@article{BSMF_1981__109__427_0, author = {Lempert, Laszlo}, title = {La m\'etrique de {Kobayashi} et la repr\'esentation des domaines sur la boule}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {427--474}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {109}, year = {1981}, doi = {10.24033/bsmf.1948}, mrnumber = {84d:32036}, zbl = {0492.32025}, language = {fr}, url = {http://archive.numdam.org/articles/10.24033/bsmf.1948/} }
TY - JOUR AU - Lempert, Laszlo TI - La métrique de Kobayashi et la représentation des domaines sur la boule JO - Bulletin de la Société Mathématique de France PY - 1981 SP - 427 EP - 474 VL - 109 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/bsmf.1948/ DO - 10.24033/bsmf.1948 LA - fr ID - BSMF_1981__109__427_0 ER -
%0 Journal Article %A Lempert, Laszlo %T La métrique de Kobayashi et la représentation des domaines sur la boule %J Bulletin de la Société Mathématique de France %D 1981 %P 427-474 %V 109 %I Société mathématique de France %U http://archive.numdam.org/articles/10.24033/bsmf.1948/ %R 10.24033/bsmf.1948 %G fr %F BSMF_1981__109__427_0
Lempert, Laszlo. La métrique de Kobayashi et la représentation des domaines sur la boule. Bulletin de la Société Mathématique de France, Volume 109 (1981), pp. 427-474. doi : 10.24033/bsmf.1948. http://archive.numdam.org/articles/10.24033/bsmf.1948/
[1] Foliations and complex Monge-Ampère equations, Comm. on Pure and Appl. Math., vol. XXX, 1977, p. 543-571. | MR | Zbl
and . -[2] The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., vol. 37, 1976, p. 1-44. | EuDML | MR | Zbl
and . -[3] A simplification and extension of Fefferman's theorem on biholomorphic mappings (Preprint). | Zbl
and . -[4] Differentiable manifolds in complex Euclidian space, Duke Math. J., vol. 32, 1965, p. 1-22. | MR | Zbl
. -[5] The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., vol. 26., 1974, p. 1-65. | EuDML | MR | Zbl
. -[6] Théorie géométrique des fonctions d'une variable complexe. Moscou-Léningrad, Gosudarstvennoe Izdatelstvo Techniko-Teoretičeskoi Literaturi 1952 (en russe).
. -[7] Holomorphic approximation and hyperfunction theory on a C1 totally real submanifold of a complex manifold, Math. Ann., vol. 197, 1972, p. 287-318. | EuDML | Zbl
and . -[8] An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain, Dokl. Akad. Nauk S.S.S.R., vol. 210, 1973, p. 1026-1029 ; Soviet Math. Dokl., vol. 14, 1973, p. 858-862. | MR | Zbl
. -[9] On the boundary behaviour of holomorphic mappings, Att. Acad. Naz. dei Lincei, n° 35, 1977.
. -[10] On the extendibility of isomorphisms of Cartan connections and biholomorphic mappings of bounded domains, Tôhoku Math. J., vol. 28, 1976, p. 117-122. | MR | Zbl
. -[11] On the analytic continuation of holomorphic mappings, Math. Sb., vol. 27, 1975, p. 375-392. | MR | Zbl
. -[12] On the reflection principale in several complex variables, Proc. Amer. Math. Soc., vol. 71, 1978, n° 1, p. 26-28. | MR | Zbl
. -Cited by Sources: