On a ζ function related to the continued fraction transformation
Bulletin de la Société Mathématique de France, Tome 104 (1976), pp. 195-203.
@article{BSMF_1976__104__195_0,
     author = {Mayer, Dieter H.},
     title = {On a $\zeta $ function related to the continued fraction transformation},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {195--203},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {104},
     year = {1976},
     doi = {10.24033/bsmf.1825},
     mrnumber = {54 #6210},
     zbl = {0328.58011},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.1825/}
}
TY  - JOUR
AU  - Mayer, Dieter H.
TI  - On a $\zeta $ function related to the continued fraction transformation
JO  - Bulletin de la Société Mathématique de France
PY  - 1976
SP  - 195
EP  - 203
VL  - 104
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.1825/
DO  - 10.24033/bsmf.1825
LA  - en
ID  - BSMF_1976__104__195_0
ER  - 
%0 Journal Article
%A Mayer, Dieter H.
%T On a $\zeta $ function related to the continued fraction transformation
%J Bulletin de la Société Mathématique de France
%D 1976
%P 195-203
%V 104
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.1825/
%R 10.24033/bsmf.1825
%G en
%F BSMF_1976__104__195_0
Mayer, Dieter H. On a $\zeta $ function related to the continued fraction transformation. Bulletin de la Société Mathématique de France, Tome 104 (1976), pp. 195-203. doi : 10.24033/bsmf.1825. https://www.numdam.org/articles/10.24033/bsmf.1825/

[1] Artin (E.) and Mazur (B.). - On periodic points, Annals of Math., Series 2, t. 81, 1965, p. 82-99. | Zbl

[2] Billingsley (P.). - Ergodic theory and information. - New York, J. Wiley, 1965 (Wiley Series in Probability and mathematical Statistics). | MR | Zbl

[3] Grothendieck (A.). - Produits tensoriels topologiques et espaces nucléaires. - Providence, American mathematical Society, 1955 (Memoirs of the American mathematical Society, 16). | MR | Zbl

[4] Kamowitz (H.). - The spectra of composition operators on HP, J. functional Analysis, t. 18, 1975, p. 132-150. | MR | Zbl

[5] Ruelle (D.). - Generalized Ά functions for axiom A basic sets, Bull. Amer. math. Soc., t. 82, 1976, p. 153-156. | MR | Zbl

[6] Ruelle (D.). - Ά functions for expanding maps and Anosov flows, Bures-sur-Yvette, Institut des Hautes Études Scientifiques (Preprint, to appear in Invent. math.). | Zbl

[7] Seminaire Schwartz. - Produits tensoriels topologiques d'espaces vectoriels topologiques. Espaces vectoriels topologiques nucléaires. Applications, 1re année, 1953/1954. - Paris, Secrétariat mathématique 1954. | Zbl

[8] Walters (P.). - Private communication (non published).

