynman-Kac formula (following exactly [32]), to prove that
if 5> 0,

E((9:(2))") < e ¥[(1 + 2)(1 — 2)) (3.7)

(where as usual we let g;(xz) = 0 if the path starting from z is absorbed by the boundary
before time ¢). For all z, let

7. = Inf{¢t : g:(z) € {-1,1}} = Inf{¢ : gi(z) = 0}.

Lemma 3.1 :
In the previous setup,

Vb >0 E(l1,,5:) < e 2O

Note that this type of result does not seem to be standard in the literature on diffusions.
The natural way to obtain estimates on the length of I, is to use Jensen’s inequality, and
depending on the value of b it can give a lower bound (if b < 1) or an upper bound (if b > 1)
of the right form. Another way to obtain a lower bound is given in [32], and consists in
computing the length of the image of a small interval around 0, thus giving a lower bound
in terms of ¢'(0) which is valid for all 5 > 0. Hence, all that needs to be done to complete
the proof is to derive the upper bound in the case b < 1.

// The idea is to write the length [; as the integral of g; over I and to obtain
an upper bound on g;(z). Two cases contribute to the estimate:

o If g;(z) stays away from the boundary for s < ¢, then g/ (z) is bounded
by above and it will be possible to compare g;(z) to ¢;(0) and use (3.7);

e If g,(z) comes close to the boundary for s < ¢, then gj(z) becomes
very small and does not contribute to I, anymore.

The definition of g implies that for all z € I,

t
site) =exo | [ 1(ao)) as. (338)
0
and differentiating this with respect to z leads to

9"(z)
g ()

=[¢MW@@DM (3.9)
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Moreover, since f'is bounded by —a < 0, Equation (3.8) also proves that
almost surely, for all ¢ > 0 and for all z € I,

gi(z) < e (3.10)

and in particular [; < 2e~%.
Leta > 0and J, = [—1+ae /%, 1—ae™/4]: Iffor all s > 0, g,(z) € J,,
then condition (3.5) leads to |f"(gs(z))| < Caa3e33%/4, hence

g (z)
g:(z)

t
< / Cre~%e%%/4 dg < 4Ca a3,
0

Assume that for all s € [0,], gs(0) € Js (so that the previous estimate
applies for x = 0). For all z € (—1,0) such that 7, > t, write

t t t
/ F(g:(2))ds = / £(9:(2)) Ly yernds + / 7(95(2)) 1y, ). ds.
0 0 0

In the first integral, integrating f" over [gs(z), gs(0)] (which is a subset of
Js) and using (3.5) shows that

|f'(95(2)) — f'(95(0))] < Cem®(ae™/*) ™% = CaPe /", (3.11)

In the second one, since g, is monotone, gs(z) can only be in [—-1,—1 +
ae~/4], on which f is negative and increasing. Hence, f'(g,(z)) < f'(-1+
ae~%/%), and integrating f” between —1 + ae%/* and g,(0) as previously
leads to

/(=14 ae™/%) — £/(g,(0))] < Ca~%e™e/%.
In both cases we finally obtain

F'(95(2)) < f(95(0)) + Ce™* (ae™/*) 2

and integrating over s € [0, t] then proves that

i) < exp [+ t a0 < K0,

A similar computation shows that this also holds for z € (0,1). Integrating
this inequality leads to [; < 2K g;(0), hence to the desired conclusion — on
the event {Vs € [0,¢], g:(0) € Js}.

The very same argument can be applied on the interval [t;, 5], starting
from g, (0) instead of 0 (but the estimate remains valid). It shows that
conditionally to the fact that g,(0) stays in Js for all s in this interval, we
have

!
e < K0 095 (00 (0) = K1, 220 (312)

t1
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Lemma 3.2 :
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Besides, the Markov property at time ; shows that the quotient g;, (0)/g;, (0)
is independent of F;, given the value of g;, (0). Moreover, choosing « large
enough can make K arbitrarily close to 1.

We now have to consider the “bad” case where g,(0) exits J; (and this will
happen in particular for small values of s, for which J; can even be empty if o
is large enough). For this, we shall count the number of times it does it and
use the previous estimate (3.12) between those times. More precisely, let
t, = logn. Scaling shows that if g,(0) is outside J; for some s, € [tn, tnt1],
then with positive probability (independent of n and «) it stays outside of
[~1+ al/?e%/8 1 — a'/2e7%%/8] longer than t,4, — t,. If this is the case,
using the condition (3.4) together with (3.10), we obtain ., < c.l;, with
positive probability, for some constant ¢ < 1 (still independent of «). Hence,
since we know a priori that [° is decreasing (e.g. by (3.10)), its expected
value also decreases by a factor ¢, < 1.

Now let n; < ... < ny, be the integers n such that g,(0) exits J; in
[tn, tns1), and satisfying ¢, < t. At each t, the expectation of I® decreases
by a factor ¢,; and between two such times the previous method can be
applied, providing a factor K.e “(e+1~tn+2)  Pytting all the slices together,
we obtain

E(®|Ny,ny, ... ,nn,) < (COK)Nte—u(t.~Lt)

where L; is the total length of the “bad intervals”, i.e

N

L= Z(tnk+2 - tnk)-

k=1
But the sequence (41 — t,) is decreasing: Hence L; < ton,, Whatever the
exact values of the n;'s. Hence for all N we obtain
E(I’|N; = N) < N?(c,K)Ne ),

Since ¢, < 1 it is now possible to choose « so as to ensure that ¢, K < 1, in
which case we can sum the previous estimate over all possible values of N
to finally obtain the correct upper bound on E(1®). //

In the same setup, the probability that a given point z survives up to time ¢t > 0 is

P(1; > t) = P(gi(z) > 0) < 202,

// We know that E(h,(0, g:(z))) = hy(t,z) < e~ On the other hand,
since h, is bounded, we have E(h,(0, g:(z))) < ||A,(0, .)||P (7= > t): hence
ce= MO}t
Pl >t) > RO

Hh (0, )lloo

Conversely, consider the distribution of g;(z). It is easy to see that, except
for Dirac masses at —1 and 1, it has a bounded density p; with respect



3.2. DIMENSION OF THE TRACE OF SLE; 65

to the Lebesgue measure. Since h is positive, we know that —\(0) is the
largest eigenvalue of the generator of the diffusion, and that it is simple;
hence, ||pt|l2 < ||p1]l2 exp(—(¢—1)A(0)). It is then a direct application of the
Cauchy-Schwarz inequality to see that ||p||; < C.e™*(®%, and since we have
llpells = P(7z > t) this completes the proof of the Lemma. //

3.2 Dimension of the trace of SLE;

3.2.1 Construction of the trace

Let K be a chordal SLFE in the upper-half plane and C be the intersection of its trace
with the square [—1,1] x [1,3]. In order to apply Proposition 3.1, introduce

C.={z€[-1,1] x[1,3] : d(2,C) < €}.

Since C is a compact set, we have C' = [ C.. Moreover, we make the following remark:
Let z be some point in [—1,1] % [1, 3], € > 0, and assume that z is at distance greater than
e from the boundary of the square. Let Tp(,.) be the hitting time defined as usual as

T(e) = Inf{t : K, N B(z,¢) # 2}.
Then, we have the following equivalence:
z€C; < B(z,¢) ¢ Kry .- (3.13)

We call the second part of the equivalence non-disconnection: Indeed, the condition is
equivalent to the fact that Kr,, ., does not disconnect z from co. Note the similarity with
the definition of Brownian pioneer points [27].

3.2.2 The (non-)disconnection exponent

The proofs in this section rely on the equivalence between chordal and radial SLE for
k = 6 that have been proved in [32]. More precisely, there are two versions of SLE in the
unit disk. The first one (chordal SLE in the disk) is obtained by mapping chordal SLF in
the upper-half plane to the disk by a conformal map — so that it grows toward a point on
the unit circle. The second version is called radial SLE, and it corresponds to the case
where K grows toward 0 instead of a point on the boundary. It is defined by the following
PDE (if (g) is the corresponding family of conformal maps):

= () = 6.(z §i(2) + Be
atgt(z) - gt( )§t(2) _ ,Bt

where 8, = €'Vt is a time-scaled Brownian motion on the unit circle.

Chordal/radial equivalence is stated as follows. Let (K;) be a chordal SLEj in the unit
disk, starting at 1 and aiming at —1, and (K;) be a radial SLEs in the unit disk, starting
from 1 and aiming at 0. Let T (resp. T) be the first time when K (resp. K) separates —1

from 0. Then, Kp- and K7- have the same law, and so do (Kia7)i>0 and (K, 7)es0 up
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to a (random) time change. For complete references about this, cf. [32]. Note that this
is specific to the case kK = 6.
Proposition 3.2 :

Let (K;) be a chordal SLEg in the unit disk, starting from 1 and growing toward
—1, and T, the first time when K, hits the ball with radius r centered at 0. Then
K. disconnects this disk from the unit circle if and only if B(0,r) C Kr,, and as r
tends to 0,

p(r) L P(B(0,7) ¢ K1) < ri/4,

// This estimate is similar to theorem 3.1 in [32], of which it is the natural
counterpart in the case b = 0. Let K’ be a radial SLEg in the unit disk, aim-
ing at 0, and T} be the first time when it reaches B(0,r). The chordal/radial
equivalence shows that p(r) is equal to the probability that Kz, does not
disconnect B(0,r) from —1 — i.e. the probability that —1 ¢ K7, .

Let W, = €'V6Bt be the (time-scaled) Brownian motion on dU driving
(K}) (where (By) is a standard Brownian motion on R), and Y; be the con-
tinuous determination of the argument of g;(—1)/W, starting at 7. Y; is well
defined as long as K’ does not reach —1. Loewner's differential equation
and Itd’s formula show that

dY; = V6 dB; + cotg(Y;/2) dt,

i.e. (Y;) is a diffusion process with diffusion v/6 and drift cotg(-/2), absorbed
by {0,27} when —1 is absorbed by K. Straightforward calculations prove
that f(z) = e™/*(siny/2)'/? satisfies 0,f, = Lf, = —1 fi; we can now apply
Lemma 3.2 and obtain

P(-1¢ K!) < e /4, (3.14)
But Kobe's distortion theorem [41] states that, if r(¢) = d(0, K3), then

which, combined with estimate (3.14), proves the Proposition (details of the
last step are the same as in [32]). //

Corollary 3.1 :

Fix n > 0, and let B = B(z,r) be some disk contained in U, where |z| < 1 — 27
and r < n; let (K;) be a chordal SLEs in the unit disk, starting from 1 and aiming at
—1. If T denotes the first time when K, reaches B, then the probability p(B) that
K7, does not disconnect B from —1 satisfies

p(B) < r'/*,

where the implicit constants depend only on 7.

// There exists exactly one Mobius transform @ : U — U mapping 1 to
itself and B to a disk centered at 0. The radius of ®(B) is then

_ a4+ r? —1z2) = /(1 + 72— [22)2 —4r2
2r

—~ .

p(2,7)
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®(K) is then a chordal SLE in the disk starting from 1 and aiming at ®&(—1).
Moreover, |®(—1) — 1| is bounded away from 0 by a constant. The proof of
Proposition 3.2 can then be adapted (only changing the position of the end
point) to show that

p(B) < plp(z, 1)) < p(r) = r=/*,
with constants depending only on 7. //

It is then easy, by mapping the disk to the upper half-plane and using (3.13), to turn
this corollary into the first condition of Proposition 3.1, i.e.:

Vz € [-1,1] x [1,3] P(z € C.) <&/ (3.15)

It then follows from the definition of C; that condition 2. holds: If z € C,, let 2’ € C such
that |z — 2’| = € (which exists by a compactness argument), then the disk with diameter
[22'] is contained in B(z,¢) N C. and it has area we?/4.

3.2.3 Percolation and second moments

We now turn our attention to the derivation of second moments for the hitting probability
of disks by the SLEg trace, namely condition 3. in Proposition 3.1. Again we will make
strong use of the fact that we are in the case k = 6, and in fact the decay of correlations
we obtain is a consequence of the locality property of SLEs. It has been proved [44, 45]
that the exploration process of critical percolation on the triangular lattice converges to
the SLEg trace; in particular, consider critical percolation on a discretization of the upper-
half plane with mesh § > 0 and the usual boundary conditions (i.e. wired on [0, +oc0) and
free on (—o0,0)): Then the probability that the discrete exploration process 7; hits the
ball B(i, ) satisfies:

P (v N B(i,e) # @) — P(i € C.) = g/t (3.16)

But the fact that the discrete exploration process touches this disk is equivalent to the
existence of both a closed path connecting the disk to [0, +oc0) and an open path connecting
the disk to (—oo, 0). Applying the results in [45], this leads to the following

Corollary 3.2 :

Let A, be the annulus centered at 0, with radii € and 1. For all § > 0, consider
critical site-percolation on the intersection of A, with the triangular lattice of mesh
5. Let p(e,d) be the probability that C(0,¢) is connected to C(0,1) both by a path
of open vertices and a path of closed vertices in A.. Then, as § tends to 0, p(e, d)
converges to some p(¢) satisfying

ple) < g4,
Note that this says nothing about the speed of convergence, and hence does not provide
useful estimates for the probability of the discrete event itself — but it is sufficient for our

purpose here.

Now fix z, 2’ € [-1,1] x [1,3] and € < |z — Z'|/2. Again, the probability that the SLEs
trace touches both B(z,¢) and B(Z,¢) can be written as the limit, as § goes to 0, of the
corresponding probability for critical site-percolation on the trianqular lattice with mesh 4.

But this implies the following:
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e There exist a path of open vertices and a path of closed vertices, both connecting
C(z,e) to C(z,|z — 2'|/2) inside B(z, |z — 2|/2);

e There exist a path of open vertices and a path of closed vertices, both connecting
C(7,e) to C(Z, |z — 2'|/2) inside B(2',|z — 2'|/2);

e There exist a path of open vertices and a path of closed vertices, both connecting
C((z+2")/2,|z — 2|) to the real axis outside B((z + 2)/2, |z — 2']).

Those three events are independent, since they describe the behaviour of pairwise disjoint
sets of vertices; besides, the probability of each of them can be estimated using Corol-
lary 3.2 and converges, as 6 — 0 and up to universal multiplicative constants, respectively
to (e/d)Y4, (¢/d)** and d*/*, with d = |z — 2'|. Hence, letting & go to 0, we obtain the
following estimate:

1/2

1/2
P({z,2}CcC—¢)<C. (——5——) lz— 2|Vt =0 —% (3.17)

|z — 2| |z — /|14’

which is exactly condition 3. in Proposition 3.1 with s = 1/4, as we wanted.

3.2.4 Conclusion

It is now possible to apply Proposition 3.1 with s = 1/4: We obtain
P(dimg(C) < 7/4) =1, P(dimg(C) =7/4) > 0.

Now let H., be the complete trace of K. Since C C H.,, we obtain the same results for
Ho. Theorem 3.1 is then a consequence of the following
Lemma 3.3 (0-1 law for the trace) :

For all d € [0, 2], we have

P(dimg(Hoo) = d) € {0,1}.

// For all n € Z, let D, = dimg(#Hz-). For all n, we then have D,,, > D,
(because (#.) is increasing) and besides D,, and D, ; have the same law (by
the scaling property). Hence, almost surely, for all m, n, we have D,, = D,,.
Taking this to the limit gives P(dimg(H) = D,) = 1, hence the random
variable dimg(H) is Fon-measurable for all n. Hence it is Fy,-measurable,
and we know by Blumenthal's zero-one law that this o-field is trivial. //

3.3 Dimension of the boundary of SLFj;

In this section we adapt the previous proof to compute the Hausdorff dimension of the
boundary of K at some fixed time.
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3.3:1 The escape probability

Proposition 3.3 :
Let (K;) be an SLEjg in the half-plane, and T}, be the first time it reaches radius
R. Then, as R goes to infinity,

P(i ¢ Kp) < R7/2.
Note that the corresponding result for P(1 ¢ Kt’r;z) has been derived in [32].

// We shall suppose that K’ starts at 3 instead of 0 — it is easy to see
that this only changes the estimates up to a fixed constant. For each ¢t > 0
such that 0 ¢ K;, the intersection of C(0,2) with H, is an at most countable
union of open arcs, one of which covers the angles from some a; € (0, )
up to 7 (the “leftmost arc”). Introduce the following stopping times (where
S, =T, =0), for all n > 0:

Sp=Inf{t>Th1:>ar,_,},
T, =Inf{t> S, : K;NC(0,3) # K5 NC(0,3) }.

(Loosely speaking, S, is the first time after T,,_, when the process “touches”
the circle of radius 2 and T,, the first time after S, when it returns to the
circle of radius 3.) Moreover, let T = Inf{t : K, NC(0,R) # @}. Then,
almost surely, the integer N = Sup{n : T, < T'} is finite and we have

,0=T0<51<T1<...<SN<TN<T<OO

(i.e. K' crosses the annulus between radii 2 and 3 only finitely many times
before reaching radius R). In the Brownian case, N would be exponential
with parameter log(3/2)/log(R/2). Let Eg and E% be defined as

Er2{i¢ Ky}  EL2{0,i|n Ky =@}

We have to estimate P(Eg); from Theorem 3.1 in [31], P(E}) < R™'/3,
and we have P(Eg) > P(ER).

We shall decompose Ex according to the value of N: we can write
P(Eg) = Y o2, P(Eg, N = n). For fixed n, make the following remark:
if there is not disconnection before T', then there is not disconnection for
t inside any [Sk,Tx], for all & > n. Applying the strong Markov property
at time S and the locality property of SLEg, we see that the conditional
probability of non-disconnexion between [Sk,Tx] is a decreasing function of
the extremal length between C(0, R) and the boundary component spanning
from 0 to 2e*Sk, in the domain Hg, N B(0, R).

