@phdthesis{BJHTUP11_2003__0638__A1_0, author = {Chambaz, Antoine}, title = {Segmentation spatiale et s\'election de mod\`ele : th\'eorie et applications statistiques}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e Paris XI UFR scientifique d'Orsay}, number = {638}, year = {2003}, language = {fr}, url = {http://archive.numdam.org/item/BJHTUP11_2003__0638__A1_0/} }
TY - BOOK AU - Chambaz, Antoine TI - Segmentation spatiale et sélection de modèle : théorie et applications statistiques T3 - Thèses d'Orsay PY - 2003 IS - 638 PB - Université Paris XI UFR scientifique d'Orsay UR - http://archive.numdam.org/item/BJHTUP11_2003__0638__A1_0/ LA - fr ID - BJHTUP11_2003__0638__A1_0 ER -
Chambaz, Antoine. Segmentation spatiale et sélection de modèle : théorie et applications statistiques. Thèses d'Orsay, no. 638 (2003), 304 p. http://numdam.org/item/BJHTUP11_2003__0638__A1_0/
A new look at the statistical model identification. IEEE Trans. Automatic Control AC-19, 716-723. System identification and time-series analysis. | MR | Zbl | DOI
(1974).On estimating the number of components in a finite mixture of power series distributions. Comput. Statist. Data Anal. 4 (4), 229-241. | MR | Zbl | DOI
and (1986).Detecting abrupt changes by wavelet methods. J. Non-parametr. Stat. 14 1-2), 7-29. | MR | Zbl | DOI
and (2002).Non-parametric estimation for the location of a change-point in an otherwise smooth hazard function under random censoring. Scand. J. Statist. 27 (3), 501-519. | MR | Zbl | DOI
, , and (2000).An optimal property of the likelihood ratio statistic. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. I: Statistics, pp. 13-26. Berkeley, Calif.: Univ. California Press. | MR | Zbl
(1967).Some limit theorems in statistics. Philadelphia, Pa.: Society for Industrial and Applied Mathematics. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 4. | MR | Zbl
(1971).Large deviations, tests, and estimates. In Asymptotic theory of statistical tests and estimation (Proc. Adv. Internat. Sympos., Univ. North Carolina, Chapel Hill, N.C., 1979), pp. 33-64. New York: Academic Press. | MR | Zbl
, , and (1980).Model selection with data-oriented penalty. J. Statist. Plann. Inference 77(1), 103-117. | MR | Zbl | DOI
, , and (1999).Risk bounds for model selection via penalization. Probab. Theory Related Fields 113(3), 301-413. | MR | Zbl | DOI
, , and (1999).Detection of abrupt changes: theory and application. Prentice Hall Inc. | MR | Zbl
and (1993).Méthodes de mélange et d'agrégation d'estimateurs en reconnaissance de formes. Application aux arbres de décision. Ph. D. thesis, Université Paris XIII - Paris-Nord. Available at http://www.math.u-psud.fr/~blanchard/publi/these.ps.gz.
(2001).Stability and generalization. Journal of Machine Learning Research 2, 499-526. | MR | Zbl
and (2002).Bagging predictors. Machine Learning 24(2), 123-140. | Zbl | DOI
(1996a).Heuristics of instability and stabilization in model selection. Ann. Statist. 24(6), 2350-2383. | MR | Zbl | DOI
(1996b).Arcing classifiers. Ann. Statist. 26(3), 801-849. With discussion and a rejoinder by the author. | MR | Zbl
(1998).Statistical modeling: the two cultures. Statist. Sci. 16(3), 199-231. With comments and a rejoinder by the author. | MR | Zbl | DOI
(2001).Classification and regression trees. Chapman & Hall. | MR | Zbl
, , , and (1984).Spatial-temporal modeling of spatially aggregate birth data. Survey Methodology Journal 16, 255-269.