  • Bettin, Sandro; Drappeau, Sary Limit laws for rational continued fractions and value distribution of quantum modular forms, Proceedings of the London Mathematical Society, Volume 125 (2022) no. 6, p. 1377 | DOI:10.1112/plms.12485
  • Boca, Florin P; Siskaki, Maria Distribution of periodic points of certain Gauss shifts with infinite invariant measure, Nonlinearity, Volume 34 (2021) no. 7, p. 4570 | DOI:10.1088/1361-6544/abf362
  • Aimino, Romain; Pollicott, Mark Statistical Properties of the Rauzy-Veech-Zorich Map, Thermodynamic Formalism, Volume 2290 (2021), p. 317 | DOI:10.1007/978-3-030-74863-0_10
  • Heersink, Byron Distribution of the Periodic Points of the Farey Map, Communications in Mathematical Physics, Volume 365 (2019) no. 3, p. 971 | DOI:10.1007/s00220-019-03283-0
  • D. Pohl, Anke Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 5, p. 2173 | DOI:10.3934/dcds.2014.34.2173
  • MÖLLER, M.; POHL, A. D. Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant, Ergodic Theory and Dynamical Systems, Volume 33 (2013) no. 1, p. 247 | DOI:10.1017/s0143385711000794
  • Kelmer, Dubi Quadratic irrationals and linking numbers of modular knots, Journal of Modern Dynamics, Volume 6 (2012) no. 4, p. 539 | DOI:10.3934/jmd.2012.6.539
  • D. Pohl, Anke A dynamical approach to Maass cusp forms, Journal of Modern Dynamics, Volume 6 (2012) no. 4, p. 563 | DOI:10.3934/jmd.2012.6.563
  • FAN, AI-HUA; LIAO, LING-MIN; WANG, BAO-WEI; WU, JUN On Khintchine exponents and Lyapunov exponents of continued fractions, Ergodic Theory and Dynamical Systems, Volume 29 (2009) no. 1, p. 73 | DOI:10.1017/s0143385708000138
  • Mesón, A. M.; Vericat, F. On the uniqueness of Gibbs states in some dynamical systems, Journal of Mathematical Sciences, Volume 161 (2009) no. 2, p. 250 | DOI:10.1007/s10958-009-9550-8
  • BANDTLOW, OSCAR F.; JENKINSON, OLIVER On the Ruelle eigenvalue sequence, Ergodic Theory and Dynamical Systems, Volume 28 (2008) no. 06, p. 1701 | DOI:10.1017/s0143385708000059
  • Jenkinson, O.; Pollicott, M. A dynamical approach to accelerating numerical integration with equidistributed points, Proceedings of the Steklov Institute of Mathematics, Volume 256 (2007) no. 1, p. 275 | DOI:10.1134/s0081543807010166
  • Katok, Svetlana; Ugarcovici, Ilie Symbolic dynamics for the modular surface and beyond, Bulletin of the American Mathematical Society, Volume 44 (2006) no. 1, p. 87 | DOI:10.1090/s0273-0979-06-01115-3
  • Pollicott, Mark Dynamical Zeta Functions and Closed Orbits for Geodesic and Hyperbolic Flows, Frontiers in Number Theory, Physics, and Geometry I (2006), p. 379 | DOI:10.1007/978-3-540-31347-2_11
  • Isola, Stefano On the spectrum of Farey and Gauss maps, Nonlinearity, Volume 15 (2002) no. 5, p. 1521 | DOI:10.1088/0951-7715/15/5/310
  • Vallée, B. Dynamical sources in information theory: Fundamental intervals and word prefixes, Algorithmica, Volume 29 (2001) no. 1-2, p. 262 | DOI:10.1007/bf02679622
  • Flajolet, Philippe; Vallée, Brigitte Continued fraction algorithms, functional operators, and structure constants, Theoretical Computer Science, Volume 194 (1998) no. 1-2, p. 1 | DOI:10.1016/s0304-3975(97)00123-0
  • Baladi, Viviane Dynamical Zeta Functions, Real and Complex Dynamical Systems (1995), p. 1 | DOI:10.1007/978-94-015-8439-5_1
  • Daudé, Hervé; Flajolet, Philippe; Vallée, Brigitte An analysis of the Gaussian algorithm for lattice reduction, Algorithmic Number Theory, Volume 877 (1994), p. 144 | DOI:10.1007/3-540-58691-1_52
  • Baladi, V.; Young, L. -S. On the spectra of randomly perturbed expanding maps, Communications in Mathematical Physics, Volume 156 (1993) no. 2, p. 355 | DOI:10.1007/bf02098487
  • Efrat, Isaac Dynamics of the continued fraction map and the spectral theory of SL (2, Z), Inventiones Mathematicae, Volume 114 (1993) no. 1, p. 207 | DOI:10.1007/bf01232667
  • Cvitanović, Predrag Circle Maps: Irrationally Winding, From Number Theory to Physics (1992), p. 631 | DOI:10.1007/978-3-662-02838-4_13
  • Ruelle, David Dynamical Zeta Functions: Where Do They Come from and What Are They Good for ?, Mathematical Physics X (1992), p. 43 | DOI:10.1007/978-3-642-77303-7_4
  • Mayer, Dieter H. On the thermodynamic formalism for the Gauss map, Communications in Mathematical Physics, Volume 139 (1991) no. 2, p. 311 | DOI:10.1007/bf02102958
  • Pollicott, Mark A note on the Artuso-Aurell-Cvitanovic approach to the Feigenbaum tangent operator, Journal of Statistical Physics, Volume 62 (1991) no. 1-2, p. 257 | DOI:10.1007/bf01020869
  • Mayer, Dieter H. On the thermodynamic formalism for the gauss map, Communications in Mathematical Physics, Volume 130 (1990) no. 2, p. 311 | DOI:10.1007/bf02473355
  • Artuso, R; Aurell, E; Cvitanovic, P Recycling of strange sets: II. Applications, Nonlinearity, Volume 3 (1990) no. 2, p. 361 | DOI:10.1088/0951-7715/3/2/006
  • Ruelle, David An extension of the theory of Fredholm determinants, Publications mathématiques de l'IHÉS, Volume 72 (1990) no. 1, p. 175 | DOI:10.1007/bf02699133
  • Mayer, D.; Roepstorff, G. On the relaxation time of Gauss' continued-fraction map. II. The Banach space approach (transfer operator method), Journal of Statistical Physics, Volume 50 (1988) no. 1-2, p. 331 | DOI:10.1007/bf01022997
  • Mayer, Dieter H. On the location of poles of Ruelle's zeta function, Letters in Mathematical Physics, Volume 14 (1987) no. 2, p. 105 | DOI:10.1007/bf00420300
  • Mayer, Dieter H. Relaxation properties of the mixmaster universe, Physics Letters A, Volume 121 (1987) no. 8-9, p. 390 | DOI:10.1016/0375-9601(87)90483-x
  • Pollicott, Mark Asymptotic distribution of closed geodesics, Israel Journal of Mathematics, Volume 52 (1985) no. 3, p. 209 | DOI:10.1007/bf02786516
  • Mayer, Dieter H. Approach to equilibrium for locally expanding maps in ? k, Communications in Mathematical Physics, Volume 95 (1984) no. 1, p. 1 | DOI:10.1007/bf01215752
  • Mayer, Dieter H. On composition operators on Banach spaces of holomorphic functions, Journal of Functional Analysis, Volume 35 (1980) no. 2, p. 191 | DOI:10.1016/0022-1236(80)90004-x
  • Mayer, D. H.; Viswanathan, K. S. On the ζ-function of a one-dimensional classical system of hard-rods, Communications in Mathematical Physics, Volume 52 (1977) no. 2, p. 175 | DOI:10.1007/bf01625782
  • Viswanathan, K.S.; Mayer, D.H. Statistical mechanics of one-dimensional Ising and Potts models with exponential interactions, Physica A: Statistical Mechanics and its Applications, Volume 89 (1977) no. 1, p. 97 | DOI:10.1016/0378-4371(77)90142-x

Cité par 36 documents. Sources : Crossref