La prédicativité
Bulletin de la Société Mathématique de France, Volume 88  (1960), p. 371-391
@article{BSMF_1960__88__371_0,
     author = {Kreisel, G.},
     title = {La pr\'edicativit\'e},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {88},
     year = {1960},
     pages = {371-391},
     doi = {10.24033/bsmf.1554},
     zbl = {0131.00604},
     mrnumber = {23 \#A800},
     language = {fr},
     url = {http://www.numdam.org/item/BSMF_1960__88__371_0}
}
Kreisel, G. La prédicativité. Bulletin de la Société Mathématique de France, Volume 88 (1960) , pp. 371-391. doi : 10.24033/bsmf.1554. http://www.numdam.org/item/BSMF_1960__88__371_0/

[1] Addison (J. W.). - Review, J. symb. Logic, t. 22, 1957, p. 301-302.

[2] Addison (J. W.). - Abstract, Not. Amer. Math. Soc. t. 5, 1958, p. 845.

[3] Brouwer (L. E. J.). - Zur Begründung der intuitionischen Mathematik, III, Math. Annalen, t. 96, 1926, p. 451-488. | JFM 52.0193.01

[4] Feferman (S.). - Transfinite recursive progressions of axiomatic theories (à paraître). | Zbl 0117.25402

[5] Gödel (Kurt). - The consistency of the axiom of choice and the generalized continuum hypothesis with the axioms of set theory, 2nd ed. - Princeton, Princeton University Press (Annals of Mathematics Studies, 3). | Zbl 0061.00902

[6] Gödel (Kurt). - Russell's mathematical logic in The philosophy of Bertrand Russell, p. 125-153. - New York, Tudor publishing Company, 1944 (Library of living philosophers, 5).

[7] Grzegorczyk (A.). - Elementarily definable analysis, Fund. Math., t. 41, 1955, p. 311-338. | MR 16,891b | Zbl 0064.00902

[8] Grzegorczyk (A.), Mostowski (A.), and Ryll-Nardzewski (C.). - The classical and the ω-complete arithmetic, J. symb. Logic, t. 23, 1958, p. 188-206. | MR 21 #4908 | Zbl 0084.24801

[9] Kleene (S. C.). - Arithmetical predicates and function quantifiers, Trans. Amer. math. soc., t. 79, 1955, p. 312-340. | MR 17,4g | Zbl 0066.25703

[10] Kleene (S. C.). - Hierarchies of number-theoretic predicates, Bull. Amer. math. Soc., t. 61, 1955, p. 193-213. | MR 17,4f | Zbl 0066.25901

[11] Kleene (S. C.). - Quantification of number-theoretic functions, Compositio Math. t. 14, 1959, p. 23-40. | Numdam | MR 21 #2586 | Zbl 0085.24701

[12] Kreisel (G.). - Some uses of metamathematics, British J. Phil. Sc., t. 7 1956, p. 161-173.

[13] Kreisel (G.). - Analyse de [10], Math. Reviews, t. 17, 1956, p. 4.

[14] Kreisel (G.). Analysis of the Cantor-Bendixson theorem by means of the analytic hierarchy, Bull. Acad. polon. Sc., t. 7, 1959, p. 621-626. | MR 22 #9444 | Zbl 0093.01401

[15] Kreisel (G.). - Set theoretic problems suggested by the notion of potential totality, Proceedings of the Symposium on infinitistic methods in the foundations of mathematics (Warsaw, 2-8 septembre 1959), p. 103-140. | Zbl 0199.01401

[16] Kreisel (G.). - Foundations of intuitionistic logic, Proceedings of the 1960 International Congress for Logic, Methodology and Philosophy of Science (Stanford, 24 août-5 septembre 1960). | Zbl 0133.24801

[17] Kreisel (G.) et Lacombe (D.). - Ensembles récursivement mesurables et ensembles récursivement ouverts et fermés, C. R. Acad. Sc. t. 245, 1957, p. 1106-1109. | MR 22 #3680 | Zbl 0079.00901

[18] Lorenzen (P.). - Logical reflexion and formalism, J. symb. Logic, t. 23, 1958, p. 241-249. | MR 21 #3322 | Zbl 0086.00902

[19] Poincaré (H.). - Sechs. Vorträge ïber ausgewählte Gegenstände aus der reinen Mathematik und mathematischen Physik. - Leipzig, Berlin, B. G. Teubner, 1910. | JFM 41.0376.02

[20] Schütte (Kurt). - Ein widerspruchsloses System der Analysis auf typenfreier Grundlage. Math. Z., t. 61, 1954, p. 160-179. | MR 16,662a | Zbl 0056.24601

[21] Shoenfield (J. R.). - Abstract, Not. Amer. math. Soc., t. 6, 1959, p. 530-531.

[22] Spector (Clifford). - Recursive well-orderings, J. symb. Logic, t. 20, 1955. p. 151-163. | MR 17,570b | Zbl 0067.00303

[23] Spector (Clifford). - Recursive ordinals and prédicative set theory, Summaries of talks presented at the Summer Institute for symbolic Logic, in 1957, at the Cornell University, p. 377-382. | Zbl 0207.30902

[24] Wang (Hao). - The formalization of mathematics, J. symb. Logic, t. 19, 1954, p. 241-266. | MR 16,661d | Zbl 0056.24503

[25] Gandy (R. O.), Kreisel (G.) and Tait (W. W.). - Set Existence, Bull. Acad. polon. Sc., t. 8, 1960. | MR 28 #2964a | Zbl 0207.30102