@article{BSMF_1965__93__43_0, author = {Lions, Jacques-Louis and Strauss, W.A.}, title = {Some non-linear evolution equations}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {43--96}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {93}, year = {1965}, doi = {10.24033/bsmf.1616}, mrnumber = {33 #7663}, zbl = {0132.10501}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/bsmf.1616/} }
TY - JOUR AU - Lions, Jacques-Louis AU - Strauss, W.A. TI - Some non-linear evolution equations JO - Bulletin de la Société Mathématique de France PY - 1965 SP - 43 EP - 96 VL - 93 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/bsmf.1616/ DO - 10.24033/bsmf.1616 LA - en ID - BSMF_1965__93__43_0 ER -
%0 Journal Article %A Lions, Jacques-Louis %A Strauss, W.A. %T Some non-linear evolution equations %J Bulletin de la Société Mathématique de France %D 1965 %P 43-96 %V 93 %I Société mathématique de France %U http://archive.numdam.org/articles/10.24033/bsmf.1616/ %R 10.24033/bsmf.1616 %G en %F BSMF_1965__93__43_0
Lions, Jacques-Louis; Strauss, W.A. Some non-linear evolution equations. Bulletin de la Société Mathématique de France, Volume 93 (1965), pp. 43-96. doi : 10.24033/bsmf.1616. http://archive.numdam.org/articles/10.24033/bsmf.1616/
[1]Un théorème de compacité, C. R. Acad. Sc. Paris, t. 256, 1963, p. 5042-5044. | MR | Zbl
. -[2]Nonlinear elliptic boundary value problems, Bull. Amer, math. Soc., t. 69, 1963, p. 862-874. | MR | Zbl
. -[3]Strongly nonlinear parabolic boundary value problems (to appear). | Zbl
. -[4]Non-linear equations of evolution, Annals of Math (to appear). | MR | Zbl
. -[5]Sur les problèmes de Cauchy hyperboliques bien posés, J. Anal. math., Jérusalem, t. 10, 1962-1963, p. 1-90. | MR | Zbl
. -[6]Ueber die Anfangswertaufgabe für die hydrodynamischen Grund-gleichungen, Math. Nachr., t. 4, 1951, p. 213-231. | MR | Zbl
. -[7]Das Anfangswertproblem im Grossen für eine Klasse nicht-linearer Wellengleichungen, Math. Z., t. 77, 1961, p. 295-308. | EuDML | MR | Zbl
. -[8]Hyperbolic differential equations. - Princeton, 1952 (multigraphié). | MR
. -[9]Équations différentielles opérationnelles. - Berlin, Springer, 1961. (Grundlehren der mathematischen Wissenschaften, 111). | MR | Zbl
. -[10]Quelques remarques sur les équations différentielles opérationnelles du 1er ordre, Rend. Semin. mat. Padova, t. 33, 1963, p. 213-225. | Numdam | Zbl
. -[11]Problèmes aux limites non homogènes, III, Ann. Scuola Norm. Sup. Pisa, t. 15, 1961, p. 311-326. | Numdam | MR | Zbl
et . -[12]Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sc. Paris, t. 248, 1959, p. 3519-3521. | MR | Zbl
et . -[13]Sur certains problèmes hyperboliques non linéaires, C. R. Acad. Sc. Paris, t. 257, 1963, p. 3267-3270. | MR | Zbl
et . -[14]Monotone (non-linear) operators in Hilbert space, Duke Math. J., t. 29, 1962, p. 341-346. | MR | Zbl
. -[15]On a “monotonicity” method for the solution of non-linear equations in Banach spaces, Proc. Nat. Acad. Sc. U. S. A., t. 50, 1963, p. 1038-1041. | MR | Zbl
. -[16]On embedding, extension and approximation of differentiable functions, Uspekhi Mat. Nauk., t. 16, 1961, p. 63-114. | MR | Zbl
. -[17]Soluzioni periodiche di equazioni a derivati parziali di tipo iperbolico non lineari, Annali di Mat. pura ed appl., t. 42, 1956, p. 25-49. | MR | Zbl
. -[18]Non-linear semigroups, Annals of Math., t. 78, 1963, p. 339-364. | MR | Zbl
. -[19]The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. math. France, t. 91, 1963, p. 129-135. | Numdam | MR | Zbl
. -[20]Second-order differential equations in Banach space, Soviet Math. (Doklady), t. 151, 1963, p. 1394-1398. | Zbl
. -[21]Un complemento ad un teorema di J.-L. Lions sulle equazioni differenziali astratte del secondo ordine (to appear). | Numdam | Zbl
. -[22]Strongly elliptic quasi-linear systems of differential equations in divergence form, Trudy Mosk. Mat. Obšč., t. 12, 1963, p. 125-184. | Zbl
. -[23]On the solution of boundary-value problems for quasi-linear parabolic equations of arbitrary order, Mat. Sbornik, t. 59, (101), 1962, p. 289-325.
. -[24]On the global solution of the Cauchy problem for some non-linear hyperbolic equations, Mem. Fac. Eng., Kyoto Univ., t. 24, 1962, p. 482-487.
. -[25]On the a priori estimate for solutions of the Cauchy problem for some non-linear wave equations, Kyoto math. J., t. 2, 1962, p. 55-60. | MR | Zbl
. -[26]Mixed problem for some semi-linear wave equation, Kyoto math. J., t. 2, 1962, p. 61-78. | MR | Zbl
and . -[27]
, (to appear).Cited by Sources: