Geometry and Conformal Field Theory
[La géométrie et la théorie conforme des champs]
Thèses d'Orsay, no. 707 (2006) , 66 p.
@phdthesis{BJHTUP11_2006__0707__P0_0,
     author = {Engoulatov, Alexandre},
     title = {Geometry and {Conformal} {Field} {Theory}},
     series = {Th\`eses d'Orsay},
     publisher = {Universite Paris-Sud Facult\'e des Sciences d'Orsay},
     number = {707},
     year = {2006},
     language = {en},
     url = {http://archive.numdam.org/item/BJHTUP11_2006__0707__P0_0/}
}
TY  - BOOK
AU  - Engoulatov, Alexandre
TI  - Geometry and Conformal Field Theory
T3  - Thèses d'Orsay
PY  - 2006
IS  - 707
PB  - Universite Paris-Sud Faculté des Sciences d'Orsay
UR  - http://archive.numdam.org/item/BJHTUP11_2006__0707__P0_0/
LA  - en
ID  - BJHTUP11_2006__0707__P0_0
ER  - 
%0 Book
%A Engoulatov, Alexandre
%T Geometry and Conformal Field Theory
%S Thèses d'Orsay
%D 2006
%N 707
%I Universite Paris-Sud Faculté des Sciences d'Orsay
%U http://archive.numdam.org/item/BJHTUP11_2006__0707__P0_0/
%G en
%F BJHTUP11_2006__0707__P0_0
Engoulatov, Alexandre. Geometry and Conformal Field Theory. Thèses d'Orsay, no. 707 (2006), 66 p. http://numdam.org/item/BJHTUP11_2006__0707__P0_0/

[1] M. Arnaudon, A. Thalmaier, F.-Y. Wang, Harnack inequality and heat kernel estimates on manifolds with curvature unbounded from below, Bull. Sci. Math. 130 (2006) 223-233. | MR | Zbl | DOI

[2] D. Bakry, M. Emery, Diffusions hypercontractives. Sém. de Probab. XIX. Lecture Notes in Math. 1123 (1985) 177-206. | MR | Zbl | Numdam

[3] D. Bakry, M. Ledoux, Z. M. Qian, Logarithmic Sobolev inequalities, Poincaré inequalities and heat kernel bounds, preprint 1997.

[4] D. Bakry, Z. M. Qian, Harnack inequalities on a manifold with positive or negative Ricci curvature. Rev. Mat. Iberoamericana 15 (1999) 143-179. | MR | Zbl | DOI

[5] O. Bogopolski, E. Ventura, The mean Dehn function of abelian groups, math.GR/0606273 | Zbl | DOI

[6] P. Bougerol, Th. Jeulin, Brownian bridge on hyperbolic spaces and on homogeneous trees, Probab. Theory Relat. Fields 115 (1999) 95-120. | MR | Zbl | DOI

[7] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Fund. Anal. 9 (1999) 428-517. | MR | Zbl | DOI

[8] J. Cheeger, T. H. Colding, On the structure of spaces with Ricci curvature bounded below III. J. Diff. Geom. 52 (1999) 37-74. | MR | Zbl

[9] J. Cheeger, S. T. Yau, A lower bound for the heat kernel, Comm. Pure Appl. Math. 34 (1981) 465-480. | MR | Zbl | DOI

[10] S.Y. Cheng, S. T. Yau, Differential equations on Riemannian manifolds, Comm. Pure Appl. Math. XXVIII (1975) 333-354. | MR | Zbl | DOI

[11] Th. Coulhon, A. Grigoryan, On-diagonal lower bounds for heat kernels and Markov chains, Duke Univ. Math. J. 89, 1 (1997) 133-199. | MR | Zbl

[12] Th. Coulhon, L. Saloff-Coste, Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana, 9, 2 (1993) 293-314. | MR | Zbl | DOI

[13] A. Debiard, B. Gaveau, E. Mazet, Théorèmes de comparaison en géométrie riemannienne, Publ. RIMS, Kyoto Univ. 12 (1976) 391-425. | MR | Zbl | DOI

[14] A. Engoulatov, A universal bound on the gradient of logarithm of the heat kernel for manifolds with bounded Ricci curvature, J. Fund. Anal. 238 (2006) 518-529, http://www.math.u-psud.fr/~engoulat/liste-prepub.html | MR | Zbl | DOI

[15] S. Fornaro, G. Metafune, E. Priola, Gradient estimates for Dirichlet parabolic problems in unbounded domains, J. Diff. Equations 205 (2004) 329-353. | MR | Zbl | DOI

[16] K. Gawedzki, Lectures on conformal field theory, in Mathematical Aspects of String Theory, Amer. Math. Soc., 2000. | Zbl | MR

[17] A. Grigoryan, The heat equation on non-compact Riemannian manifolds, in Russian : Matem Sbornik 182, 1 (1991) 55-87. | MR

[18] A. Grigoryan, Heat kernel upper bounds on a complete non-compact manifold, Revista Matematica Iberoamericana, 10, 2 (1994) 395-452. | MR | Zbl | DOI

[19] A. Grigoryan, Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Diff. Geom. 45 (1997), 33-52. | MR | Zbl

[20] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser, 1999. | MR | Zbl

[21] E. P. Hsu, Stochastic analysis on manifolds. Graduate Studies in Mathematics, Vol. 38, Amer. Math. Soc., Providence, Rhode Island, 2002. | MR | Zbl

[22] E. P. Hsu, Estimates of derivatives of the heat kernel on a compact Riemannian manifold. Proc. Amer. Math. Soc. 127 (1999) 3739-3744. | MR | Zbl | DOI

[23] S. Ishiwata, Gradient estimate of the heat kernel on modified graphs, preprint. | MR | Zbl | DOI

[24] M. Kontsevich, Y. Soibelman, Homological mirror symmetry and torus fibrations, math.SG/0011041 | Zbl | DOI

[25] S. Kuang, Q. S. Zhang, A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow, math.DG/0611298 | Zbl | DOI

[26] P. Li, S. T. Yau, Estimates of Eigenvalues of a compact Riemannian Manifold, Proc. Sympos. Pure Math., Vol. 36 (1980), 205-239. | MR | Zbl | DOI

[27] P. Li, S. T. Yau, On the parabolic kernel of the Schrödinger operator. Acta Math. 156 (1986) 153-201. | MR | Zbl | DOI

[28] P. Malliavin, D. Stroock, Short time behavior of the heat kernel and its logarithmic derivatives. J. Diff. Geom. 44 (1996) 550-570. | MR | Zbl

[29] T. Melcher, Hypoelliptic heat kernel inequalities on Lie groups, math. AP/0508420 | Zbl | DOI

[30] P. Petersen, S. Zhu, U(2) Invariant four dimensional Einstein metrics, Indiana Univ. Math. J. 44 (1995) 451-465. | MR | Zbl | DOI

[31] J. Picard, Gradient estimates for some diffusion semigroups, Probab. Theory Relat. Fields 122 (2002) 593-612. | MR | Zbl | DOI

[32] D. Roggenkamp, K. Wendland, Limits and degenerations of unitary Conformal Field Theories, hep-th/0308143 | Zbl | DOI

[33] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Diff. Geom. 36 (1992) 417-450. | MR | Zbl

[34] P. Souplet, Q. S. Zhang, Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc. 38 (2006) 1045-1053. | MR | Zbl | DOI

[35] D. W. Stroock, J. Turetsky, Upper bounds on derivatives of the logarithm of the heat kernel, Comm. Anal. Geom. 6 (1998) 669-685. | MR | Zbl | DOI

[36] D. W. Stroock, An Introduction to the Analysis of Paths on a Riemannian Manifold, Mathematical Surveys and Monographs, Vol. 74, Amer. Math. Soc. (2000). | MR | Zbl

[37] K. T. Sturm, M. K. Von Renesse, Transport Inequalities, Gradient Estimates, Entropy and Ricci Curvature Comm. Pure Appl. Math. 68 (2005) 923-940. | MR | Zbl

[38] F.-Y. Wang, Logarithmic Sobolev inequalities for diffusion processes with application to path spaces. J. Appl. Probab. Stat. 12, 3 (1996) 255-264. | MR | Zbl

[39] F.-Y. Wang, On estimation of the logarithmic Sobolev constant and gradient estimates of heat semigroups, Probab. Theory Relat. Fields 108 (1997) 87-101. | MR | Zbl | DOI

[40] F.-Y. Wang, Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory Relat. Fields 109 (1997) 417-424. | MR | Zbl | DOI