But Beurling’s inequality shows that, as soon as R > 4 (say), this ex-
tremal length is bounded below by an absolute constant (namely log(2)/x
but this is unimportant), for which the disconnexion probability is strictly
positive (because k > 4). Thus, for all k, the probability that there is no
disconnection between times Sy and T} is bounded by some A < 1, indepen-
dent of K7,_, and R; moreover, for the last part of the path, the probability
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that no disconnection occurs after time Ty is bounded by P(Eg, N = 0) (by
the strong Markov property at time T and the Beurling inequality). Hence,

i)\’“PE 0)<——1—P(E =0) < =
rN=0)< 3 PEr N = 1— )

k=0

—P(ER).

Written more synthetically, this becomes
P(ER) = P(ER, N = 0),

i.e. knowing that K’ does not disconnect i there is a positive probability that
it does not even touch the disk of radius 2. The very same proof applied this
time to E' leads to P(ER) < P(ER, N =0).

Now, it is easy to see that {Eg, N = 0} = {E%, N = 0}, meaning that
if K. does not intersect B(0,2), the conditions 7 ¢ Kz and [0,i]N K1t = &
are equivalent. Hence P(Eg, N = 0) = P(E%, N = 0), from which we can
conclude that

P(E}) < P(Eg) < R™/3. /

Exponent for b = 1/3

Proposition 3.4 :

Let (K;) be a chordal SLEg in the unit disk, starting from 1 and growing toward
—1, and T, the first time when K; hits the ball with radius r centered at 0. Let L,
be m times the extremal distance in U \ Kz, between C(0,r) and dU. Then, as r
tends to 0,

E(e /%) < 213,

// As previously, let K’ be a radial SLEg in U, starting from 1 and aimed
at 0. Then, since all the involved events satisfy non-disconnection between
C(0,7) and —1 (L7, = oo iff there is disconnection), we have:

q(r) A g (e‘LTr/3) —F (e—LT,/a ﬂLT,<oo) —E (e—L'T;/3 ]1—1¢K»',/) . (3.18)

We shall estimate the third term, again following the steps of the proof of
Theorem 3.1 in [32]. From now on, fix b =1/3 and v = v(k,b) = 2/3: since
b < 1, we need a separate proof here. Let I/, be the Euclidean length of the
arc g;(0U \ Kj). The only place in [32] where b 2> 1 was needed was in the
derivation of

E(I%) < exp (—vt). (3.19)

But this is exactly what Lemma 3.1 shows, after suitable rescaling. //
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3.3.3 Construction of the boundary

Again we describe the studied set as the decreasing intersection of a family B, of subsets

of the plane. Here, let
B, ={z ¢ K, :d(2,K)) < ¢}

In order for z to be in B, the following must happen: First there is some point in H at a
distance less than ¢ from z; letting T'(z,¢) = Inf{t : d(2, K};) < €}, and introducing the
extremal distance L(z,¢) between B(z, ) and U in U\ K7, ), this condition is equivalent
to

L(z,¢) < o0.

Then, the SLE after T'(z,¢) and up to time 1 must not disconnect z from “infinity” (i.e.
from 0U), and conditionally to K7, ) this happens with probability of order

e—L(z,s)/3.

Proposition 3.4 then states that P(z € B,) < £2/3. Second moments can be obtained
in the same fashion as for the trace; in this case, the relevant estimate (describing in
which conditions a disk intersects the boundary of the discrete exploration process) is the
following: First, two crossings of different colors must ensure that the exploration process
touches the disk; then a third path, disjoint of the first two, will prevent it from closing a
loop around it. Hence the following consequence of Proposition 3.4:

Corollary 3.3 :

Let A, be the annulus centered at 0, with radii € and 1. For all 6 > 0, consider
critical site-percolation on the intersection of A, with the triangular lattice of mesh
d. Let p(e,d) be the probability that C(0,¢) is connected to C(0,1) both by a path
of open vertices and two disjoint paths of closed vertices in A.. Then, as ¢ tends to
0, p(e,d) converges to some j(e) satisfying

pe) < /3.

The rest of the construction is the same, and we obtain sufficient estimates to apply
Proposition 3.1, this time with s = 2/3. We obtain

) =1, P(dlmH(aK1) = %) > 0,

[N

and once more we need a zero-one law:
Lemma 3.4 (0-1 law for the boundary) :

For all d € [0,2], we have

P(dimg(3K,) = d) € {0,1}.

// Let D; = dimy(0K;). As previously in the case of the trace, scaling
shows that the law of D, does not depend on ¢ > 0. However here (0K;)
is not increasing anymore, so we need another argument. Let ¢, t' > 0 and
consider the boundary of K;,+. It has two parts, namely the “new” part
0; = 0Kyv \ K3, and the “old” part 0, = 0K,;,v N K; C OK;. It is clear that

Dt+t’ = dlmH(al) \ dimH(Bg),
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hence in particular dimg(0;) < Dyr. Besides, conformal mapping shows
that dimy(0;) has the same law as Dy, hence the same law as D;, . Hence,
with probability 1, D;y¢ = dimg(0s).

Moreover, conformal mapping also shows that dimg(d;) is independent
of F;. This proves that for all ¢, ¢ > 0 the dimension of 0K, is independent
of F;:. It is then a direct application of Blumenthal's zero-one law that D,
has an almost sure value. //

This concludes the proof of Theorem 3.1.

3.3.4 Dimension of SLEg;

It should be theoretically possible to apply the previous construction to other values of
k, but some of the main tools that we used (namely, the radial/chordal equivalence and
the restriction property) do hold only for k = 6 so that additional arguments would be
required.

For the special value x = 8/3, the result on the frontier of SLEs makes it possible to
show that the dimension of SLEg/3 is almost surely 4/3. More precisely, Lawler-Schramm-
Werner [29] have shown that the outer boundary of the union of 8 SLEjg3's has the same
law as that of the union of 5 Brownian excursions. The zero-one laws previously proved for
both the trace and the boundary of SLE extends to this object: Its boundary has a.s. the
same dimension as the boundary of SLEg and also a.s. the same dimension as SLEg/s.
Hence these dimensions are equal, and the result follows.

3.4 Time-sets for SLE,

We now turn our attention to the dimension of sets of exceptional times. Note that
time corresponds to the Loewner parameterization of the trace, which is in a way not the
most canonical: It is not clear for instance whether it behaves nicely under time-reversal.
More precisely, how smoothly does the Riemann map from H \ ([¢,00)) to H evolve as ¢
increases?

A natural question that also arises is the following. Let A be some (random) subset of
[0, 00], and y(A) be its image by the trace of a chordal SLE in the upper-half plane. Is it
possible, knowing the Hausdorff dimension of A, to obtain that of y(A)? Such a relation
holds for Brownian motion [22], namely the dimension of the image is a.s. equal to twice
the dimension of A. It is expected that such a relation cannot hold for SLE without
additional requirements on A, however a few cases can be treated entirely (in the sense
that both the time and space dimensions can be computed in independent ways), at least
for k = 6: the trace itself, cut-points, and the boundary.

3.4.1 Boundary times

In the previous section, we derived the dimension of the boundary of SLEg. The dimension
of the corresponding time-set can also be computed (and it should be noted that the
following is true even for k # 6):
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Theorem 3.4 :
Let K be an SLE in the upper-half plane, with x > 4, and let D be the set of

boundary times in [0,1] — i.e. the set of times ¢ such that v(t) € 8K;. Then, with
probability 1,

: 4+ kK
dimg (D) = PR

// It is clearly sufficient to compute the dimension of left-boundary times,
namely times ¢ such that g;(y(t)) € (—oo, 8;) where 3 is the process driving
K. Introduce the sets of approximate left-boundary times between ¢ and aq,
defined by

D, , = {t: Inf(RN g;(Ktse)) = Inf(RN g¢(Ki1a)) }

(i.e., v may touch the real line on the right side of K but not on the left
side). Let D be the intersection of the D, , when ¢ — 0. Scaling and the
Markov property show that P(t € D.,) depends only on €/a. Hence, to
obtain condition 1. in Proposition 3.1, with s = (k — 4)/2k, it is sufficient
to obtain the following estimate:

Lemma :
Let (K;) be a chordal SLE, (k > 4) in the upper-half plane: then as

t goes to infinity,

pe 2 P(Inf(RN K;) = Inf(R N K;)) < @49/

/// First, apply the Markov property of SLE at time 1 and map the picture to
the upper-half plane by ® = g; — ;. Let Y, < 0 be the image of Inf(RN K;)
by ®. The process (K,) = (®(Ki14)) is an SLE,, and the probability we
are interested in is then given by

pe=PY, ¢ K1)

Let (8,) and g, : H\ K, — H be respectively the process driving K and
the associated conformal maps; let Y, = g.(Y,) — B,. It is easy to see,
using Ité’s formula and the definition of chordal SLE, that Y satisfies the
following SDE (where B is a standard Brownian motion):

9
dY, = vk dB, + 3 du; (3.20)
t

i.e., up to a linear time change, Y is a Bessel process of dimension b =
1+4/k < 2 starting from Y;. Hence, it is known that the probability that it
does not hit 0 up to time u behaves like (u/Y?)™ where v = (k—4)/2k > 0
is the index of the process. Hence,

- 4— 2vy _ 43—V
pt"tyE(}/o)"t ’

as we wanted. ///
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This provides the right estimate:

}%teDwa[Zr

where the implicit constants depend only on . Notice that if t4+¢isin D,,,
then ¢t € D, , (because K; C Ki,.) and even [t,t + €] C Dy 4. This and
the previous estimate provide

P(t+¢€ D.,)
P(t € Dy ,)

P([t,t +¢€]) C Dacylt € Daeg) 2 >c>0,

which is condition 2. It remains to obtain second moments, and these are
given by the Markov property, as follows.

Let z < y be two times in [0,1]. If z and y are in D, , with a > y — z,
then in particular z € D, ,_, and y € D, ,. By the Markov property of SLE,
applied at time y, those two events are independent. Hence we obtain

P(z,y€ D.,) < P(x € D.y_)P(y € D, ,)

s s 2s
<ol [ o5
y—z] la (y —z)°

still with s = (k — 4)/2k. This is exactly condition 3. If a < y — z then
the events z € D, , and y € D, , are themselves independent and the same
method applies. Hence, everything is ready to apply Proposition 3.1: For all
a > 0, with positive probability,

K—4
4

dimg (D) =1 — =2—g.

Noticing then that D! C D c D? hence provides
: K
P (dlmH(D) =2- Z) > 0.

It is then easy to apply the same proof as that of Lemma 3.4 and obtain a
zero-one law for dimg (D), thus completing the proof. //

Remark: In particular, the dimension of boundary-times is never less than 1/2, even
when k — co. Note that in this case, the dimension of the Bessel process appearing in the
proof tends to 1, so the exponent 1/2 is the same as in the usual gambler’s ruin estimate.

This is not surprising since, when & tends to oo, the trace of an SLE, converges, after
suitable rescaling, to

Yoo - t— (Bt,LtBt),

where B is standard Brownian motion and (L7) denotes its local time at point z (cf. [6]).
In the limit, the boundary times correspond to last-passage times, which have dimension
1/2 by a reflection argument.
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3.4.2 Cut-times and the existence of cut-points

We saw in the previous sections how the dimension of the trace of SLE was related to non-
disconnection exponents: Here, we follow the analogy with Brownian motion to describe
cut-points on the SLE trace. Let K be a chordal SLE, and C be the set of cut-points
of Ks in K; (i.e., the set of points z € K; such that K, \ {z} is not connected). Such a
point is on the boundary of K, hence if 7 is the trace of K every cut-point is on ([0, 1]).
We say that ¢ is a cut-time if (%) is a cut-point, and note C' the set of cut-times.
Theorem 3.5 :

(i). FO< k<4, then C=[0,1] and C = K;;

(ii). If4 < k < 8, then with positive probability C' has Hausdorff dimension (8—x) /4,
in particular it is non-empty, hence C # &;

(iii). If & > 8 then a.s. C = @ and K; has no cut-point.

// (i) is a direct consequence of the fact that v be a simple path [42], and
(iii) is proved exactly like (ii) with the usual convention that a set of negative
dimension is empty. Hence, we may assume that 4 < k < 8. Again we are
going to apply Proposition 3.1, and the proof will be very similar to that of
Theorem 3.4.

Introduce the set of approximate cut-times between ¢ and a defined as

Cs,az{te [0,1] : v([t+&,t+a]) N (K; UR) = &} .

Define C* as the (indeed non-increasing) intersection of the C,,. By the
Markov property at time ¢, follows that P(t € C.,) does not depend on
t. Moreover, scaling shows that it is a function of €/a. Hence, to obtain
condition 1. in Proposition 3.1 with s = (k — 4)/4, it suffices to prove the
following:

Lemma :
Let K be an SLE in the upper-half plane, starting at z € (0,1),

with k > 4. Then, when t — o0,
P({0,1} N K, = @) =< t*4="/4,

/// The proof of this Lemma is very similar to that of Theorem 3.1 in [36].
Two things have to be done: First, extend this theorem to the (easier)
case where w; = wy = 0; second, to translate it back to an estimate for
SLE at a fixed time. Introduce the following processes: X; = g:(1) — B,
Y; = g:(0) — B;, where () is the time-scaled Brownian motion driving K.
As was seen previously, X and Y satisfy the following SDE's:

2
dX, = 2dt +VrdB,  dY, = —dt + /xdB,,
X, Y,

where B is a standard real Brownian motion. Let L; = X; — Y; be the
length of the image interval, and let R; = X;/L;. Tedious application of
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Ité's formula leads to

2dt 2(1 — 2R;)

VE
SR dR it + Y4B,
LRi(1—Ry)’ ' i t

dL "~ I?R,(1-Ry) L,

Introduce the following random time-change:

L2 Ry (1-R
at(s) = mtug t@h&

then the previous system reduces to dLy,) = Lysds, i.e. almost surely
Ly = €°, and, letting Z; = Ry,

kZs(1— Z,)

5 ~dB, (3.21)

dZ; = (1-2Z,)ds+
as in [36]. Now introduce the following stopping times:
S =Inf{s: Z, € {0,1}}, T=t(S)=Inf{t: R, € {0,1}}.

The counterpart of Theorem 3.1 in [36] for the case w; = wy = 0 is obtained
as Lemma 3.2 in the present paper, it gives the following estimate:

—4
P(S > s) < exp(—A(0,0)s) = exp (—K 5 s) . (3.22)
It remains to transfer this estimate to deterministic values of ¢. Recall
that we have 2dt(s) = e*Z,(1 — Z,)ds. This already proves that dt(s) <
e?*/8ds i.e. t(s) < €2°/16 or s > log(16t(s))/2. Hence,

P(T > t) <P (S > 1_()&(216_25)) = t_(n_4)/4,

To obtain the lower bound, note that the proof of Theorem 3.1 in [36] also
gives the distribution of R, knowing that S > s — which is the eigenfunction
associated to the eigenvalue A\(0,0) for the generator of R, namely

c.[z(1 — z)]=9/x,

In particular, conditionally to the fact that S > s, there is a positive prob-
ability that Z; € [1/4,3/4]. Comparison with Brownian motion then shows
that

P (Vs € [sy,8, +1],Z;s € E, g}

13
Zs VRN 2
06[4 4}) c>0

and combining this with (3.22) provides, for all s, > 42:

1
P(Vse (s, — 1,8,],Zs € [g,g”5>so> =>c>0.



3.4. TIME-SETS FOR SLE, 77

Now on this event, we obtain

> [ 5 2
t(s.) > ds > ¢, .e“%
o) = 50—1 128 =z 0 I

from which the lower bound follows:

PT> 0> o (55 Y)Y 5 oo

4

The end of the proof is exactly the same as that of the previous theorem,
so we do not repeat it here. //

Remarks: For k = 8 (where the obtained dimension is 0), to our knowledge the question
of existence is open. Oded Schramm conjectures that there is no cut-point on SLEs. Note
that in this case the existence of the trace requires a separate proof [34]; the trace is then
the scaling limit of the UST Peano curve, hence it is itself a Peano curve, but this is not
sufficient to prove that there is no cut-point on K.

If K = 6, we get that the dimension of cut-times is 1/2. It is known in this case (using
Brownian exponents) that the dimension of cut-points is 2 —5/4 = 3/4 (cf. [32]). For the
other values of k € (4,8), the dimension of C' is not known.
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Introduction

In this chapter we derive the dimension of the SLE trace in the general case, i.e. we prove
the following theorem, which was conjectured in [42]:

Theorem 4.1 :
Let v be the trace of an SLE,, where « € (0,8), k # 4. Then, almost surely, the

path ([0, +o0]) has Hausdorff dimension 1 + x/8.

Not surprisingly, we are going to follow the steps of the previous proof (which was
specific to the.case k = 6), and in particular our main tool will still be Proposition 3.1.
Note that the zero-one laws stated in the previous chapter still hold here, so it will be
sufficient to obtain Hausdorff dimensions with positive probability.

We will keep the notation # for the complete trace of the process and
C.={z€e[-1,1] x[1,3]:d(2,H) < €}.
Then again, # N [-1,1] x [1,3] is the non-increasing intersection of the C. as ¢ goes to

0, and the setup is exactly the same as in the previous chapter; the event {z € C.} is can

79
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still be written in terms of non-disconnection, and Condition 2. in Proposition 3.1 is still
an automatic consequence of the definition of C..

However, we cannot use the chordal/radial equivalence anymore, nor apply the relation
between SLEg and percolation to obtain the correct decay of correlations, hence we need
a different approach to obtain conditions 1. and 3. The general principle leading to the
first moment estimate is the same, namely we will look at the growing compact K; from
the point of view of a fixed point in the upper-half plane; but the proof of Condition 3. is
a pain in the neck.

4.1 The first moment estimate

Fix K > 0 and z, € H; let y be the trace of a chordal SLE, in H, and let H = ([0, c0))
be the image of v. We want to compute the probability that # touches the disk B(z,,¢)
for ¢ > 0.
Proposition 4.1 :

Let a(z,) € (0,7) be the argument of z,. Then, if k € (0, 8), we have the following
estimate:

1-x/8
P(B(z,,e) "N H # @) < ((\_s_)) (sin a(z,))¥/" " .

Iz,

If £ > 8, then this probability is equal to 1 for all € > 0.

