Commutative semigroups whose lattice of congruences is a chain
Bulletin de la Société Mathématique de France, Tome 97 (1969) , pp. 369-380.
@article{BSMF_1969__97__369_0,
     author = {Tamura, Takayuki},
     title = {Commutative semigroups whose lattice of congruences is a chain},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {369--380},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {97},
     year = {1969},
     doi = {10.24033/bsmf.1689},
     zbl = {0191.01705},
     mrnumber = {41 \#5527},
     language = {en},
     url = {archive.numdam.org/item/BSMF_1969__97__369_0/}
}
Tamura, T. Commutative semigroups whose lattice of congruences is a chain. Bulletin de la Société Mathématique de France, Tome 97 (1969) , pp. 369-380. doi : 10.24033/bsmf.1689. http://archive.numdam.org/item/BSMF_1969__97__369_0/

[1] Clifford (A. H.). - Naturally totally ordered commutative semigroups, Amer. J. Math., t. 76, 1954, p. 631-646. | MR 15,930b | Zbl 0055.01503

[2] Clifford (A. H.) and Preston (G. B.). - The algebraic theory of semigroups, vol. 1. - Providence, American mathematical Society, 1961 (Mathematical Surveys, 7). | MR 24 #A2627 | Zbl 0111.03403

[3] Fuchs (L.). - Abelian groups. - Budapest, Publishing House of Hungarian Academy of Science, 1958. | MR 21 #5672 | Zbl 0091.02704

[4] Schenkman (E.). - Group theory. - Princeton (New Jersey), D. Van Nostrand, 1965. | MR 33 #5702 | Zbl 0133.27302

[5] Ševrin (L. N.). - Semigroups with certain types of sub-semigroup lattices, Soviet Math. Dokl., t. 2, 1961, p. 737-740. | Zbl 0105.01504

[6] Tamura (T.). - Note on unipotent inversible semigroups, Kodai math. Sem. Rep., t. 3, 1954, p. 93-95. | MR 16,443h | Zbl 0058.01502

[7] Tamura (T.) and Kimura (N.). - On decomposition of a commutative semigroup, Kodai math. Sem. Rep., t. 4, 1954, p. 109-112. | MR 16,670f | Zbl 0058.01503

[8] Tamura (T.). - On a monoid whose submonoids form a chain, J. Gakugei, Tokushima Univ., t. 5, 1954, p. 8-16. | MR 16,1085b | Zbl 0058.01404

[9] Tamura (T.) and Kimura (N.). - Existence of greatest decomposition of a semigroup, Kodai math. Sem. Rep., t. 7, 1955, p. 83-84. | MR 18,192b | Zbl 0067.01003

[10] Tamura (T.). - Indecomposable completely simple semigroups except groups, Osaka math. J., t. 8, 1956, p. 35-42. | MR 18,282a | Zbl 0070.01803

[11] Tamura (T.). - The theory of construction of finite semigroups, I, Osaka math. J., t. 8, 1956, p. 243-261. | MR 18,717e | Zbl 0073.01003

[12] Tamura (T.). - Commutative nonpotent archimedean semigroup with cancellation law, I, J. Gakugei, Tokushima Univ., t. 8, 1957, p. 5-11. | MR 20 #3224 | Zbl 0079.25103

[13] Tamura (T.). - Another proof of a theorem concerning the greatest semilattice-decomposition of a semigroup, Proc. Jap. Acad., t. 40, 1964, p. 777-780. | MR 31 #3530 | Zbl 0135.04001

[14] Tamura (T.). - Notes on commutative archimedean semigroups, I, Proc. Japan Acad., t. 42, 1966, p. 35-40. | MR 36 #2543 | Zbl 0163.02202

[15] Tamura (T.). - Decomposability of extension and its application to finite semigroups, Proc. Japan Acad., t. 43, 1967, p. 93-97. | MR 36 #292 | Zbl 0189.02003

[16] Tamura (T.). - Construction of trees and commutative archimedean semigroups, Math. Nachrichten, Band 36, 1968, p. 255-287. | MR 37 #6222 | Zbl 0155.04201

[17] Tully (E. J.). - H-commutative semigroups in which each homomorphism is uniquely determined by its kernel, Pacific J. of Math. (to be published). | Zbl 0313.20042