(1990).Nonparametric methods in change-point problems. Kluwer Academic Publishers Group. | MR | Zbl | DOI
and (1993).Analyzing bagging. Ann. Statist. 30(4), 927-961. | MR | Zbl | DOI
and (2002a).Boosting with the -loss: regression and classification. Preprint. | MR | Zbl
and (2002b).Distribution function inequalities for martingales. Ann. Probability 1, 19-42. | MR | Zbl | DOI
(1973).Change-point problems. Hayward, CA: Institute of Mathematical Statistics. Papers from the AMS-IMS-SIAM Summer Research Conference held at Mt. Holyoke College, South Hadley, MA, July 11-16, 1992. | MR
, , and (Eds.) (1994).Statistical decision rules and optimal inference. Providence, R.I.: American Mathematical Society. Translation from the Russian edited by Lev J. Leifman. | MR | Zbl
(1982).Detecting abrupt changes in random fields. ESAIM P&S 6, 289-209. | MR | Numdam | DOI
(2002).Large sample theory: parametric case. Ann. Math. Statist. 27, 1-22. | MR | Zbl | DOI
(1956).Optimal pruning with applications to tree-structured source coding and modeling. IEEE Trans. Inform. Theory 35(2), 299-315. | MR | DOI
, , and (1989).Statistics for spatial data. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. New York: John Wiley & Sons Inc. | MR | Zbl
(1993).I-divergence geometry of probability distributions and minimization problems. Ann. Probability 3, 146-158. | MR | Zbl | DOI
(1975).The estimation of the order of a mixture model. Bernoulli 3(3), 279-299. | MR | Zbl | DOI
and (1997).Testing the order of a model using locally conic parametrization: population mixtures and stationary ARMA processes. Ann. Statist. 27(4), 1178-1209. | MR | Zbl | DOI
and (1999).Projective systems in large deviation theory. II. Some applications. In Probability in Banach spaces, 9 (Sandjberg, 1993), pp. 241-250. Birkhäuser Boston. | MR | Zbl | DOI
(1994).Exponential inequalities and functional central limit theorem for random fields. ESAIM P&S 5. | MR | Zbl | Numdam | DOI
(2001).Large deviations techniques and applications. New York: Springer-Verlag. | MR | Zbl | DOI
and (1998).CART and best-orthobasis: a connection. Ann. Statist. 25 (5), 1870-1911. | MR | Zbl | DOI
(1997).Mixing. New York: Springer-Verlag. Properties and examples. | MR | Zbl
(1994).Improving regressors using boosting techniques. In Proc. 14th International Conference on Machine Learning, pp. 107-115. Morgan Kaufmann.
(1997).Invariance principles for sums of Banach space valued random elements and empirical processes. Z. Wahrsch. Verw. Gebiete 62(4), 509-552. | MR | Zbl | DOI
and (1983).A weak convergence approach to the theory of large deviations. Wiley Series in Probability and Statistics: Probability and Statistics. New York: John Wiley & Sons Inc. | MR | Zbl | DOI
and (1997).Finite mixture distributions. London: Chapman & Hall. Monographs on Applied Probability and Statistics. | MR | Zbl
and (1981).An introduction to probability theory and its applications. Vol. II. New York: John Wiley & Sons Inc. | MR | Zbl
(1971).Experiments with a new boosting algorithm. In International Conference on Machine Learning, pp. 148-156.
and (1996).Likelihood ratio inequalities with applications to various mixtures. To appear in Ann. Inst. H. Poincaré Probab. Statist. | MR | Zbl | Numdam | DOI
(2002).Optimal error exponents in Hidden Markov Models order estimation. Preprint, submitted. | MR | Zbl
and (2001).Model selection for CART regression trees. Preprint. | MR | Zbl
and (2001).Boosting cart regression trees. Preprint.
and (2002).Prévision par arbres de classification. Mathématiques, Informatique et Sciences Humaines 146, 31-50.
(1999).On the asymptotic performance of the log likelihood ratio statistic for the mixture model and related results. In Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, Vol. II (Berkeley, Calif., 1983), Belmont, CA, pp. 789-806. Wadsworth. | MR | Zbl
and (1985).On the underfitting and overfitting sets of models chosen by order selection criteria. J. Multivariate Anal. 70(2), 221-249. | MR | Zbl | DOI
and (1999).The elements of statistical learning. New York: Springer-Verlag. Data mining, inference, and prediction. | MR | Zbl | DOI
, , and (2001).Size of the error in the choice of a model to fit data from an exponential family. Sankhyā Ser. A 51(1), 45-58. | MR | Zbl
(1989).Asymptotic probabilities of overestimating and underestimating the order of a model in general regular families. Submitted. | MR | Zbl
and (2001).On the choice of a model to fit data from an exponential family. Ann. Statist. 16(1), 342-355. | MR | Zbl
(1988).On estimating of the number of constituents of a finite mixture of continuous distributions. Ann. Inst. Statist. Math. 37(2), 235-240. | MR | Zbl | DOI
(1985).The behavior of maximum likelihood estimates under nonstandard conditions. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. I: Statistics, pp. 221-233. Berkeley, Calif.: Univ. California Press. | MR | Zbl
(1967).Consistent estimation of mixture complexity. Ann. Statist. 29 (5), 1281-1296. | MR | Zbl | DOI
, , and (2001).Hodges-Lehmann optimality of tests. Statist. Probab. Lett. 14(1), 31-38. | MR | Zbl | DOI
and (1992).Consistent estimation of the order of mixture models. Sankhyā Ser. A 62 (1), 49-66. | MR | Zbl
(2000).Minimax theory of image reconstruction, Volume 82 of Lecture Notes in Statistics. New York: Springer-Verlag. | MR | Zbl
and (1993).Bahadur efficiency of likelihood ratio and related tests in nonregular models. Austral. J. Statist. 33 (3), 291-298. | MR | Zbl | DOI
(1991).Réseaux GSM-DCS, des principes à la norme. Hermes Sciences Publications.
, , and (1999).On the use of penalized contrasts for solving inverse problems. Application to the DDC (Detection of Divers Changes) problem. Submitted.