Remark: We know that H is a closed subset of H (indeed, this is a consequence of the
transience of v — cf. [42]). For x > 8, this proves that for all z € H, P(z € #) = 1, hence
‘H almost surely has full measure. And since it is closed, this implies that with probability
1, v is space-filling, as was already proved by Rohde and Schramm ([42]) for x > 8 and by
Lawler, Schramm and Werner ([34]) for k = 8 (for which a separate proof is needed for
the existence of ).

// The idea of the following proof is originally due to Oded Schramm. Let
d: be the Euclidean distance between z, and K;. () is then a non-increasing
process, and its limit when ¢ goes to +oo is the distance between z, and H.
Besides, we can apply the Kdbe 1/4 theorem to the map g¢;: this leads to
the estimate

(\‘
5, < SWilz)) (4.1)
|9: ()
(where the implicit constants are universal — namely, 1/4 and 4).

It will be more convenient to fix the image of z, under the random con-
formal map. Hence, introduce the following map:

gt 12— —gt(z) — M.
9:(2) — 9:(2,)

It is easy to see that §; maps H \ K; conformally onto the unit disk U, and
maps infinity to 1 and 2, to 0. In other words, the map

- (wm(zo) - gt<zo))

w—1
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maps the complement of some compact K; in U onto U, fixing 0 and 1 (in
all this proof, z will stand for an element of H and w for an element of U).
Moreover, in this setup Equation 4.1 becomes simpler (because the distance
between 0 and the unit circle is fixed): Namely,

o1
192(20) |

Differentiating §;(z) with respect to ¢ (which is a little messy and error-
prone, but straightforward) leads to the following differential equation:

d¢ (4.2)

2(6, — 1)° ) ﬁtﬁt(z)@t(z) -1)

(gt(zo) - my@? G(2)— B (4.3)

0:41(2) =

where (3, is the process on the unit circle defined by
~ — gi(z
/Bt — IHt gt( 0) .
B — gi(z,)

Now the structure of the expression for 8,g;(z) (Equation (4.3)) is quite nice:
The first factor does not depend on z and the second one only depends on
z, through §. Hence, let us define a (random) time change by taking the
real part of the first factor; namely let

(B — 1)
gt(zo) - m /Bt2

ds = dt,

and introduce h; = Gy(s).
Then Equation (4.3) becomes similar to a radial Loewner equation, i.e.
it can be written as

Oshs(2) = X (Bys), hs(2)), (4.4)

where X is the vector field in U defined as

2¢w(w — 1)
1-=Qw=¢)

X(¢w) = (4.5)

The only missing part is now the description of the driving process 8.
Applying 1td’s formula (now this is an ugly computation) and then the pre-
vious time-change, we see that Bt(s) can be written as exp(ic;) where ()
is a diffusion process on the interval (0, 27) satisfying the equation

k—4

da, = vk dB, + 5

cotg 923 ds (4.6)

with the initial condition o, = 2a(z,).
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The above construction is licit as long as z, remains inside the domain of
g;. While this holds, differentiating (4.4) with respect to z at z = z, yields
2h(2,)

ash's(zo) = T____—B—’

so that dividing by h(z,) # 0 and taking the real parts of both sides we get
0s log | (z,)| =1,

i.e. almost surely, for all s > 0, |h}(z,)| = |h}(2,)|e’. Combining this
with (4.2) shows that

S —S

5t(s) < d,e” % < %(zo) e

Finally, let us look at what happens at the stopping time
T, = Inf{t : z, € K3}

We are in one out of two situations: Either 2, is on the trace: in this case ¢,
goes to 0, meaning that s goes to oo, and the diffusion (a;) does not touch
{0,27}. Or, z, is not on the trace: then d; tends to d(z,,#) > 0, and the
diffusion () reaches the boundary of the interval (0,27) at time

s, 2 logd, —logd(z,, 1) + O(1).

Let S be the surviving time of (as): the previous construction then shows
that
d(z,,H) <4, 5,

and estimating the probability that z, is e-close to the trace becomes equiv-
alent to estimating the probability that () survives up to time log(é, /).

Assume for a moment that k > 4. The behaviour of cotg a/2 when « is
close to 0 shows that (a;) can be compared to the diffusion (&) generated

by
_ ds
da, = VK dB, + (k — 4) =

8

which (up to a linear time-change) is a Bessel process of dimension

_3&—8
=—5

More precisely: (&;) survives almost surely, if and only if (a;) survives almost
surely. But it is known that a Bessel process of dimension d survives almost
surely if d > 2, and dies almost surely if d < 2. Hence, we already obtain
the phase transition at kK = 8:

d

o If K > 8, then d > 2, and («;) survives almost surely. Hence, almost
surely d(z,,#) = 0, and for all £ > 0 the trace will almost surely touch
B(z,,¢);
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e If Kk <8, then d < 2 and (a;) dies almost surely in finite time. Hence,
almost surely d(z,,#) > 0.

So, there is nothing left to prove for k > 8. From now on, we shall then
suppose that « € (0, 8). If & < 4 then the drift of (o) is toward the boundary,
hence comparing it to standard Brownian motion shows that it dies almost
surely in finite time as for k € (4,8). We want to apply Lemma 3.2 to (a;)
and for that we need to know the principal eigenvalue of the generator L,
of the diffusion. It can be seen that the function

(sin(m/?))g/“"1

is a positive eigenfunction of L, with eigenvalue 1 — k/8: hence we already
obtain that, if «, is far from the boundary, P(S > s) =< exp(—(1 — x/8)s)
le.

1-x/8
P(d(zo,';-[) S 5) = 6(1—5/8)103(5/50) = <5£> , (47)

0

which is the correct estimate. It remains to take the value of o, into account.
Introduce the following process:

X, £ sin (%)S/K_l e(1-x/8)s

(and X; =0 if s > S). Applying the 1t6 formula shows that (Xj) is a local
martingale (in fact this is the same statement as saying that sin(z/2)%*~1 is
an eigenfunction of the generator), and it is bounded on any bounded time
interval. Hence, taking the expected value of X at times 0 and s shows that

8/k—1 8/k~-1
sin (9‘2—0) — e(=%/83 P(S > 5) E [sin (%) S> SJ . (4.8)

The same proof as that of Lemma 3.2 shows that, for all s > 1,
P(as € [7/2,37/2]|S = s5) >0

with constants depending only on «; combining this with (4.8) then provides

8/k—1
P(S > s) x e"(7*/®sgip (%) ,

again with constants depending only on k. Applying the same computation
as for Equation (4.7) ends the proof. //

Corollary 4.1 :
Let D & C be a simply connected domain, a and b be two points on the boundary

of D, and « be the path of a chordal SLE, in D from a to b, with x € (0,8). Then,
for all z € D and € < d(z,0D)/2, we have

c 1-x/8 8/k-1
P(yNB(z,¢) # @) < (m) (w,(ab) A w,(ba)) ,

where w, is the harmonic measure on 9D seen from z and ab is the positively oriented
arc from a to b along 0D.
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// This is easily seen by considering a conformal map ¢ mapping D to the
upper-half plane, a to 0 and b to co: Since the harmonic measure from z
in D is mapped to the harmonic measure from ®(z) in H, it is sufficient to
prove that for all z € H,

w;(Ry) Aw,(R_) < sin(arg 2) ;

and w,(R,) can be explicitly computed, because w, is a Cauchy distribution
on the real line:

o0 d 1 1
w:r-}—iy(RF) = %\/0 1+ (u,li/Z)g/yg = 5 + ;a‘rCtg(x/y)

When z tends to —oo, this behaves like —y/mz which is equivalent to
sin(arg(z + 1y)) /. //

This “intrinsic” formulation of the hitting probability will make the derivation of the
second moment estimate more readable.

4.2 The second moment estimate

We still have to derive condition 3. in Proposition 3.1. For k = 6 it was obtained using
the locality property, but this does not hold for other values of x, so we can rely only on
the Markov property. The general idea is as follows. Fix two points z and 2’ in the upper
half plane, and € < |2’ — z|/2. We want to estimate the probability that the trace ~ visits
both B(z,e) and B(z',€). Assume that it touches, say, the first one (and this happens
with probability of order '=*/8), and that it does so before touching the other.

Apply the Markov property at the first hitting time T.(z) of B(z,¢): If everything is
going fine and we are lucky, the distance between 2z’ and K7, ;) will still be of order |2’ —z|.
Hence, applying the first moment estimate to this situation shows that the conditional
probability that v hits B(2’,€) is not greater than C.(g/|2' — z|)1~*/® (it might actually be
much smaller, if the real part of gr,(;)(2’) is large, but this is not a problem since we only
need an upper bound), and this gives the right estimate for the second moments:

5.2—»:/4

C

|Z’ _ zll—n/S :

The whole point is then to prove that this is the main contribution to the second moment
probability.

Small print: You probably don’t want to read the rest of this section. It is full of ugly notations and
rather dull. You can jump directly to Section 4.3.

4.2.1 The setup

Let z and 2’ be two points in the upper-half plane, and let § = d(z,2')/2. Let

E=C (%,25) U{w e H:d(w,2) = d(w, z") < 6v/5}
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|

Figure 4.1: Second moments: the setup

be a “separator set” between z and z’' (cf. Figure 4.1).

Introduce a small constant a € (0,1) (to be determined later), and let r, = é.a™. We
will condition the path with respect to the order in which it visits the circles C, = C(z,7,)
and C], = C(Z, ry), so introduce the following families of stopping times:

T, =Inf{t : y(¢) € Cp};
T, =1Inf{t > T, : v(t) € £};
T, =Inf{t:v(t) € C.};
T! =Inf{t > T : v(t) € £}.

Moreover, define inductively N, = N, = 0 and
Nip1 = Min{k : T, > Ty},
N!,, = Min{k : T} > Tr,}

(so that the (IV;+; — NV;) are the successive numbers of circles around z that -y crosses for
the first time between returns on £). Lastly, let K be the number of times  returns on £
before touching B(z,¢) (that is, Max{k : ry, > ¢}) and K’ accordingly around z'.

Splitting the event that v touches both B(z,€) and B(z', ) according to the values of
K, and then according to the values of the (N;;1 — IV;) for 0 < 7 < K and (Nj41 — N;)
for 0 < j < K', we have

P(yNB(ze) # 2, yNB(Z,¢) # @) =
YN B(z,e) # 3, yNB(7,¢) # 2

ZZ Z ZP K kyNi — Ny =ny,...,Ng = Ng-1 =n | (4.9)

k=0 k'=0n1,...,ng>0n,... n ,>0 k, N’ NOI = TLII,. ey ,2/ - le:’—l = n;c’

Note that we say nothing about the order in which the sequences Ty, and T,’V, are

intertwined, all we know is that they are both increasing. So each term in the summation
can in turn be written as a sum of “elementary probabilities” over all possible such orderings.

There are ,
(k +k ) < k¥
k N
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of them; so if we obtain an estimate for each term of the sum restricted to a given ordering,
which does not depend on this ordering, we only get an additional factor 2k+k" in front of
each term in (4.9).

We write each of the elementary probabilities as a chain of telescopic conditional
probabilities, conditioning first on the fact that «y hits £ and then using the strong Markov
property at the times TN and T]’\,,, in mcreasmg order: This leads to a product of conditional
probabilities that N; — NV;_; = n; for all 1 < < &, and corresponding terms around 2’ (we
do not write this product explicitly because lt would require even more tedious notations).

Each of these factors is smaller that the probability that V; — NV;_; > n;, which in turn
is smaller than the conditional probability to ever touch the circle C(z,rn,_,+n;) — and this
is exactly the kind of probability which we estimated in the previous section. We already
know that the first term will be

P (Z‘;Z, c CJ) = 51—45‘./8’

so we will estimate the other factors separately, using Corollary 4.1, and see what happens.

We will have to distinguish between two cases, depending on whether kK < 4 or k > 4,
because the reason why the sum in (4.9) converges is different in both situations. If
k = 4, the method does not seem to work directly — cf. the end of the section for some
discussion about this problem.

4.2.2 First case: Kk < 4

In this whole subsection, we assume that x € (0,4) — i.e. that « is a simple curve.
Conditionally on the whole process up to time T,_,, it is clear that d(z, KT'N,»_I) is at least
a.Try,_,. Introduce the following notation for the harmonic measures appearing in the
statement of Corollary 4.1:

w; = wz(gT]\lr. ((/BTNl 1! ))) A wz(gj.-; ((-OO, ﬂTNi_l)))

i- i—1

(i.e., at time Ty,_,, the smaller of the harmonic measures of the two “sides” of the curve,
seen from z), and w} similarly around 2’. The first moment estimate then provides a factor
not greater than

C( i ) w] = Ca*m=Dy7 (4.10)

a.TN;_,

(where we let s =1 — /8 and n = 8/k — 1). The last such term will correspond to the
probability of touching B(z,¢€) in the end; it will not be greater than

€ S
¢ (a—r ) Wiy = Cle/o) a—strtmtmtlyl (4.11)
N

So taking everything into account we see that the a*™ will cancel out, and we get the
estimate:

Ezs L (C k+k'+2 k+1 k' +1
P(z,7 € C)) < C > E |2kt (a—) [T TT @) (4.12)
=1 7j=1
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(the summation here ranges on the same set as in the huge sum (4.9), and the expectation
is understood as a conditional expectation knowing the values of K, K’, the n; and n).
Since C is a generic constant, we can multiply it by 2 to take care of the factor 28+F
which we shall not write down anymore.

Next, we shall estimate the (w;). At time Ty,, the intersection of v with the disc
B(z,a.ry,_,) is at distance at most 7y, of z and hence, by the Beurling estimate, it has
harmonic measure (seen from z) at least 1 — c.a™~1/2; and this lower bound actually
holds for the harmonic measure of one of the sides of the curve. Hence an upper bound
on w;y1, which is not greater than c.a(™~Y/2. So, picking any 7’ < n/2, we get a factor
in (4.12) which is not greater than C,.a"™, as soon as

i>_= .
n,zn 77_277'

The only “bad case” in the previous computation is therefore the case when n; < 7 and
the harmonic measure from z charges the two sides of v[0, T,] with about the same mass.
Assume 1 satisfies this. We may assume that 72 = 1 (it is fixed anyway) as well as continue
v until the first time 7 > TM when it touches the intersection of £ with the boundary of
the connected component of 2’ in H \ (£ U ~4[0,Ty,]) — quite often this corresponds to
doing nothing at all; and it has to happen if 7 is to eventually hit B(z',¢). Assume that
we still are in a bad situation, namely that each of the sides of 7 has harmonic measure
greater than C’O.a"'"‘ (with the same constant C, as in the previous paragraph). The only
possibility for this to happen is when [0, Ty,] U B(z,7n,a™™) separates 2’ from infinity.

Assuming that we are in this case, we can refine our estimate of the harmonic measures
of the two sides of [0, Tw,] seen from z’: Indeed, at least one of them is smaller than
that of B(z,7ny,a™™) in the domain Q enclosed by [0, Tn,] U B(z,7n,a™™). Consider a
planar Brownian motion W started at 2/, and estimate the probability that it exits €2 on
B(z,rn,a”™). Firstit has to reach £: by the Beurling estimate, this happens with probability
not greater than ¢(d(2, 8Q)/6)Y/2 < c.a®™i /2 where j is the number of crossings toward
2’ so far. Then the Brownian motion has to touch B(z,ry,a™") before the other parts of
090, and this too, conditionally on the point at which W touches £, has a probability that
can be bounded by Beurling’s estimate: this conditional probability is not greater than
c.(ry,a™/6) 2. Hence we can replace the estimate of wj in this case by the following:

w;_ < C.a(Ni+N;_ﬁ_1)/2.

But we know that N; > n; +7—1 and NJ’- > n; So, as soon as ¢ > 7. + 2, this term is
smaller than C.a™*")/2 and up to an additional factor in (4.9) which depends only on a
and k, we may assume that it is the case for all z: So, in the case n; < 7, we also obtain

the factor C.a"™ in (4.9).

Collecting all the terms we obtained, the upper bound on the probability that « hits
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both B(z,¢) and B(z',£) becomes

523 X C kthk'+2 ’ ’ ’
a
k=0 k'=0ni,... ,ng>0 n’l’,_,,n;,>0

2
2s

<o € 00 - _si n k . _2$£ i [C_an’—s]k 2
<Ca™— Z a a =Ca " T .

k=0 n=1

Remember that we are in the case xk < 4: this implies that

g—s:1<§—1>—(1—5):(8_”)(4'“)>0.

2\ Kk 8k

Hence, by choosing 7’ close enough to n/2, we may assume that 7' — s > 0; then picking
a small enough, we may assume that C.a”~* < 1 —a”, and in this case the sum in the
last term converges, and this leads to

23

P(Z,Z’EC) C-d—s

which is exactly Condition 3. in Proposition 3.1.

4.2.3 Second case: k > 4

Assume now that k € (4,8). The previous proof does not work anymore, but we know
that v will not be a simple curve. It is actually easy to see that the following holds: Let
0<7<re t>0, and let A, (t) be the connected component of B(;, ;) \ K: which
contains 7 on its boundary. Then the conditional probability, knowing v up to time ¢, that
7y separates A,, (t) from infinity before it reaches the circle C(-y;,72) is bounded below by
1 —c.(r1/r2)® for some ¢, > 0 depending only on «.

Consider the same decomposition of the event {z,z’ € C.} as in the previous case.
We may add another condition, which is that for each i > 0, z ¢ K7 (i.e., v does not
separate z from co while heading out towards £). Indeed, if this is not the case, then
there is no way for - to ever reach B(z,¢). And the conditional probability, knowing v up
to T,, that z ¢ K’I’N,-' is not greater than c.rg,. So the previous decomposition leads this

time to

’ £2 o 00 C k+k'+2 S
P(Z,Z EC’E)gC'é—SZZ Z Z (E) GZ 1az i

k=0 k'=0n1,... np>0n,... ,n’k, >0

_ 5_2:9_ i f: Z Z (_C'_) ke a® S (k—i+1)n; a® Y (K —it1)n]
s a’

=0 k'=0 ni,.. )nk>0 nl, ,nk,>0
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Since a < 1, the product [J(1 — a'®) is convergent, hence the previous expression can
be written as

3 oo k 2
P(z,7 € C.) < C% (ZHcala—s)

k=0 I=1

2
g2s o
< C 5 <§ :Clca-—slcaak(k+1)/2)

k=0
523 o 2
< ak?/2—ck
<o (Za ) .
k=0

This last sum is convergent, so in this case too we obtain the right estimate for P(z,2' €
C.). This concludes the proof of the theorem for all x # 4.

4.2.4 Comments about the case kK =4

The proof for k > 4 does not work when k = 4 because SLF, is a simple curve and does
not close any loops.

Our proof in the case k < 4 has to do with the fact the domain H; is Holder for all
t > 0 ([42]). Indeed, this implies (cf. for instance [10]) that, intuitively, v cannot go back
and forth too many times between two given points, and cannot create too many deep
fjords — which is exactly what we proved here. However, it is not clear how to use this
fact directly to obtain second moments, because it would require a quantitative version of
this intuition, which is not known (yet). Still, it is an indication about the reason why this
proof does not extend to the case k = 4, for which H; is not a Holder domain anymore
(cf. [42]). Equivalently, the “boundary exponent” 8/x — 1 is not large enough compared
to the “bulk exponent” 1 — /8. In fact, it is not even clear whether condition 3. holds
for kK = 4 (note that the value of the constant in the upper bound on the second moment
depends on k and seems to explode when k tends to 4). There might be a logarithmic
correction term.

The right way to prove that dimg(7y) = 3/2 here might be to use the case k < 4 and
let k increase 4, but it is not sure whether this can be done in a simple way. Anyway, it is
a posteriori not so surprising that we need something more, since the existence of vy itself
requires a separate proof in the case k = 4 (see [42]).

4.3 The occupation density measure

As a side remark, let us consider the proof of the lower bound for the dimension (cf.
Section A.1). It is based on the construction of a Frostman measure u supported on the
path, constructed as a subsequential limit of the family () defined by their densities with
respect to the Lebesgue measure on the upper-half plane:

dpe(z) = € 1sec,|dz|.

Then, p is a random measure with correlations between p(A) and p(B), for disjoint com-
pact sets A and B, decaying as a power of their inverse distance. So, at least formally,
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it behaves in this respect like a conformal field: the one-point function (corresponding to
the density of u) is not well-defined, because p is singular to the Lebesgue measure, but
the two-point correlation

lim 5~ Cov (u(B(2,9)), #(B(7,9)))

behaves like d(z, 2/)~1*++/8.

A little more can be said about this measure, or about its expectation. The proof of
the estimate for P(y N B(z,&) # @) can be refined in the following way: When we apply
the stopping theorem (4.8), saying that the diffusion conditioned to survive has a limiting

distribution shows that
Ol 8/Ii~1
F [sin (—5) S 2 S]

has a limit A when s — oo, and that this limit depends only on k. So what we get out of
the construction in Section 4.1 is

cs(z))

M0 () (sin(arg() =

e—0

P (3> 0: 1421 >

This lead us to an estimate on P(d(z,7) < €) by the Kobe 1/4 Theorem; but it is also
natural to measure the distance to v by the modulus of ¢’. We can now define

) =l 1P (3> 02102 > 717 )

=

<

the previous estimate boils down to
61(2) = A(k)S(2)*® ! sin(arg z)¥/* 1,

and by the construction of u, we obtain that for every Borel subset A of the upper-half
plane,

B(u(4) = [ 6:) I
A
with universal constants.

It is then possible to do this construction for several points; note first that the second
moment estimate can actually be written as
82(1—;»:,/8)
|Z — zlll-n/sg((z + zl)/Q)l—n/S

as long as both ¥(z) and (2') are bounded below by |z — 2'|/M for some fixed M > 0.
Indeed, the upper bound is exactly what we derived in the previous section, and the lower
bound is provided by the term k = k' = 0 in (4.9). Hence, any subsequential limit ¢(z, 2’),
as ¢ vanishes, of

P({z 72} CC:) =

X 3-VpP ({z,2'} C C.)
satisfies (z, ') < @a(z, 2’) for some fixed function ¢,, with constants depending only on
k. The second moment estimate then shows that

$1(2)

! ~
¢2(Z, z ) z’:z |Z _ ZI|1~K‘/8’
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I.e. ¢, behaves like a correlation function when z and 2’ are close to each other.

The general case of n points, n > 2, can be treated in the same fashion. First, the
derivation of second moments admits a generalization to n points, as follows. Let (z;)1<icn
be n distinct points in H, such that their imaginary parts are large enough (bigger than,
say, 18n times the maximal distance between two of them). We use them to construct
a Voronoi tessellation of the plane; denote by C; the face containing z;, and by §; the
(Euclidean) distance between z; and 0C;. Let C(z,,d,) be the smallest circle containing
all the discs B(z;,d;). Lastly, let £ be the “separator set” between the z;’s, defined as

E=C(z,0,) U [(0 ac,-) ﬂB(zO,JO)] :

=1
It is the same as defined previously in the case n = 2.
The previous proof can then be adapted to show that
60871 1—K/8
H5i>
(using radii &;a* for the circles around z;). In the case n = 2, we have 6, = &, = 3,/2, so

this estimate is exactly the same as previously. So, it makes sense to take a (subsequential)
limit, as € tends to 0, of

P({z1,...,2n} CCo) < (

e"*A-VP({z,...,2,} C C.),

and all possible subsequential limits are comparable to a fixed symmetric function ¢,,.

The behaviour of ¢,(z1, ... ,2,) when z, approaches the boundary is then given by the
boundary term in Proposition 4.1, i.e. ¢ behaves like (Sz,)%*~! there. Lastly, it is easy
to see that, when z, tends to 2;, ¢,(z1,... ,2,) has a singularity which is comparable to
|zn — 21|%/871; in other words, we have a recursive relation between all the ¢,’s, given by

- ¢n—1(zl, vy Zn—l)
¢n(zl7 PP 7Z11.) zn:zl !Zn _ ZIII_K//S ) (4.13)
On(z1,--- s20) X On-1(21,- ..  Zn—1)-(Szn)¥/* 71, (4.14)
Sz —0

These relations are very similar to some of those satisfied by the correlation functions
in conformal field theory. In fact it is possible to push the relation further, in two ways.
First, we can look at the evolution of the system in time. This corresponds to mapping
the whole picture by the map g; — G, and this map acts on the discs of small radius around
the z;'s like a multiplication of factor |g;(z;)| (as long as K; remains far away from the
2z;'s, which we may assume if ¢ is small enough). Hence, the process

v & (TT 1ol 6algr(1) = Bis- -, ge(zn) = o)

(defined as long as all the z;'s remain outside K3) is a local martingale. We can apply 1t6’s
formula to compute dY;*, and write that the drift term has to be 0 at time 0 to obtain a

PDE satisfied by ¢,.
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Note though that the formula involves the modulus of g;, meaning that the equation
we would obtain cannot be expressed in terms of complex derivatives of g; only, and that
we have to introduce derivatives with respect to the coordinates. This is also the case for
the second-order term in It6's formula: Since G is a real process, we would obtain terms
involving second derivatives of ¢, with respect to the z-coordinates of the arqguments. To
sum it up, it would be an ugly formula without the correct formalism — which is why we
do not put it here. The formula is much nicer when considering points on the boundary
of the domain — cf. [17].

The last thing we can do is study what happens if we add one point z,,; to the
picture. This will add one multiplicative factor, corresponding (at least intuitively) to the
conditional probability to hit z,,; knowing that we touch the first n points already. In the
case k£ = 8/3 and for points on the boundary of the domain, this can be computed using
the restriction property, and it leads to Ward’s equations (cf. [17]). In the “bulk” (i.e. for
points inside the domain), or for other values of «, it is not clear yet how to do it.

4.4 The boundary

A natural question is the determination of the dimension of the boundary of K; for some
fixed ¢, in the case k > 4. The conjectured value is

dimp (9K,) = 1+ %

and this can now be proved for a few values of x for which the boundary of K can be
related to the path of an SLE,, with &' = 16/k. In fact, this relation is only known in the
cases where convergence of a discrete model to SLE' is known, namely:

e x = 6, where actually both 0K; and the path of the SLE,, are closely related to
the Brownian frontier. Hence we obtain a third derivation of the dimension of the
Brownian frontier, this time through SLEg;.

e x = 8 Here, SLEg is known to be the scaling limit of the uniform Peano curve
and SLE, that of the loop-erased random walk (cf. [34]). Since these two discrete
objects are closely related through Wilson's algorithm, this shows that the local
structure of the SLE, curve and the SLEg boundary are the same, and in particular
they have the same dimension.

So we obtain one additional result here:
Corollary 4.2 :
‘Let (K;) be a chordal SLEg in the upper-half plane: Then, for all ¢ > 0, the
boundary of K, almost surely has Hausdorff dimension 5/4.

It would be nice to have a direct derivation of the general result, without using the
“duality” between SLE, and SLEg).. All that is needed is probably a precise estimate of
the probability that a given ball intersects the boundary of K;: The previous proof in the
case k < 4 can be applied directly if we know that, for all z € H, we have

P (B(z,e) N 0K, # @) < (i) o sin(arg z)”

Sz
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with /2 > 1—2/k. The argument we used in the case x > 4 cannot work though, because
the fact that v closes loops is exactly what will provide the difference between dim+y and

dim oK.
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Chapter 5

Variations around SLE
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5.1 SLF in a non-simply connected domain

One of the first questions that arise when trying to extend the definition of SLFE, especially
when it is seen as the (conjectured) scaling limit of a discrete model, is whether there is a
natural definition of it in a more general domain of the complex plane. Indeed, it is easy to
define e.g. a percolation model or a loop-erased random walk in a discrete approximation
of, say, a multiply connected open subset of C, and the scaling limits of these models, if
any, will share many properties with the corresponding usual SLE’s.

For instance, the locality property of SLEg (corresponding to that of the percolation
exploration process) basically states that, locally, the process does not “see” the shape of
the domain; in particular, the local geometry of the curve should not be affected by the
connectivity of the domain, and we would expect locality to hold for the corresponding
process in a multiply connected domain.

A fair amount of the arguments used to prove convergence in the simply connected
case actually do not use the fact that the domain is simply connected. For instance,
the “reversed Markov property” of loop-erased random walks and Wilson's algorithm (used
in [34]) are valid in any connected graph, in particular they apply in the case of the
discretization of a multiply connected subset of the complex plane. It is therefore natural
to expect some sort of Markov property, similar to. SLE’s, in the scaling limit. Besides,
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the close relation between loop-erased walks and Brownian motion (through the simple
random walk) gives an intuition that the scaling limit should also exhibit some kind of
conformal invariance.

5.1.1 SLFE in the annulus

The construction of SLE relies heavily on Riemann’s Theorem, i.e. on the existence of
a reference domain: There is a natural statement of the Markov property if we can map
H \ K; conformally onto H, by saying that

Gt+s — Btts (Izgv) (gs - Bs) © (gt - ﬁt),

where (g,) is an independent copy of (g;) with driving process (G,). In other words, the
natural setup is that of a semi-group of conformal maps, in which SLE can be written as
an infinitely divisible process.

Suppose now that we want to construct a simple random curve (v;) in an annulus.
More precisely, for all 7 € (0,1), let

A, ={z€C:r<|z| <1},

then for all such 7 and all a,b € dU, we want a law on curves from a to b in A,. Assume
that we have such a curve, and pick ¢ > 0 such that ~; is defined and different from b.
Consider the domain A.(t) = A, \ 7([0,¢]). Is is easy to see that its modulus is strictly
smaller than that of A, (i.e. —logr). Writing this modulus as — log(r(¢)), there exists
exactly one conformal map g, from A, (t) to A, fixing b; and, when the curve reaches
b (which can happen in finite and infinite time), () converges to a limiting value 7’ such
that —logr’ is the modulus of the complement of the whole curve in A,.

Up to reparameterization of v, we may suppose that for all ¢ < log(r'/r), r(t) = ret:
Then, the situation is comparable to the simply connected case, i.e. v is characterized
by the function ¢ — B; = g:(7:) € U and (g;(z)) satisfies a differential equation similar
to Loewner’s evolution, with a vector field on each A, depending only on b and 3; and
related to Villat's kernel ([49]). So it is tempting construct a natural law on (3;) and then
run the differential equation to obtain (g;), and hopefully (v;), as it is done in the usual
simply connected setup.

If a Markov property is to be looked for, we have to construct the law of (3;) simulta-
neously for all values of a, b and r. Let L(a,b,r) be this law: It is supported on

Car = {1 € C((0,l0g"/r), 8U) : ' € (r,1), 3, = a}

With these notations, the Markov property can be seen as a compatibility relation between
these laws: If B it a random function distributed according to £(a,b,r), defined on the
time range [0,%(8)), and if t € (0, — logr), then, conditionally to the fact that ¢(3) at least
t and to B up to time ¢, we have

(/Bt-i-s)se[o,) ~ ‘C(/Bta b, Tet) (51)

In other words, (ret, 8;) should be a continuous Markov process.
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This is the point where a miracle occurred in the simply connected case: r did not
appear because we had a common domain, and a few heuristic considerations were suffi-
cient to obtain enough information on § (namely, in the upper-half plane, that it had to
be continuous with independent increments and symmetric) to conclude that it had to be
a Brownian motion with a linear time-change. Hence, we obtained “universality”, in the
sense that there is only a one-parameter family of laws, described by the parameter «.

Here, we might write 8, = be** where o is a continuous diffusion on (0, 27) generated
by

da; = o(ret, o) dB; + v(re, oy) dt,

and tailor o and v so that, locally around a, (g;) looks like a (time-changed) chordal SLE,
from a to b in the whole disk. However, there seems to be no simple reason why « should
not depend on r, or why the drift of « (if any) should be the same.

Actually there is one case where we do have a fixed reference domain, namely the
disk punctured at 0 (corresponding to the case r = 0 in the previous setup). In this
case, we need conformal maps from the punctured disk minus a compact set touching
the boundary, onto the punctured disk. But it is easy to see that such a map can be
continued at the puncture, and that this implies that the continued map will be conformal
on a neighborhood of the origin. Hence, what we are interested in is conformal maps fixing
the origin and one marked point on the boundary (the target of the process, i.e. b with
the previous notations). And this is exactly sufficient to ensure existence and uniqueness
of the maps involved in the construction.

With this normalisation, the vector field defining the Loewner equation toward b, grow-
ing at W;, is the one we used in the proof of Proposition 4.1, when we looked at the growing
compact set from a fixed point in the domain; namely, the family of conformal maps (g;)

satisfies the equation
() = 292 (9:(2) — b)
(b — W) (9u(2) — W)

(this is exactly Equation (4.4)). The time parameterization given by r(t) = re! becomes
|gi(0)| = et in this case, i.e. the time parameterization is similar to that of a radial SLE.

In other words, for k < 4, it is possible to define a law on random curves from a to b
in the punctured disk by simply taking the curve of an SLE from a to b in the unit disk,
and saying that it almost surely does not go through 0. Then the driving process for the
growing curve is the diffusion on the circle which we described in the previous chapter,
generated by the following SDE:

kK—4

o
cotg = dt.

datz\/_lﬁ_dBt+ D)

The Markov property in the punctured disk is a direct consequence of the usual Markov
property for chordal SLE.

The stochastic differential equation giving a and the ODE satisfied by g; still make
sense in the case k € (4, 8) (for which the diffusion a.s. touches b in finite time); but the
construction stops in finite (SLE-)time, when the SLE curve closes a bubble around 0
— which it does with probability 1. Then we obtain a curve in the punctured disk that
separates the puncture from b. It is perfectly possible to continue it by appending to it a
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standard SLE, from the point where the loop was closed to b, in which case the complete
curve is that of a standard SLE, from a to b in U; but the nature of the process changes
when the bubble is closed, the statement of the Markov property is different, and so is the
time parameterization.

This will certainly happen in the more general setup of a domain with finitely many
punctures (or holes — or even in the case of a Riemann surface of positive genus): If
we manage to define a counterpart to SLE, with 4 < k < 8, it will close loops around
the punctures and the “relevant domain” at time ¢ (the connected component of the
complement of ([0, ¢]) that has b on its boundary) will have a non-increasing genus h(t)
which will go down each time such a bubble is closed. But in any case, as long as
h(t) = h(0), the “natural” curve is exactly the trace of a usual SLE in the filled-in domain.

Going back to the case of the annulus with » > 0, there are a few cases where a
natural measure on curves can be described, using known properties of usual chordal SLE
for specific values of the parameter x.

5.1.2 Using the restriction property : SLEg3 in the annulus

The first working approach is to view SLE for k = 8/3 as a restriction measure ([29]),
and study whether it makes sense to generalize the definition to an annulus. So, define the
random curve v from a to b in A, as a chordal SLE fro a to b in the unit disk, conditioned
not to touch the disk of radius r centered at 0. (Note that this happens with positive
probability.) We want to prove that it satisfies the compatibility relation (5.1).

Let 6 = ([0, 7]), where 7 > 0 is some finite stopping time; Let r’ be such that the
modulus of A, \ ¥([0,7]) is equal to —log7’. Let ¥ be the image of v\ é by the conformal
map ® from A, \ § to A, fixing b. And let 7 be a chordal SLEg/3 from ®(v,) to bin U,
conditioned not to touch B(0,7'). What we have to show is that, conditionally on 4, ¥
and 4 have the same law.

This is a consequence of the restriction property, as follows. Let B be a crossing of
A, (i.e. a locally compact subset of A, such that A, \ B is simply connected), containing
neither a nor b in its closure. Then we know that SLEg/3 conditioned not to hit B is an
SLEg3 in U\ B, and the same happens if we replace B by BU B(0,r). In particular,
conditioned not to touch B is a plain old chordal SLEg3 in A, \ B.

Now apply the Markov property to the unconditioned SLE at time 7. It states that
conditionally to §, v\ d is a chordal SLEg3 in U\ 6. Combining this and the restriction
property shows that, conditionally to 6N B = &, v\ é conditioned not to hit B is a chordal
SLE in A, \ B.

Notice then that ® induces a conformal map from A, \ B to A, \ ®(B), and apply
the conformal invariance of SLE: Conditionally to § N B = &, 4 conditioned not to touch
®(B) is an SLEg;3 in Ay \ ®(B). But, conditionally to §, & maps crossings of A, not
intersecting § to crossings of A, so that ¥ satisfies the following condition: For every
crossing B of A, 4 conditioned not to touch B is a chordal SLEg/; from ®(a) to b in
Ap\ B. But the previous proof shows that this is exactly the law of 4 conditioned not to
touch B: What we finally obtain is that, for every crossing B of A,,, 7 conditioned not to
touch B and 7 conditioned not to touch B have the same law.
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From now on, for every crossing B, let p(B) be the probability that 4 does not hit B
and similarly p for 4. If By and B, are two crossings, we denote by B; U B, the smallest
crossing containing both of them, or A, if such a crossing does not exist. We just proved
that

PANBy =@|yN By, =) =P(YyN By, = &|5yN B, = @),

and this can be written as _
p(B1 U BQ) _ ﬁ(Bl U Bg)

B(B1) p(B)
So, for all B; and B, such that B; U Bs is a crossing, conditioning first on B, instead of
B; and dividing, we obtain

P(B1)/B(Bz2) = p(B1)/p(Be), (5.2)

so on any collection of crossings that is stable by union, p and p are proportional.

Let R be the collection of all crossings on the right (i.e. the ones which touch AU on
the arc that goes from ®(+;) to b in trigonometric orientation). The previous derivation
shows that p and p are proportional on R. But the event that 4 goes to the left of the
hole B(0,7’) is the union of the events that 4 does not meet B, over all B € R: Using
an inclusion-exclusion decomposition, this shows that the proportionality ratio between p
and p on R is the ratio between the probability that 4 passes to the left, and that that ¥
passes to the left. So, we now know that 4 and 4 have the same law when conditioned
to pass on the left of B(0,7'). All that remains to do is prove that they have the same
probability to pass to the left of the hole.

Restate the problem as follows. Let K and K’ be two simply connected compact
subsets of the upper-half plane H, such that H\ K and H \ K’ have the same modulus;
and let ¥ be the unique conformal map from H \ K to H \ K’ tending to infinity at
infinity; let A > 0 be such that ¥(z) ~ Az at infinity. We will use the usual convention
U'(00) = 1/A. Up to a translation of K’ in the horizontal direction, we may assume that
U sends 0 to itself. Let v be the curve of a chordal SLEjg,s in H: The only thing we have
left to prove is that we have

P(y left of K|y N K = @) = P(y left of K'lyn K' = ). (5.3)

Again, let B be a crossing from K to R; in H\ K; and let ®; be the conformal map
from H \ (K U B) to H fixing 0 and satisfying ®;(z) ~ z at infinity. Then, we know that

P(yn (K U B) = @) = |, (0)]*"".
If ®, is the conformal map from H \ (K’ U ¥(B)) with the same normalization:
P(yNn (K'U(B)) = @) = |@,(0)*/%.

Last, the uniqueness of all the maps involved here shows that

@1 = /\—-1@2 oV:
hence, taking derivatives at 0, we obtain
!
%0 = “%ay0)

A
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Remark that the factor ¥’'(0)/\ does not depend on the choice of B, so the same
considerations as previously, using the fact that -y passes to the left of K if and only if
there is such a crossing and writing an inclusion-exclusion decomposition of this event,
prove the following
Proposition 5.1 :

Let K and K' be compact subsets of the upper-half plane, such that there is a
conformal map ¥ from H \ K to H \ K’ fixing 0 and oo; and let v be the curve of a
chordal SLEg/3 in H. Then, we have

P(7 left of K)
P(y left of K")

Remark: If ¥ could be extended to the whole upper-half plane (this is the case for
instance if both K and K’ are disks, in which case ¥ is a M&bius transform), then we

would have ¥(z) = Az so the product ¥’'(0)¥’'(cc) would be equal to 1, concluding the
proof — but the result was clear in this case, due to the scale invariance of chordal SLE.

= (¥(0)¥(c0))*".

Conditioning 7 not to touch K (resp. K'), we can rewrite the conclusion of Proposi-
tion 5.1 as

P(7 left of K|yN K = @)
P(v left of K'|yNK' = @)

P(yNnK' =)
P(ynK =)

= (2'(0)¥'(c0))™* (5.4)

Notice that we could do exactly the same construction to compute the probability that ~
goes to the right of K (resp. K'), and that the right-hand term in the last equation would
be the same; hence,

P(yleft of KlyNnK =@)  P(yright of KlyN K = @)

P(yleft of K'|lyNK'=@) P(yright of K'lyNK' = @)’ (5.5)

And since in any case -y conditioned not to hit K passes either to the left, or to the right
of K, we have

P(v left of K|yN K = @)+ P(yright of KyN K =2) =1

and the same around K': The only case where (5.5) can hold is then when both ratios
are equal to 1, and in particular we obtain (5.3), concluding the proof. As a side-result,
we also obtain the following corollary:
Proposition 5.2 :

With the same hypotheses and notations as in Proposition 5.1,

P(yNn K = @)

P(yNK' = @)

This could be used to study the behaviour of the n-point correlation function described

in the previous chapter when a point is added (which in the case of points on the boundary

corresponds to a conditioning, by the restriction property of SLEg/3, as is shown in [17]);
l.e., it could be the first step of the derivation of Ward's equations in the bulk for SLEg;.

= (¥'(0)¥'(c0))>".
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Some remarks about the construction

Almost none of the tools we just used is available if x # 8/3, in particular we do not
have the restriction property and we cannot compute the probability not to touch a hull
as a power the derivative of a conformal map. On the other hand, if we try to apply the
method to the general case of conformal restriction measures as defined in [29], we can
perform a substantial part of the construction; in particular, everything we stated in the
upper-half plane is still valid, hence the measures on subsets of conformal annuli defined
by conditioning restriction measures in the half plane are invariant under conformal maps
of the annuli, exactly by the same proof — only the value of the exponent 5/8 needs to
be replaced by the correct one. In particular, Propositions 5.1 and 5.2 still holds. It is
clear also that the obtained measures satisfy the restriction property, but since removing
a hull from the domain here changes its modulus, the restriction property does not make
as much sense as in the simply connected case.

However, it is not clear what the statement of the Markov property should be in this
case, since in the general case the restriction measures are not supported on simple paths.

The same proof can be applied to the general case of a finitely connected domain: If
2 ¢ Cis an open simply connected set, a and b are two points on its boundary and K is
a finite union of disjoint simply connected compact subsets of 2, we can define a law

L(a—b,Q\ K)

supported on simple curves from a to b in by conditioning an SLEg/3 from a to b in
not to touch K. Then the family of measures we obtain satisfies the same conditions as
SLFE, ie.: :

e Conformal invariance: If y is distributed as L(a — b,Q \ K) and @ is a conformal
map from Q\ K to Q' \ K’, then ®(v) is distributed as £L(®(a) — ®(b), Q' \ K');

e Restriction property: If A is a hull (i.e. a compact set such that 2\ A is simply
connected) containing neither a nor b, then L(a — b,Q \ K) conditioned not to hit
A is the same as L(a — b, \ (AU K));

e Markov property: If § is an connected subset of v containing @ and not b, and a
is its other end (the intersection of § and v\ ), then conditionally on 8, v\ § is
distributed as L£(a’ — 5,2\ (K U J)).

Conformal invariance and the restriction property still hold in the general case of restriction
measures, as well as Proposition 5.2. Note however that the conditions in which it applies
are very restrictive, because of the number of conformal invariants involved in the multiply

connected case.

It is possible to define an artificial “twisted” measure on subsets of  \ K, as follows
(here we suppose that  \ K is a topological annulus): First, take a restriction measure,
and condition it not to touch K; call u this measure. Then define i by its density with
respect to u, where the density is constant (but not 1 a priori) on the collection of sets
passing to the left (resp. to the right) of K. Equivalently, this corresponds to fixing the
probability of going to the left of the hole instead of taking that of SLEjg/s. For instance,
we might consider SLEg3 conditioned to pass to the left of K.



102 CHAPTER 5. VARIATIONS AROUND SLE

If the weighing is invariant under conformal map, i.e. if the densities only depend on the
conformal type of the domain, then clearly the family of laws we obtain is still conformally
invariant. Moreover, in the case of curves (i.e. if we start with SLEg/3), we can this
time perform the first part of the previous proof: we still obtain the fact that 4 and ¥
become the same when conditioned to pass to the left of the hole; and actually, it is then
possible to choose the weights depending on the domain in such a way that they have the
same probability to pass to the left, in which case the curve we obtain has the Markovian
property of SLE. There is even nothing left to prove in the case of SLEg/3 conditioned
to pass to the left of K.

This twisted process is probably not interesting in itself, but it stresses the problem of
what a generalization of SLFE should be: even if we want the random object to have the
same local geometry as SLE (i.e. if we solve the “changing k" question by a geometric
argument), there is still one global degree of freedom preventing “universality” in this setup.

5.1.3 Using the locality property : SLEg in the annulus

The other case where SLFE exhibits a particularly nice behaviour is when x = 6, where the
SLE curve is the scaling limit of the exploration process of critical site-percolation on the
triangular lattice (and also probably of any “reasonable” critical percolation model). This
allows us to construct a random curve in a natural way, as follows. Let U stand for the
unit disk, let r € (0,1) be fixed and let A = B(0,7) be the hole of the annulus A,, and fix
a, b two points on the unit circle.

We could take ~ to be the curve of an SLEg from a to b in U and condition it not to
touch A, as we did in the previous section. But this is problematic, for two reasons:

e This conditioning is very global, and this was fine when we wanted to use the re-
striction property of SLEg;3, which is global too. But the locality of SLEg, as the
name indicates, describes the local behaviour of the SLFEg curve. And actually, it
tends to say that as long as y does not touch A, there should be no modification to
¥ whatsoever — this is definitely not the case if the conditioning is not Markovian;

e Seeing the curve as the (conjectured) limit of an exploration process shows that it
should touch A with positive probability: Indeed, by Russo-Seymour-Welsh we know
in advance that with positive probability there are crossings between 9U and A in
the annulus.

In the discrete setup, we want to consider the hole as wired (i.e. we discretize the whole
unit disk with a triangular lattice and we identify all the sites lying inside A). Coloring the
discretization of the direct arc from a to b in black and the indirect arc in white, we can
explore the interface between white on the left and black on the right, in the usual way,
as soon as the hole is given a color.

In the continuous case we do something similar, i.e. we chose the color of the hole,
either black or white. This can be done either deterministically or randomly, but in any
case we do the construction conditionally to the chosen color. The morale is that we
construct an SLEg that bounces off A as if A were part of the boundary of a simply
connected, in a direction that is determined by the color we picked.



5.1. SLE IN A NON-SIMPLY CONNECTED DOMAIN 103

So, let (K;) be an SLEjg in the unit disk, and ¥ be its trace. If ¥ does not touch A,
we do nothing and define v = 4. If it does, let 7 be the first time when it happens and let
= A, \ K.. Now Q is simply connected, so we just construct another SLEg from 7, to
bin 2, and let y be the concatenation of [0, 7] with the trace of the new SLE.

The only problem here is to chose on which side the new SLE starts. Indeed, QN
B(+,,r) has two connected components, say §2; and Qy; v, corresponds to two prime ends
in £2. This is where the color of the hole is used. Note that the boundary of K, can be
divided into two parts, corresponding to the two components of dU\ {W,, b} in the image;
color in black the one corresponding to the direct arc from W, to b and in white the one
corresponding to the indirect arc. Now for ¢ € {1,2}, define §; = 002 N ;. One of the
0;'s is all of the same color, and the other, say 0;,, has subsets of both colors. Then, the
starting point of the new SLE will be the prime end at -y, which is in 9; .

The same construction can be done in any conformal annulus with two marked points
on the same component of its boundary. We call the obtained curve SLEg from a to b
in the annulus. It is then easy to check that, conditionally to the color of the hole, the
obtained curve it conformally invariant and has the same locality property as SLEs in a
simply connected domain, namely: If B is a compact set which contains neither a nor b,
and such that A, \ B is either a conformal annulus or a simply connected domain, then
up to their first hitting time of B, the trace of an SLEg from a to b in A, and that of an
SLEg from a to b in A, \ B have the same distribution.

Still conditionally to the color of the hole, we can now use the convergence of critical
site-percolation on the triangular lattice to SLFEg in a simply connected domain, twice,
and the locality property of both SLEg and the percolation exploration process to obtain
the following

Theorem 5.1 :
Let 7 € (0,1) and & > 0. Let 4° be the discrete exploration curve of the percolation

interface from a to b in a discretization of A, by a triangular lattice of mesh §, as
described previously, with a wired hole. Then, as § — 0 and conditionally to the color
of the hole, the law of ¥° converges to that of the trace of an SLEg from a to b in

A

But the same problem as previously arises here, in that we can still chose the color
of the hole in any number of ways. In the critical percolation picture it will be natural to
pick it white or black with the same probability 1/2; but in general we will obtain a one
parameter family of laws on curves that all exhibit the same local geometry and the locality

property. So, universality does not hold here either.
Remark: The same construction can of course be performed if the domain has finitely
many holes. The only thing that changes is that each hole has to be colored.

In the case k # 6, we might want to do the same construction; but since we do not
have the locality property, the obtained law on curves will not be conformally invariant.

5.1.4 Percolation in the annulus

There is something else we can do related to critical percolation in an annulus, namely we
can try to obtain crossing probabilities for rectangles with holes in them. In the simply
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connected case, this was done by Smirnov ([44]), and we will study what his proof can say
about crossings of an annulus.

So, consider a simply connected bounded domain €2 and let A be a compact subset of
Q such that Q\ A is a conformal annulus, and split the boundary of {2 into three intervals
01, 05 and 95 (and define 8, = 9,, 35 = 0, for easier notations).

Consider critical site-percolation on a discretization of  \ A by a trianqular lattice,
with wired boundary conditions along A, and as in Smirnov’s paper, if z is the center of
a face of the lattice, define H?(z) to be the probability that in this discretization there is
a closed simple path joining d;4; to 0;42 and separating 0; from z.

We can apply the same arguments as in the triangle: By the Russo-Seymour-Welsh
technology (cf. [19]), all the H? can be interpolated into uniformly Hélder functions on '\
A, so they form a relatively compact family and it is sufficient to prove that there is exactly
one possible subsequential limit to obtain convergence. And besides, any subsequential
scaling limit (hy, hy, h3) of the triple (H{, HS, HS) as & goes to 0 is a “harmonic conjugate
triple” in Q\ A, by exactly the same proof. We also obtain the same boundary conditions
along 992, namely h; is identically 0 along &;, and on §;,; and 0;;5 it has Neumann boundary
conditions with angle 27 /3 away from 0;.

The new fact here is the behaviour of the H? on the boundary of A. Using the Russo-
Seymour-Welsh technology, we obtain uniform continuity on the boundary as § — 0;
and besides, if z and z' are the centers of two adjacent faces on 0A, we clearly have
H{(z) = H)(2') for all i and &. Hence, if (hq, ho, h3) is any subsequential scaling limit of the
triple (H?, HS, H?), then each of the h;'s is constant along 8A (this would be “tangential
Neumann conditions™). Note that the constant here corresponds the probability that there
is a closed path from 0;,; to 0,42 separating A from g;, but none of the arguments we
used up to now seems to give a way to compute it explicitly.

In short, and stated in the equilateral triangle T' with vertices a = —i, b = (1 +1/3)/2
and ¢ = (-1 +14+/3)/2, with 8, = [bc], 3, = [ca] and 85 = [ab], h has to be a solution to
the following problem:

h]_(a) =1;
hi(z) =0  for all z € [b¢];
0hi1/0z =0 on [ab] U [ac];
hi(z) = hi(Z') for all z, 2’ € DA.

(5.6)

But this problem is not well-posed, and in fact it is easy to use the maximum principle to
show that for every u € R it has exactly one solution taking the value u on 3A. So, the
method is not sufficient to compute crossing probabilities — however, it will suffice if we
know how to compute the value of the constant by another method, typically using SLEg
in the disk.

Actually, it seems that this degree of freedom on the value of h; along 9A plays the
same role as the ones which appeared in the construction of SLEg;; and SLEs in the
annulus, and it is related to the absence of universality in the non-simply connected case
— or, which is equivalent, to the ability to perturb a measure on random curves globally
according to the side of A on which it passes.

In the general case of a domain of genus £ € N, if a and b are two points on the exterior
boundary of the domain, there are exactly 2 homotopy classes of simple curves from a
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to b, so the set of probability measures on such curves with the correct Markov property
should be a simplex of dimension 2¥ — 1, j.e. we will obtain 2 — 1 degrees of freedom
instead of 1. There will always be particular cases such as SLEg3 in the whole domain
conditioned not to touch the holes, but they all require a way to fill the holes in order to
retrieve universality from the simply connected case.

5.2 SLF as k tends to 0 or oo

We investigate in this section the behaviour of SLE when its parameter tends to 0 or oo,
at time 1; and since SLE is defined pathwise with respect to the driving function, we will
do the same here and consider the Loewner chain driven by /kB;, letting « tend to 0 or
oo for a fixed B. ;

It is easy to see that in the first case, K; converges a.s. to the vertical segment [0, 21]
in the Hausdorff metric, whereas in the second case it will spread along the real axis.
Hence, we will have to renormalize it differently in both directions if we want to describe
a nontrivial limit — and in particular this limit will not be conformally invariant at all. It
will be more convenient to run the equation backward, i.e. to write it as

-2
92 = L= VR,
where B is a standard Brownian motion. Indeed, this ensures that g;(z) is defined and
differentiable in all variables on the domain z € H, ¢t > 0. Note that, due to the time-
reversibility of Brownian motion, the conditional distribution of g, knowing (; here is the
same as that of the reciprocal map in the usual setup, up to a translation by 3; — so any
information we can obtain on the image of g; will actually hold for standard SLE.