Detection of multiple changes in a sequence of dependent variables. Stochastic Process. Appl. 83(1), 79-102. | MR | Zbl | DOI
(1999).An application of MCMC methods for the multiple change-points problem. Signal Processing 81, 39-53. | Zbl | DOI
and (2001).The multiple change-points problem for the spectral distribution. Bernoulli 6(5), 845-869. | MR | Zbl | DOI
and (2000).Least-squares estimation of an unknown number of shifts in a time series. J. Time Ser. Anal. 21 (1), 33-59. | MR | Zbl | DOI
and (2000).Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi. Ann. Inst. H. Poincaré Probab. Statist. 28(2), 267-280. | MR | Zbl | Numdam
(1992).Minimizers of energy functionals under not very integrable constraints. Preprint. | Zbl
(2000).An extension of Sanov's theorem. Application to the Gibbs conditioning principle. Preprint. | MR | Zbl
and (2000).Metric spaces of partitions. Preprint. | MR | Zbl
and (2002).Consistent estimation of a mixing distribution. Ann. Statist. 20(3), 1350-1360. | MR | Zbl | DOI
(1992).Moment matrices: applications in mixtures. Ann. Statist. 17(2), 722-740. | MR | Zbl
(1989).A review of semiparametric mixture models. J. Statist. Plann. Inference 47 (1-2), 29-39. Statistical modelling (Leuven, 1993). | MR | Zbl | DOI
and (1995).Lectures on statistical learning theory. Presented at the Garchy Seminar on Mathematical Statistics and Applications, available at http://www.econ.upf.es/~lugosi.
(2000).Some comments on . Technometrics 15, 661-675. | Zbl
(1973).Asymptotical minimax recovery of sets with smooth boundaries. Ann. Statist. 23 (2), 502-524. | MR | Zbl | DOI
and (1995).Some applications of concentration inequalities to statistics. Ann. Fac. Sci. Toulouse Math. (6) 9(2), 245-303. | MR | Zbl | Numdam | DOI
(2000).Mixture models. New York: Marcel Dekker Inc. Inference and applications to clustering. | MR | Zbl
and (1988).A general moment inequality for the maximum of the rectangular partial sums of multiple series. Acta Math. Hungar. 41 (3-4), 337-346. | MR | Zbl | DOI
(1983).Moment and probability bounds with quasisuperadditive structure for the maximum partial sum. Ann. Probab. 10(4), 1032-1040. | MR | Zbl | DOI
, , and (1982).Spatial smoothing of geographically aggregated data, with application to the construction of incidence maps. J. Amer. Statist. Assoc. 92(437), 61-71. | MR | Zbl
, , and (1997).Sums of independent random variables. New York: Springer-Verlag. | MR | Zbl
(1975).Limit theorems of probability theory. New York: The Clarendon Press Oxford University Press. Sequences of independent random variables, Oxford Science Publications. | MR | Zbl
(1995).New ways to prove central limit theorems. Econometric Theory 1, 295-314. | DOI
(1985).Theory of Orlicz spaces. New York: Marcel Dekker Inc. | MR | Zbl
and (1991).Théorie asymptotique des processus aléatoires faiblement dependants. Springer. | MR | Zbl
(2000).Modelling by shortest data description. Automatica 14, 465-471. | Zbl | DOI
(1978).Convex analysis. Princeton University Press. | MR | Zbl | DOI
(1970).Cramer's condition and Sanov's theorem. Statist. Probab. Lett. 39, 55-60. | MR | Zbl | DOI
(1998).Estimating the dimension of a model. Ann. Statist. 6(2), 461-464. | MR | Zbl | DOI
(1978).Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J. Amer. Statist. Assoc. 82(398), 605-610. | MR | Zbl | DOI
and (1987).Statistique asymptotique presque sûre de modèles statistiques convexes. Ann. Inst. H. Poincaré Probab. Statist. 26 (1), 19-44. | MR | Zbl | Numdam
(1990).Contributions to central limit theory for dependent variables. Ann. Math. Statist. 39, 1158-1175. | MR | Zbl | DOI
(1968).New concentration inequalities in product spaces. Invent. Math. 126 (3), 505-563. | MR | Zbl | DOI
(1996a).A new look at independence. Ann. Probab. 24(1), 1-34. | MR | Zbl | DOI
(1996b).Statistical analysis of finite mixture distributions. Chichester: John Wiley & Sons Ltd. | MR | Zbl
, , and (1985).Asymptotic statistics. Cambridge University Press. | MR | Zbl
(1998).Weak convergence and empirical processes. New York: Springer-Verlag. With applications to statistics. | MR | Zbl | DOI
and (1996).Statistical learning theory. New York: John Wiley & Sons Inc. | MR | Zbl
(1998).Large deviations, moderate deviations and LIL for empirical processes. Ann. Probab. 22(1), 17-27. | MR | Zbl
(1994).Estimating the number of change-points via Schwarz's criterion. Statist. Probab. Lett. 6(3), 181-189. | MR | Zbl | DOI
(1988).Weakly differentiable functions. New York: Springer-Verlag. Sobolev spaces and functions of bounded variation. | MR | Zbl
(1989).