5.2.1 Small values of &

Let us consider first the case k — 0 — which is both easier and less interesting. Let
€ = /K, and to make things nicer, map the upper-half plane to the slitted plane by the
map z — z2. Then the conjugate § of g by this application satisfies the following equation
(SLE in the slit plane C\ R):
0F5(z) = 15— (57)
Note that in this case, the solution for a constant driving function (i.e. when ¢ = 0) is
given by gf(z) = z — 4t; for small values of € we will obtain a perturbation of this solution.
On the domain z ¢ [0,+00), t > 0 the solution is differentiable in all variables; differ-
entiating (5.7) with respect to ¢, at the point € = 0, gives

. 4B
0.0 (Dcg = =

Integrating then with respect to ¢ provides the following expansion:

gi(z) =z —4t+¢ ds + o(e), (5.8)

/t 4B,
0 \/2—48
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where the term o(g) can be seen to be uniform in z. Now renormalize by simply multiplying
the imaginary part by e, not touching the real part. All perturbative terms then disappear
in the limit, except for the imaginary part of the above integral. Focusing on points
z € [0,00) (which are mapped to K, U [0,00) by §;), this imaginary part is non-zero
only for s > z/4. Hence, in the limit, the renormalized version of K, has the following
parameterization:

b 4B
—z—4t, y=[| —=—ds, e [0, 41]. 5.9
T=1z Y /2/4\/1;5 s z € [0,4¢] (5.9)

For nicer notations, define the following functions:
lz(O
V=l

With these notations, we proved that the renormalized curve converges, in the Hausdorff
metric, to the curve of equation

bt(S) = 4Bs/4]]-sSt7 (p(S) =

y=(be*xp)(z+4t), z€[-4t0]

where x* is the usual convolution operator. In other words, the curve of an SLE, for small
values of «, when renormalized correctly, converges to the graph of the convolution of its
driving Brownian motion by a fixed kernel.

In particular, this renormalized SLE is the graph of a continuous function. An inter-
esting question arises here: Under which conditions on the driving function 3 does the
Loewner evolution lead to a graph? The same approach as above shows that, if we let
B = €f(t) for some fixed continuous function f, the rescaled trace converges to the graph
of the convolution of f and the same kernel . But it is also possible to look at the real
part of gi(z): If f is Holder with exponent greater than 1/2, then for small ¢ this real part
becomes monotonous in z along horizontal lines {z + iy} for fixed y. In particular, K;
itself is a graph for sufficiently small values of e.

In the case of SLE, the opposite happens, because B is not smooth enough. It is
actually possible to compute the winding exponent of the curve as a function of «, and to
prove that for all values of x this exponent is positive. Since it is equal to 0 for a graph,
this proves that for every k > 0, with probability 1, K; is not a graph.

5.2.2 Large values of «

When & tends to oo, SLE, tends to spread along the real axis, so that (at fixed time) its
width is of order \/x and its height of order 1/4/k. Let K be K, renormalized so as to
cancel this spreading; namely,

K: = (Dn(Kt)
We renormalize g; in the same fashion, i.e.:

gf:@nogtoq);l.
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Note that the renormalized g7 is not conformal anymore; separating the real and imaginary
part and writing gf(z + ty) = X[ + iY}", then (XF,Y/) is the the unique solution of the
following system of ODE's:

—2(X; — By) 2Y;

8 X, = ,  9Y,=
U T k(X — B2+ Yk T k(X - B2+ Y2k

with initial conditions X = z and Y = y. The problem here is that we cannot describe
a solution “at k = c0” and apply the same perturbative method as in the case k — 0, so
we need to do everything by hand.
Proposition 5.3 :

Let (L?) be a bicontinuous version of the local time of B at point z and time ¢.
Then, as & tends to infinity, we have almost surely

X,=X,4+0(1), Y=Y, +2rL° +0o(1),

where the terms o(1) are a.s. uniformly small on all the sets

Ato:yo = {(w’ y’t) : t g toay 2 yO > O}.

// First, replace the differential system by its integral counterpart, i.e. in-
troduce the following operator:

b 2X,— By) ! 2Y,
(XY = - ’ ; '
e = (%~ [ et [ ey

Then, conditionally to B, (X*,Y*) is the unique fixed point of £L.. So we
need to study the behaviour of £, as the parameter k goes to infinity and
from that to obtain information on its fixed point.

The morale is then the following: it is very easy to see that if (f;) is a
sequence of continuous functions on [0, 1], each having a unique fixed point
zx, and if the sequence (fx) converges uniformly to a constant z, then (zy)
converges to z also. We lack several of the hypotheses to apply such a result
directly here, but will prove that indeed the operators L, do converge to a
constant, and that this is sufficient to conclude.

Fix z + 1y € H and a pair (X,Y’) of continuous functions with X, = z,
Y, = y and such that Y is positive. The first remark is that the second
coordinate of L.(X,Y) is always increasing, and since we are interested in
fixed points we shall assume from now on that Y itself is non-decreasing. In
particular, for all t > 0 we can assume Y; > y.

We first study the first component of £, (X,Y’), which we will denote by
X. From the definition of £, we know that X is differentiable with respect
to ¢ and we first obtain (using the reknowned 2ab < a? + b? inequality):

12 (X, — Bi|vk) (Yi/VE) _ 1
Vi k(G- Btk Sy (510

latXt| <
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Hence, X is Lipschitz with a constant that depends only on y. So from now
on, we may assume that X too is (1/y)-Lipschitz. We will need the following
result:

Lemma 5.1 :
Let (B:)icr be a standard real-valued Brownian motion, and let C

be a fixed positive real number. Then, with probability 1, there exists
K > 0 such that, for every C-Lipschitz function f : [0,1] — R and
every € > 0, we have

<e} < Ke

<

At el0,1]: |f(t) — By

(where X is the Lebesgue measure on [0, 1]).

/// This is a direct consequence of a result by Bass and Burdzy on Brownian
local times along Holder curves. More precisely, they prove in [4] that L]
defined for every continuous function f as the limit, when € vanishes, of

1 t
Li(e) = % /0 1i,— f(s)|< ds

is almost surely bounded on the class S, of all Holder functions of some fixed
exponent a > 1/2 from [0, 1] to [—1,1], and that it is jointly continuous as
a function of (¢, f) € [0,1] x S,. Hence, by a compactness argument, the
collection of all LY (¢) over (¢, f,&) € [0,1] x S, x (0, 1) is also bounded, thus

proving the Lemma. ///
Let a € (0,1), and D (X) = {t € [0,1] : |X; — B:| < k~*}. Split the

7

integral defining X; — X, into two parts:

. ¢ 2 | Xy — By
X—Xg/ R du:/ +/ = (1) + (2).
Xe = X o K(Xu—Bu)??>+Y2/k 040D« J[0,4\Dx L+

The first term can be estimated using the previous computation: it is indeed
not greater than the integral of 1/y over D.(X), and by Lemma 5.1 we

obtain ) K
1) < gA(Dn(X)) S0
The second integral is also bounded above from the very definition of D, (X):
2du
(2) g/ —————— < 2ts"" = 0.
0.4\D, (Xu — Bu) K00

So, with probability 1, X — X, converges to 0 uniformly in ¢ and X as x goes
to infinity. Hence we get the first part of the announced result in a refined
version: as kK — oo, almost surely,

XF=XF+0(k1/?) (5.11)

by taking @ = 1/2 in the previous estimates. Moreover the implied constants
are uniform in ¢ € [0, 1] and z € R (but they strongly depend on y).
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Y, —

We still have to obtain the behaviour of the second component Y of
L.(X,Y). Look first at what happens when X and Y are constant. By the
occupation times formula, we have almost surely

t 2Y. o0 )%
Y = 0 du = 0 zd.
: / (X, ~Bo)? +v2jr /_m (X, — 22 1 YRt

By the change of variable z = X + 2Y, /x, we obtain

Xo+2Yy /6

~ * 2L
Vo_vy = [
o /_ 2241 dz,

o0

and by dominated convergence, as k tends to oo, this leads to

Vi_y o or [ 95 g%
t On—-)oo t —ooz2+1"' t -

Since we know that Y is increasing, Dini's theorem can be applied to show
that the convergences is almost surely uniform in ¢.

In fact, the same proof applies to the case when Y is not constant,
approximating it by a piecewise constant function and noticing that the
above limit did not depend on the value of Y. If X is not constant, using
the definitions in [4] and the fact that X is supposed to be Lipschitz anyway,
the same computation actually shows that

Y,—-Y, = 2rL¥
K—00
(or, and this is equivalent since we are assuming that X is Lipschitz, still by
the results in [4], we can write this limit as the local time at 0 of the process
(By—X,)). Itis then a consequence of the continuity of L;¥ in X that, if X
now depends on & in such a way that ||X — z||» tends to 0 when « tends to
oo, we obtain the same limit for Y; —Y, as in the case when X was constant.

So, combining the convergence of X to a constant and that of ¥ to a
known function when X is constant, we obtain the first step of the proof:
Let X° =z and Y;® = y + 27 L$, then for each pair (X,Y) of continuous
functions with Y positive and increasing, with probability 1,

[Lro LJ(X,Y) = (X=°,Y™)
as k — oo, uniformly in ¢ € [0, 1].

It is easy to use the same method as when proving that X is Lipschitz,
to obtain the following estimate: For all continuous functions X, Y, X and
Y with the usual restrictions and initial conditions, for all ¢ € [0,1], and for
every norm || - || on R?, we have

1Le(X, D)) = [LalX, V)]l < C / (R, = X, 7 - V)| du,
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where the constant C, depends only on x and y. This shows that the
operator L, is locally Lipschitz with respect to the supremum norm.

The inequality can then be applied recursively (as when proving the
Cauchy-Lipschitz theorem): If L denotes £, composed n times, we ob-
tain, forallt >0and n € N,
gt

n!

“[L:Z(X7Y)]t - [Eﬁ(X, Y)]t“ < ”()—(,)7) - (X: Y)”oo;

thus proving that in fact L7 is Lipschitz with constant C?/n! on the space
&E1/y of pairs (X,Y) of continuous real functions on [0,1] with Y > Y,.

Hence, it is possible to chose n, > 2 for all k in such a way that G, L L
be 27*-Lipschitz. The same proof as previously then shows that for all
(X,Y), with probability 1,

Gu(X,Y) = (X,Y)
uniformly in ¢ € [0, 1].

Recall that (X*,Y*) is the unique fixed point of £,. Then, (X*,Y*) is
also the unique fixed point of G, (which is contracting because x > 0). So
we obtain:

IX5Y") = (X, Y)lloo = 1G:(X", Y™) = (X, V) loo
<NGe(X5,Y™) = Gu(2,)lloo + G (2, y) — (X, Y)lloo
27X Y) = (@, 9)lloo + 1Gk(z,9) — (X, V)l
<27(X5Y) = (X, T )lloo+ 275((X, ) = (2, 9) oo+ [1Gi(2, y) = (X, 7) oo

As soon as 27" < 1/2, i.e. k > 1, this leads to
(X5, Y") = (X,Y)]lo < 21X, Y) = (2,9)lloo + 201G(, ¥) — (X, Y)|oos

and we know that the right-hand term of this inequality tends almost surely
to 0 as k tends to infinity: So we obtain the announced result, that with
probability 1, (X*,Y*) converges to (X,Y), uniformly in t € [0, 1].
Uniformity in (X, Y) then follows from the fact that all the estimates we
used were indeed uniform, and that all the constants depended only on y. //

Now, let K be the local time shape of B, defined as
KZ£{(z+iy): LT > 0,0 <y < LT}

and let z = z + iy be a given point in H\ K. Let y, = y — 2rL%. From the previous
Proposition, we know that there a.s. exists x, > 0 such that, for each k > «, and each
w satisfying Sw > y,/2, we have |gf(w) — w + 2miLY¥| < y,/4. In particular, this implies
that the image of the line of equation Sw = y,/2 under gf passes below z, hence z is not
in K. This proves that the limsup of the K% is contained in K.

To prove that (K7F) actually converges to K in the Hausdorff topology, we still have
to prove that it fills up K. Here is a brief description of how to do it. Let z € H be
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such that there exists a sequence (ki) tending to infinity satisfying, for all k, z ¢ KI*.
This means that we can look at the backward differential equation (i.e., the usual SLE up
to a horizontal shift by ;) starting at z for the parameters ki, and that this differential
equation has a solution up to time 1.

So, let (. ) be the backward solution, defined by

@z x(t) = [g7%, 0 (97) 7] (2)

(so that ¢, x(0) = z and g7*(¢.x(1)) = 2z). The methods used in the proof of Proposi-
tion 5.3 can be adapted (and this is where the details are still a little sketchy) to prove
that, as k goes to infinity, we have almost surely, for every ¢ € [0, 1],

0. k(t) = z — 2mi (LE{?” - L?ft)

or, in other words, that the backward flow in the limit involves the local time of the time
reversal of the driving process. Looking at the i imaginary part and letting ¢ = 1 then shows
that &z > 27rL§{*2, i.e. that z is not in the interior of K. So, the lim inf of the K contains
the interior of K, thus completing the proof.

As a side remark, one can look at the time parameterization of the usual SLE. Recall
that, if K is a hull in H, (Y;) a planar Brownian motion and T the first hitting time of
RUK by Y, we can define

A
A fim 4 Ew
o(K) y_grnw 5 B (SYr)
(where 4y is the starting point of Y), and that SLE is then parameterized by a(K;) = t¢.
Now, if f is a nonnegative continuous function with compact support, define the hypograph
of f as
Ki={z+iyeH: f(z) >0,0<y < f(z)}.

Heuristically, if K = Ky and the supremum of f is very small, then the distribution of
the real part of Y7 is close to the harmonic measure on R seen from 1y, i.e. it is close to
a Cauchy distribution with density

y/m
z2 +y?
This shows that the capacity of K can be estimated by

1 +oo y2
a(Ky) ~ 5—7;/ f(z) P dz,

—0o0

py(z) =

and by dominated convergence this last integral converges, as y goes to oo, to the integral
of f against the Lebesgue measure. So, still heuristically, if Ky is a very flat hypograph
along the real axis, we have

o0 Area(K
a(K;) ~ % f(z) dz = ﬁ;—fr—f—)

—0oQ
In the case of SLE for a large value of x, we have a(K;) = 1 by definition, and the
convergence to the hypograph of the local time implies that the area of K; converges to
the integral of 2w L — which is equal to 27 because the local time is the density of the
occupation measure.
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5.3 Discretized SLE

We describe in this section a discrete version of the SLE process. The idea is to approx-
imate the driving process §; by a random walk, interpolating it by constants between the
jumps (so that in particular the driving function is not continuous anymore). From here
on, (Sp)aso Will be a standard RW on Z, starting from 0, with steps in {£1}, each with
probability 1/2.

Definition :

Let € > 0, and define 3¢ as follows:

B = VES\1/e)-

Let k > 0, and K* be the Loewner chain with driving function /k3¢. We call K¢ a
discretized SLE process with parameter x and scale €.

It is easy to use Gronwall's Lemma to prove the following approximation result. Let
(B™) be a sequence of cadlag functions converging uniformly to 3, and (g7*) (resp. (g:)) be
the Loewner chain with driving function 8™ (resp. 3). Then for each z € H \ K;, g7*(2) is
well defined for n large enough and

9: (2) = 9:(2).

Moreover, the convergence is uniform on every compact subset of H \ K;. Hence the
sequence of domains (H \ K}') converges to H \ K} in the sense of Caratheodory.

Using Skorohod embedding, we can now fix a decreasing sequence (g,) tending to 0
and couple an SLE, and a sequence (K°*) of discretized SLE}'s with scales &,, in such
a way that their driving functions converge to that of the SLE when n tends to infinity,
a.s. uniformly on any bounded time interval. Then, at each time ¢ > 0, the sequence of
discretized SLE’s converges to the usual SLE (still in the sense of Caratheodory).

It is therefore natural to look at the geometry of discretized SLE and in particular how
it depends on the value of k. Note first that, by the scaling property of Loewner chains
in the half-plane, the law of 5‘1/2Kf€ does not depend on € — so we shall fix e = 1 in
what follows, and look at K} for integer values of t; so let K, = K} and let §, be the
corresponding conformal map.

At time 1, we always have §;(2) = V2% + 4, i.e. K, is the vertical segment [0, 2i]. Then

K continues to grow from j;!(1/kS;). Note that § maps K to the horizontal segment
[—2,2]: depending on the value of x, \/kS; will either be in or outside of [—2,2], and the
shape of K> will be different in both cases. More precisely:

o If K < 4: g;l(\/ﬁsl) is on K;, hence K, looks like a tree with two branches.
Inductively, K, will be obtained from K, by adding a branch on the last branch of
K,, and K, will look like a broken line with spines. In particular, K, NR is always
reduced to the origin.

e If Kk = 4: The second lgranch of f(g will start from 0, and inductively, so will every
subsequent branch of K. Hence, K, will be a union of disjoint curves in the upper-
half plane, all starting from 0.
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e If x > 4: The second branch of K, will start from +vk —4, ie. R’g consists of two
disjoint curves, starting from two different points on the real axis. In this case, K,
will be a forest of (many) disjoint trees in the upper half plane. In particular K, N R
is never a single point for n > 1.

In particular, we observe a change of geometry when « gets bigger than 4, similar to
the transition between a simple curve and a curve with double points for the trace of a
standard SLE; it is interesting to notice that they both happen for the same value of «.

However, simply looking at the geometry of the discretized SLE cannot provide a
proof of the existence of a transition at x = 4, for the following reason. Let (X)) be a
Markov chain in {£1}, with transition matrix

1/24a 1/2 -«
1/2—a 1/2+«

and with initial distribution P(X; = 1) = P(X; = —1) = 1/2, where « is a parameter in
(=1/2,1/2), and as previously let S, = X; + ---+ X,. We can define a Loewner chain
with driving function

/Bt(s’a) =V 4ES[t/EJa

and the geometry of the associated compact will be the same as that of discretized SLE,
(i.e. it will be a union of continuous curves in H starting from 0).

But when ¢ vanishes, 3% converges in distribution to a time-changed Brownian motion
(Bx(ayt)t>0 With
1+2a
1—-2a’
so that choosing the parameter « accordingly, we can obtain any standard SLE, as a limit
of discrete processes which all have the same structure.

It might still be possible to obtain precise results about standard SLE starting from
this discrete model, especially in the iid case; but it would probably be a hidden application
of 1td’s formula, i.e. a transcription of the usual proof to the discrete setup.

k(o) =4

Remark: Another way of seeing this construction is to write the conformal map g,(z) —
B, as the composition of n conformal maps, each of which is one of the following two

elementary maps:
9i(z) =V2* +4£Vk;

if the maps are chosen independently, the composition converges to an SLFE in the scaling
limit. However, for the same reason as previously, studying the semi-group generated by
these two maps is not sufficient to obtain informations on SLE itself. In particular, it is
probably not possible to derive locality at k = 6 by just studying the interactions between
the g&. Which is a pity, because it was a very natural thing to try ...
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Appendix A

All that did not fit in the main text.

A.1 Hausdorff dimension of random sets

We give here a self-contained proof of Proposition 3.1. It is easy to extract this proof
from that of Theorem 2.2, or from the proof of the dyadic analog to be found in [27],
but the statement of condition 2. used here makes the upper bound easier. This relation
between exponents and dimensions was first obtained by Lawler.

Suppose that A\ denotes the Lebesgue measure in [0,1]¢. Let (C:).»o be a family of
random Borelian subsets of the cube [0,1]¢. Assume that for € < ¢’ we have C. C C.,,
and let C = [ C.. Define the following conditions (where f < g means that there exist
positive numbers c_ and ¢y such that c_g < f < c4g, and where the constants do not
depend on ¢, z nor y):

1. For all z € [0,1]¢, P(z € C:) < €,
2. There exists ¢ > 0 such that for all z € [0,1]¢ and ¢,

P(\(C.NB(z,¢)) >cetlz € C.) > ¢>0;

3. There exists ¢ > 0 such that for all z, y € [0, 1]¢ and &,

P({z,y} C C.) < ce¥|z — y|™*.

Proposition 3.1

(i). If conditions 1. and 2. hold, then a.s. dimy(C) < d — s;

(ii). If conditions 1. and 3. hold, then with positive probability dimy(C) > d — s.

// As usual, the proof of the upper bound is done by giving an explicit
covering of C by small balls, and the lower bound is obtained by constructing
a measure supported on C.

(i). Fix € > 0, and a covering (B;) of the cube [0,1]¢ by 24z~ balls of
radius €. Combining conditions 1. and 2. shows that for all z, the probability
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that C. touches B; is not greater than C.e®. Hence, if N, is the minimum
number of balls of radius € needed to cover C,., we obtain

E(N,) < Ce % .
Applying the Markov inequality proves that, for all n > 0,
P(N, > 57271 < Ce™.

Now, let e = 27" for n € N. Since the sequence (27"") is summable, we may
apply Borel-Cantelli: Almost surely, there exists n, such that, for all n > n,,
we have Ny-» < 2(2=s+mn,

Since we are assuming that the family (C;) is decreasing, any covering
of C is also a covering of C'. Hence, the previous estimate can be expressed
as follows: Almost surely, for all n large enough, it is possible to cover C
with at most 2(2=s+M7 balls of radius 2~™. Hence the box dimension of C is
a.s. not greater than 2 — s+ 7. Letting n go to zero, we finally obtain that,
with probability 1,

dimy C < dimpx C < 2 —s.

(ii). This is exactly the same proof as that of the lower bound in The-
orem 2.2, so we only state the main steps of the proof. Let (uc).>0 be
measures defined by their density with respect to the Lebesque measure :

dpe(z) = € *1¢c, d%a.

Condition 1. leads to E(||u||) =< 1, and it is straightforward to apply condi-
tions 1. and 3. to derive

Var(|lell) < E(lleell?) = 0(1)

as € goes to 0. Hence, for o small enough, we have P(||p.|| > @) > a and
with probability at least o we can extract a subsequence (u.,) converging
weakly to a measure of mass at least a supported on C. Hence C is not
empty (which in itself was not clear).

Now, for each r > 0, define the r-energy of u,. as

)_// dpe(z) dp.(y
e e

Again, condition 3. can be used to show that, for every r < d — s, the
expectation of E,.(u.) is bounded when ¢ goes to 0, hence it is smaller than
C/a with probability at least 1 — «/2 if C is taken large enough. So with
probability at least a/2 we can extract a subsequence (u.,) of measures all
having mass at least a and r-energy at most C/a. Up to an additional
extraction we can assume that this subsequence converges to a measure u
supported on C' and having the same characteristics.

But it is known that a set supporting a positive measure of finite r-energy
has Hausdorff dimension at least r (because such a measure is automatically
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a Frostman measure of dimension r — cf. for instance [40]): So with prob-
ability at least a/2, we have dimg(C) > r, and this holds for each r < d —s;
hence, still with probability at least o/2 > 0, we have dimy(C) > d — s, as
we wanted. //

A.2 SLE and Holder domains

We present in this short section two lemmas about Holder domains, together with a con-
struction (essentially due to Peter Jones) of a natural measure supported on the boundary
of such a domain. It might be possible to exploit this construction to obtain a Frostman
measure of the correct dimension, and hence to derive the dimention of an SLE boundary
in this way — thus providing a better (as in “more natural for an analyst”) proof of Theo-
rem 4.1, at least in the case k < 4. The tools presented here are not new, but neither are
they widely known among probabilists.

A.2.1 Whitney decompositions of Holder domains

Let Q denote a simply connected, open and bounded Holder domain with exponent o > 0,
containing the open disk B(0,1) (meaning that the conformal maps from the open unit
disk onto € are all Holder with exponent «). A Whitney decomposition of Q is a family

of dyadic squares
k; kj+1] y [lj lj+1}

9= [2 | % o e

whose interiors are pairwise disjoint, whose union is dense in 2, and such that the ratios
1(Q;)/d(Qj,0N) are bounded above and below. Note that this implies that the family is
locally finite in 2, and hence that the union of the Q; is actually equal to 2. We call 27"
the size of Q; and denote it by /(Q;); moreover we will introduce the center z; of Q;,
defined by

A2ki+1  2;+1
%= onj+1 ¢ onj+1 ’

and for each C > 1 we can now define the enlarging of Q; by a factor C, as

CQ; 2 {z+C(z—z), z€ Q;}.

The first Lemma states that we can cover the boundary of €2 by enlarging all the Whitney
cubes of a given approximate size:
Lemma A.1 (Jones et al. [20]) :

Let {Q,} be a Whitney decomposition of Q2. Then, for all € > 0 there exist C > 0
and n, > 0 such that, for all n > n,

89 C U CQ;.

2-(HangI(Q;)<2 "

// Let Q be a simply connected domain, and for all z € Q, let 6(z) =
d(z,09) be the (Euclidean) distance between z and the boundary of (.
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Assume without loss of generality that 0 €  and 6(0) > 1. Let G(z) be
the Green function in Q with pole at 0. It is a general result [9, Theorem 7]
that, for all z € @\ B(0,1/2),
1 [ 1d¢ I]
G(z) < C,ex [——/——— Al
( ) 0 p 2 " 6(() ( )

where v, is the geodesic from 0 to z in Q — even if 2 is not Holder.
We prove the Lemma by contradiction; assume that there is € > 0 such
that, for all B > 0 and all n, > 0, there exist n > n, and z € 0Q satisfying

1
Vz € vy, 2 (e Lz —2| <27 = §(2) < §|z — z| (A.2)

(so that z is not in the Whitney cube at z enlarged by a factor B). Let
A=1+¢and 2’ € v, such that |2/ — z| = 272", By (A.1), we have

o) <Crop |1 [ 21
2

i 2 —(14¢€)n |C - .’L‘|
B [*" ds
< Cyexp | —= -2
0 exp 2 2—(14e)n S :l
[ B —nBe/2
= C, exp — ne log2| =C,2 : (A.3)

But it is easy to see that, since 2 is a Holder domain,
Vz € 7, G(z) > Clz — z|/= (A.4)

(because we know that the Green function in the unit disk decays linearly
near the boundary, and that it is mapped to G by any conformal map from
U onto Q fixing the origin). Applying this at point 2z’ and using (A.3) leads
to

C27e < .27,

Since this happens for arbitrarily large values of n, it implies that

B<1te) (A5)
(873

Hence the assumption cannot hold for all B > 0, and this proves the Lemma
for C = 4/ae. //

Remark: The minimal value of C such that the lemma holds is difficult to determine in

the general case, because the bounds we used in the proof, especially Equation (A.1), are
far from being optimal in the Holder case. The constant we obtain is of order 1/ea, and
this might lead to trouble when we apply the construction to SLE — because the value
of a and then that of the Holder norm (related to C in Equation (A.4)) are unknown. In
particular, it is not clear how to state the lemma for a random domain; the nicest version
would be the existence of C' > 0 such that the union of the CQ); over the same collection
of cubes covers 02 with probability 1, but this is hoping for too much ...



A.2. SLE AND HOLDER DOMAINS 119

For every subset A of €, introduce the shadow of A as
Shadow(A) ={z € Q:7,NA# o}

where v, is the hyperbolic geodesic from 0 to z in . Then the second Lemma says that
the number of Whitney cubes of given size whose shadow touches a given ball centered
on 01} it bounded above:

Lemma A.2 (Jones et al.) :

Let {Q;} be a Whitney decomposition of Q. Then, for all ¢ > 0, there exists C > 0
such that the following happens: For all z € 9§ and 7 > 0, the family F, .. of all
the cubes in {Q;} with sizes in [r, 7], whose shadow touches QN B(z,r), has at
most 72 elements.

Moreover, B(z,) in entirely contained in the union of the shadows the elements
of Fyre-

// Let z be a point in 9. For any z € QN B(z,r), the construction in the
proof of the previous Lemma provides a Whitney cube Qj(;) with center in
B(z,7'7¢) and size in [r,717¢], whose shadow contains z. Hence the union
of the Qj(,) contains QN B(z,r). Each of these cubes has area at least r?,
and they are all contained in B(z,r!~¢) by the triangle inequality. Since they
are pairwise disjoint, this implies that there are at most r~2¢ of them, as we

wanted. //

A.2.2 Construction of the Frostman measure

Now let f be a conformal map from the upper-half plane H onto €2, and let {Q,} be
the standard dyadic Whitney decomposition of H. As usual, z; will denote the center of
Qj. Ifn >0 and Q;, Q;, are two Whitney cubes, write j <, j, if Q; if below Q; and
UQ;) = 27"(Qj,) (i.e. Q; is in the n-th generation below Q; ). Introduce the following
notations: For each cube Q;, let f@Q; be its image under f (thatis, fQ; = f(Q;), but we
keep the former to agree with the usual notations); and if Qj, is a Whitney square and if

d>0,
D(jy,n,d) 227 |7 (2;)] 7 S0 1F ()" < UfQ) ™0 D UFQ)™

J=nJg J=nJy

Assume first that for some j, and d > 0, D(j,,n, d) tends to 0 when n tends to infinity.
We can apply the definition of a Whitney cube and Kdbe's 1/4 Theorem to show that the
diameter of fQ; is of order 27"|f'(2;)|, so that Lemma A.1 provides us with an explicit
covering of the shadow of fQ; on 9Q by sets (A;) of uniformly small diameter, and
satisfying

) diam(A,)*** < C.D(jy,n, d).

Letting n go to infinity, and then ¢ to 0, this shows that the Hausdorff dimension of the
shadow of fQ;, on 0 is at most equal to d. If this holds for every j,, we finally obtain
dimH(OQ) < d.
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We are going to argue that, under some assumptions on f, it is possible to prove the
opposite implication — namely, if D(j,,n,d) # 0, then dimg(0Q) > d. Note that this is
most certainly false in the general case.

If n is given, the following holds:

D(jy, 2n,d) = 272 | f(z )| S Y 1£(z)I°

k<njy j=<nk

=27 |7z 30 17 ()" [2‘""“’ @ 1S '(z")'d]
k<ndo Jnk

=271 1(23,) [ 3 1) Dk, m, ).
k<njg

Assuming that D(j,n,d) does not depend on j (which is quite natural if Q is a fractal) this
would imply that D(j,2n,d) = D(j,n,d)%. In the case of SLE, the natural version of the
hypothesis would state that the D(j, n, d) have the same law and are not strongly correlated
(in a sense to be specified eventually, and which will likely be similar to condition 2. in
Proposition 3.1 with milder requirements). For now, assume that the following holds:

(C) 3, 3m,, 3Jj,, Vn=n, Vi<j, D@nd =1

We then construct a Frostman measure on 012, as follows. Fix d, n and j, according to
condition (C), and let u, be the Lebesgue measure on fQ; normalized to have mass 1. We
construct a sequence of measures () inductively, as follows. Assume py is constructed.
Then pg4; is the unique measure supported on

Supp(uesr) = |J 7@

J=(k+1)ndo

proportional to the Lebesgue measure on each of the fQ;'s and such that, if j <, I <kn J,,

1(fQ))°
2j’<nl l(fQj’)

In particular, for all k, u; has total mass 1, and besides any subsequential limit of (u) is
supported on 0f).

Proposition A.1 :

Under condition (C), the following hold:

pe1(f Q) =

= kk(fQ1)-

(i). For all & > 0 there exist k, > 0 and C > 0 such that, for all ¥ > k, and all
j <kn jov
m(fQ5) < CUfQH)™5

(ii). The Hausdorff dimension of 92 is not less than d.

// (i). We prove this by induction on k. Note that the denominator in the
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definition of pg. is equal to

Q) =< 3 I ()1 1Qs)

J'<nl 7' <nl

CITORESTORD S
7' <nl

= 1(fQ)*D(l,n, d)
so that, dividing by I(fQ;)¢ in the definition of i,

pe1(fQ;) < 1 pe(f Q)
l(fQ])d = D(l7n7 d) l(le)d .

Now we are assuming that D(I,n,d) > 1 for all [, and the estimate follows.
(ii). It is then easy to apply Lemma A.2 to prove that any subsequential
limit of the sequence (u) is then a Frostman measure of dimension d — (3 +
d)e supported on 0. But we know in advance, by a compactness argument,
that such a subsequential limit always exists — thus proving that there exists
such a Frostman measure supported on 9.
Hence, for all € > 0, we have

(A.6)

dimg 002 > d — (3 + d)e,
hence dimg 0 > d, as we wanted. //

Remark: With the particular statement of condition (C) we kept, the first item in this
proposition also holds for € = 0, and indeed the proof does not even mention e. We present
it this way to show that this weaker version still gives a correct lower bound on Hausdorff
dimensions, so that we could replace condition (C) by a much weaker estimate. Looking
at Equation (A.6), the factor on which we need an upper bound will in fact be of the form

1 (l(fQ,-))E
D(l:n7 d) l(le)
with j <, [, so that [(fQ;) will tend to be much smaller than [(fQ,). allowing D(I,n, d)
itself to be smaller than 1.

A.2.3 Application to SLE

(Beware that this last subsection does not contain any real math and is only a loose
attempt at giving the embryo of the skeletton of the indication of a proof.)

In the case of a random domain, and hence of a random map, the D(l,n,d) are
random variables; and the proof presented above will work assuming that almost all of
these variables are greater than 1, or even if for “most” chains

jo >'nj1>'nj‘2>'n"'7
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the product of the D(j;,n,d) tends to +oo. This is typically the case for a random
snowflake — but then again in the case of snowflakes it is probably easier to attack the
problem using harmonic measure and symbolic dynamics, cf. for instance [8, 9, 10].

In the specific case of SLE, a good indication that the method might work is given
in [42, Theorem 8.3], namely it is stated that if f is the reciprocal of g; in the case of an
SLE, with k < 4, then the expected value of

A Z Z(Qj)a = Zz—anjfl(z a
J J

is finite if @ > §(k) = 1+ /8 and infinite if a > §(k). The idea is then to express this sum
(restricted to cubes sitting below a fixed one @; — call it S; ) in terms of the D(j,, n, a):
namely we have

S, (@) < |f'(2;,)|1* Y D(jy, n, a).
n=1

Now fix n, and write this sum as

Sj, (@) < |f'(2;,) I“Z Y D(jyn,a).

k=1 n=k[n,]

The above considerations then show that each of the n, sums appearing should behave like

a geometric sum of ratio D(j,, n,, a), meaning that, for large values of n,, the expectation

of D(j,,n,,a) should be smaller than 1 if a > §(x) and bigger than 1 if a < §(x).
Assume that we are in the second case. For all € > 0, we can write

D(jy, 19,0 — €) < U(fQ;,) —(a—¢) Z U fQ;)*° = cD(jys 1, a) [max l(fQ,)} .

=<nyJo
]'<710.70 0

The maximum in the last term tends to 0 as n, goes to infinity, and this proves that
as soon as E(D(j,,n,,a)) is bounded below, E(D(j,,n,,a — €)) goes to infinity with n,.
With some luck, this will be sufficient to apply the construction of the Frostman measure
presented in the previous subsection, for d = a — ¢ (it does not imply condition (C),
though).

So if everything worked out, we would obtain dimy K; > a—¢ for each a < 1+x/8 and
€ > 0 — hence dimg 0K; > 1 + /8, which was the difficult part of Theorem 4.1. The
good point here is that the method seems to be more robust, because we do not need to
work precisely at d = d(k) and we may add as many shifts by —e as we wish (to make all
the terms big enough) and still obtain a lower bound of the form §(x) minus many times ¢,
which is still very fine. In comparison, the method we used to prove Theorem 4.1 strongly
relies on the fact that the exponent s is exactly the same in the conditions 1. and 3. of
Proposition 3.1.
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Simulations and Pictures
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We gather in this chapter the results obtained by an SLE simulation program, which
we describe briefly. The aim is to provide a picture of the object, and to see whether its
aspect is what we would expect from comparison with discrete models. So we present,
close to each other:-

e An SLE, with a long loop-erased random walk;

e An SLEjg; with a long uniform self-avoiding walk (obtained by the pivot algorithm
as described in [39]);

e An SLEg with various percolation-type pictures (namely, and in order: critical site-
percolation on the trianular lattice; critical site- and bond-percolation on the square
lattice; and gradient percolation).

We end it by an SLE for a value of x bigger than 10 (indeed having a smoother boundary
and exhibiting no cut point).

The method of simulation is the most stupid one, using a classical Euler scheme and
discretizing the driving process into a simple random walk with steps of ++/ke over time-
intervalls of length . The process is stopped at time 1 and constant afterwards (hence
the “tail” on the pictures); this is a trick used split H; into two components (the left- and
right-hand sides of the tail), whose boundaries are then explored to draw the picture. We
do have convergence to SLE in the Caratheodory topology, by Gronwall’s lemma, but it
is not very fast so there are artifacts due to the discretizations (they are especially visible
on the SLEg3 picture).

Note that Marshall also produced pictures of SLE using his “zipper” algorithm (which
follows the Loewner chain as a composition of infinitesimal deformations of the domain);
his images are nicer for k < 4, but crappier for x > 4 — because the zipper method always
produces a slit domain, i.e. a simple curve.

123
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B.1 Loop-Erased Random Walk and SLE,

.-
o

e

Figure B.1: A Loop-Erased Random Walk (LERW)

g

.

Figure B.2: The path of an SLE,
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B.2 Self-Avoiding Walk and SLEyg;

Figure B.3: A Self-Avoiding Walk (SAW)

swzﬁ”%
£ Zi\:?
b\/\'/a‘\w\{k

;“\.W}dv

}‘r}\ﬁ

Figure B.4: The path of an SLEg;
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B.3 Critical Percolation and SLFj;
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CRITICAL PERCOLATION AND SLFEs

B.3.

Ice

)

1on

-percolati

lusters on the square latt
bond

ion C
ht:

19

on, r

ical percolat

percolat

it

ite-

ig cr
S

B

7
(left

B

igure

F

ICe

on the square latti

”

on

t-percolat

1en

igure B.8: “Gradi

F



128 APPENDIX B. SIMULATIONS AND PICTURES

B.4 SLE for bigger values of «

Figure B.9: The path of an SLEj,

B.5 The code

All the programs used to produced the pictures in this thesis (except for the percolation
exploration curve on the honeycomb lattice) are available on the web at the address

http://vbeffara.free.fr/boulot/

but we include here the code used to generate the SLE images.

File Schramm. c: the simulation itself

#include <config.h> double a,b,d;
#include <stdio.h> int k;
#include <stdlib.h>
#include <math.h> a=i; b=j; d=0;
#include <printout.h>
fprintf (stderr, " (%d;%d) \r, i, j);
#define C00(a,b) (2*nn*(a)+nn+(db))
#define EC fprintf(stderr,".\n") for (k=0; (k<n)2&(b>0);k++) {
d=kappa / ((a-c[k])*(a-c[k]) + bab);
#define DONTKNOW 0O a += (a-c[k])*d;
#define INSIDE 1 b -= bxd;
#define LEFTSIDE 2 }
#define RIGHTSIDE 3 if (k<n) return INSIDE;
else if (a<c[n-1]) return LEFTSIDE;
int n,nn, jmax,cnt; else return RIGHTSIDE;
image *img; }
double *c;
double kappa; inline char clever_t(int i, int j)
int time (int *tloc); char tmp;
char real_t(int i, int j) if (i>=nn)  i=nn-1;
{ if (i<-nn) i=-nn;
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B.5. THE CODE

it (j<0) j=0;
if (j>=2#nn) j=2%nn-1;

tmp=img->t [2#nn*j+nn+il;

it (tmp==0)
PutPoint (img,i+nn,j,tmp=real_t(i,j));

return tmp;

}
void bord(void)
const int dx[4]1={1,0,-1,0};

const int dy[4]={0,1,0,-1};
const int blackmagic[27]={

1,1,1, 1,1,1, 1,1,1, // INSIDE

2,2,0, 2,2,0, 0,0,0, // LEFTSIDE

3,0,3, 0,0,0, 3,0,3, // RIGHTSIDE
}

const char tokeep[4] = {1,1,0,0};

int x,y,d,k;
char tmp,col;
char self,right,down;

// Follow the left side ...

x=-nn; y=1; d=0; .

vhile ((clever_t(x,y)!=LEFTSIDE)&&(y<2#*nn)) y++;

while (y<2*mnn) {
x+=dx[d]; y+=dyld]; d=(d+3)23;
vhile (clever_t(x+dx[d],y+dy[d])!=LEFTSIDE) d=(d+1)&3;
cnt++;

}
// Then follow the right side ...

x=n-1; y=1; d=2;

while ((clever_t(x,y)!=RIGHTSIDE)&k(y<2*nn)) y++;

while (y<2#nn) {
x+=dx[d]; y+=dy[d]; d=(d+1)a3;
while (clever_t(x+dx[d],y+dy[d])!=RIGHTSIDE) d=(d+3)&3;
cnt++;

}

// And now for the dark side: Catch the thin parts ie LEFT->RIGHT
// and RIGHT->LEFT in addition to the fat parts (INSIDE).

// Pirst some stupid filling of "UNKNOWN" points :

for (x=0;x<2%nn;x++)
img->t [x]=INSIDE;
for (y=1;y<2+nn;y++) {
+tmp=LEFTSIDE;
for (x=-nn;x<nn;x++) {
k=2*nnsy+nn+x;
col=img->t[k];
if (col==DONTKNOW) img->t[k]=tmp;
else tmp=col;
}
}

// 0K, we have a nice picture. Now for the real black magic, Edge
// Detection (US$0.02 version). O=added points. (ie: among itself
// and its right- and down-neighbours lie at least one LEFTSIDE and
// one RIGHTSIDE)

for (y=2#nn-1;y>0;y--) {
for (x=-nn;x<un-1;x++) {
self = img->t[2*nn*y+nn+x];
right = img->t[2*nn*y+nn+x+1];
down = img->t[2*nn*y-nn+x];
img->t [2*nn*y+nn+x] = blackmagic[(9*self)+(3sright)+down-13];

b
// Last sweep

for (x=0;x<4*nn*nn;x++)
img->t[x] = tokeep[(int)img->t[x1];

File libprintout.c: the eps output

1/
// libprintout.c - vi.1 - (© 2001 VB - GPL
1/

#include <config.h>
#include <stdio.h>
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y
int main(int argc, char ** argv)

int i;
char s{80];
double d, cd;

/* arguments -> kappa et n */

if (arge < 3) {
fprintf(stderr, "Syntaxe : %s <kappa> <sqrt(n)> [seed]l\n",
argv[0]);
exit(1);

b

sscanf (argv[i],"%1f",&kappa);

sscant (argv[2],"%d",&nn);

if (arge>=4) {
sscanf (argv[3],"%d",&n);
srand48(n);

} olse {
n = time(0);
fprintf(stderr,"Random seed
srand48(n);

// Si on donne une initialisation :

// Sinon, aleatoire :

= %d\n",n);
}
sprintf(s,"Schramm’s SLE Process (kappa=%f)", kappa);
n=nn*nn; kappa=2/kappa;

img = new_image (2*nn,2*mn,2,s);
if (timg) exit(1);
for (i=0;i<2#*nn;i++) img->t[il=1;

#ifdef HAVE_SDL
OnScreen (img);
#endif

/* Brownien qui conduit le SLE - kappa n’apparait pas icis/

¢ = (double *) malloc (n*sizeof(double));

c[0]1=0; cd=0;

for (i=1;i<cn;i++) {
d = 2#sqrt(3)*drand48() - sqrt(3); // B=0, Var=1
cfil = c[i-1] + 4;
cd += (d#d);

}

fprintf (stderr,"End value (normalized) = %f\n",c[n-1]/nn);
fprintf (stderr,"Square variation (normalized) = %f\n",cd/n);

/*

* simulation du SLE : inutile sans strategie siouxe (clever_t est
* malin), sinon au choix longer le bord ou dichotomie. Longer le
* bord est beaucoup plus efficacs : sur jade, pour 7 et 100 pts :
*=  sans strategie : 31.20s

*  dichotomie : 4.75s

* suivre le bord : 0.98s

*/

fprintf (stderr, "Doing the hard work ...\n");

bord();

fprintf (stderr, "Estimated boundary dimemsion = %f (%£)\n",

log(cnt)/log(2#nn),
(kappa>0.571+1/(4*kappa) : 1+kappa)) ;
fprintf (stderr, "Exporting EPS file.\n");
/* affichage du resultat */

img->dp = 1;
printout_eps (img,0,0,2*nn,2*nn);

fprintf (stderr, "Good bye, have a nice day.\n");
free (img->t); free (img->title); free (img);

return 0;

#include <stdlib.h>
#include <string.h>
#include <errmo.h>
#include <printout.h>

#ifdef HAVE_SDL
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#include <SDL.h> }

void DrawPixel (SDL_Surface *screem, int x, int y, img = (image *) malloc(sizeof(image));

Uint8 R, Uint8 G, Uint8 B)
img->title = (char*) calloc(80,sizeof(char));

I strocpy (img->title,title,80);
* Taken directly from the SDL documentation ... img->wd=vd;
»/ img->ht=ht;
img->dp=dp;
Uint32 color = SDL_MapRGB(screen->format, R, G, B); img->t=(char*) calloc (wc*ht,sizeof(char));
if ( SDL_MUSTLOCK(screen) ) { if (1(img->t)) {
if ( SDL_LockSurface(screen) < 0 ) { fprintf (stderr,"printout library error : image too large.\n");
return; free (img->title);
} free (img);
} return NULL;
3
switch (screen->format->BytesPerPixel) {
case 1: { /* Assuming 8-bpp */ #ifdef HAVE_SDL
Uint8 *bufp; { int i,pstep;
pstep = 255 / ((1<<dp)-1);
bufp = (Uint8 *)screen->pixels + y*screen->pitch + x; for (i=0;i<(1<<dp);i++) {
*bufp = color; img->palette[i]1[0] = ispstep;
3 img->palette[il[1] = ispstep;
break; img->palette[i][2] = i*pstep;
1}
case 2: { /* Probably 15-bpp or 16-bpp */ #ondif

Uint16 *bufp;
img->cropped=0;
bufp = (Uint16 *)screen->pixels + y*screen->pitch/2 + x;

*bufp = color; return img;
} >
break;
int OnScreen (image *img)
case 3: { /* Slow 24-bpp mode, usually not used */ {
Uint8 *bufp; #ifdef HAVE_SDL
int i,j;
bufp = (Uint8 *)screen->pixels + y*screen->pitch + x * 3;
if (SDL_BYTEORDER == SDL_LIL_ENDIAN) { fprintf (stderr,"printout library : Mapping SDL window ...\n");
bufp[0] = color;
bufpli] = color >> 8; SDL_Init(SDL_INIT_VIDEO);
bufp[2] = color >> 16; atexit (SDL_Quit);
} else {
bufp[2] = color; img- SDL_SetVideoMode (img->wd, img->ht,0,SDL_SWSURFACE) ;
bufp[1] = color >> 8; if (!img->screen) {
bufp[0] = color >> 16; fprintf (stderr,"printout library error :");
fprintf (stderr,"Couldn’t map it ! Continuing without.\n");
b return 0;
break;
case 4: { /* Probably 32-bpp */ SDL_WM_SetCaption (img->title,"Simulation");

Uint32 *bufp;
for (i=0;icimg->wd;i++)

bufp = (Uint32 *)screen->pixels + y*screen->pitch/4 + x; for (j=0;j<img->ht;j++)
*bufp = color; DrawPixel (img->screen,i,j,
} img->palette[(int)img->t[i+j*img->wd1l[0],
break; img->palette[(int)img->t [i+j*img->wd]][1],
img->palette[(int)img->t[i+j*img->wd]]1[2]);
if ( SDL_MUSTLOCK(screen) ) { SDL_UpdateRect (img->screen,0,0,img->wd,img->ht);
SDL_UnlockSurface(screen) ; return 1;
} #else
} fprintf (stderr,"printout library : I can’t do that, Dave.\n");
#endif return 0;
#endif
int PutPoint (image *img, int x, int y, int ¢) { }

if (x<0) return -1;

if (y<0) return -1; inline char trans (int i)
if (x>=img->wd) return -1; {
if (y>=img->ht) returm -1; static char »trans = "0123456789ABCDEF";
img -> t[x+y*img->wd] = c&255; if (i<0) i=0;
if (i>15) i=15;
#ifdef HAVE_SDL return trans[i];
if (img->screen) { }
DrawPixel (img->screen,x,y,img->palette[ck255][0],
img->palette[ck2551[1],img->palette[c&255][2]); int range_check (int wd, int ht, int x, int y, int dx, int dy)
if (c&PRINTOUT_FULL_UPDATE) {
SDL_UpdateRect (img->screen,0,0,img->wd,img->ht) ; if ((wd<0) || (ht<0) 1]
else if (!(ckPRINTOUT_ND_UPDATE)) (x<0) 1| (x>=wd) || (y<0) 1| (y>=ht) ||
SDL_UpdateRect (img->screen,x,y,1,1); (dx<=0) || (x+dx>wd) || (dy<0) || (y+dy>ht)) {
} fprintf (stderr,"printout library error : invalid range.\n");
#endif return 1;
}
return ¢; return 0;
}
image *new_image (int wd, int ht, int dp, char *title) int printout_eps (image *img, int x, int y, int dx, int dy)
{ {
image *img; int acc,dec,i,j,bits;

int xmin,xmax,ymin,ymax;
if ((dp!=1)&k(dp!'=2)&&(dp!=4)) {
fprintf (stderr, "printout library error : invalid depth"); if (range_check(img->wd,img->ht,x,y,dx,dy)) return 1;
fprintf (stderr, " (only 1, 2 and 4 bpp allowved).\n");
return NULL; if ((img->dp!=1)2&(img->dp!=2)&&k(img->dp!=4)) {
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fprintf (stderr,"printout library error : invalid depth");
fprintf (stderr," (only 1, 2 and 4 bpp allowed).\a");
return 1;

}

if (img->cropped != 0) {
min=x+dx-1; ymin=y+dy-1; xmax=x; ymax=y;
for (i=x;icx+dx;i++)
for (j=y;j<y+dy;j++)
if ((img->t[i+img->wd*jla16) = 0) {
if (i<xmin) xmin=i;
if (i>xmax) xmax=i;
if (j<ymin) ymin=j;
if (j>ymax) ymax=j;

x=xmin; dx=xmax-xmin+l; y=ymin; dy=ymax-ymin+i;

bits = dx * img->dp;
// EPS header

printf ("%%!PS-Adobe-2.0 EPSF-2.0\n");

// printf ("AA%ATitle: ¥s\n",img->title);

// printt ("%%%%Creator: libprintout - v#s - (© 2001 VB - GPL\n",
/] VERSION);

printf ("%%%%Creator: Mail: Vincent.BeffaraCmath.u-psud.fr\n");
printf ("%%%%Creator: Web: <http://vbeffara.free.fr/>\n");
printf ("%%%%BoundingBox: 0 0 %d %d\n\n", dx, dy);

// Commands

printf ("save 20 dict begin /xpixels %d def /ypixels %d def\n",

dx, dy);

printf ("/pix %d string def xpixels ypixels scale\n", (bits+7)/8 );
printf ("xpixels ypixels %d [xpixels 0 O ypixels 0 0]\n",img->dp);
printf ("{currentfile pix readhexstring pop} image\n");

// Image

for (j=y;j<y+dy;j++) {
acc=15; dec=16>>img->dp;
for (i=x; i<x+dx; i++) {
acc -= dec*(img->t[i+timg->ud*jl&15);
if (dec==1) {
printf (“%c",trans(acc));
acc=15; dec=16>>img->dp;
} else dec >>= img->dp;
if (1((i-x+1)%(512>>img->dp))) printf ("\a");

if ((dx<<img->dp)%8) printf ("%c",trans(acc));
if (((dx<<img->dp)%16)&k(((dx<<img->dp)%16)<=8)) printf ("F");
if (dx%(512>>img->dp))

printf ("\n");
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// End of file

printf ("end restore\n");
return 0;

}
int printout_path (char *p, int 1, char *title)

const char *dirs = "ENWS";
const int dx[4] = {1,0,-1,0};
const int dy[4] = {0,1,0,-1};

int i, imin,imax, jmin,jmax, x,y;

/* Step 1 = cropping */

imin=0; imax=0; jmin=0; jmax=0; x=0; y=0;
for (i=0;i<l;i++) {
x+=dx[(int)p[(int)ill;
y+=dy[(int)p[(int)il];
if (x<imin) imin=x;
if (x>imax) imax=x;
if (y<jmin) jmin=y;
if (y>jmax) jmax=y;

}
/* Step 2 = printing »/
// Header

printf ("%%!PS-Adobe-2.0 EPSF-2.0\n");

printf ("A%%ATitle: %s\n",title);

printf ("%X%%Creator: libprintout - v¥s - (© 2001 VB - GPL\n",
VERSION) ;

printf ("X%%%Creator: Mail: Vincent.Beffara®math.u-psud.fr\n");
printf ("X%%%Creator: Web: <http://vbeffara.free.fr/>\n");
printf ("%%%XBoundingBox: 0 0 %d %d\n\n",

3% (imax-imin)+6, 3#*(jmax-jmin)+6);

// "Code" ;-)

printf ("save 20 dict begin\n");

printf ("/E {3 0 rlineto} bind def /W {-3 O rlineto} bind def\n");
printf ("/N {0 3 rlineto} bind def /S {0 -3 rlineto} bind def\n");
printf (“newpath %d %d moveto\n", 3-3#imin, 3-3%jmin);

for (i=0;i<1;) {
printf ("%e¢", dirs[(int)p[(int)ill);
if (! (++i%40)) printf ("\n");
else printf (" ");

}
if (i%40) printf ("\n");

printf ("stroke end restore\n");
return 0;


http://vbeffara.free.fr/
http://vbeffara.free.fr/
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