On the Borel class of the derived set operator. II
Bulletin de la Société Mathématique de France, Volume 111 (1983), p. 367-372
@article{BSMF_1983__111__367_0,
     author = {Cenzer, Douglas and Mauldin, R. Daniel},
     title = {On the Borel class of the derived set operator. II},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {111},
     year = {1983},
     pages = {367-372},
     doi = {10.24033/bsmf.1994},
     zbl = {0552.54027},
     mrnumber = {86a:54046},
     language = {en},
     url = {http://www.numdam.org/item/BSMF_1983__111__367_0}
}
Cenzer, Douglas; Mauldin, R. Daniel. On the Borel class of the derived set operator. II. Bulletin de la Société Mathématique de France, Volume 111 (1983) pp. 367-372. doi : 10.24033/bsmf.1994. http://www.numdam.org/item/BSMF_1983__111__367_0/

[1] Cenzer (D.), Monotone reducibility and the family of finite sets, J. Symbolic Logic, to appear. | Zbl 0573.54030

[2] Cenzer (D.) and Mauldin (R. D.), On the Borel class of the derived set operator, Bull. Math. Soc. France, 110, 4, 1982, p. 1-24. | Numdam | MR 85b:54058 | Zbl 0514.54027

[3] Kuratowski (K.), Some problems concerning semi-continuous set-valued mappings, in Set-Valued Mappings, Selections and Topological Properties of 2x, Lecture Notes in Math., vol. 171, Springer-Verlag, 1970, p. 45-48. | MR 43 #4006 | Zbl 0205.26803

[4] Kuratowski (K.) and Mostowski (A.), Set Theory, North-Holland, 1976. | MR 58 #5230 | Zbl 0337.02034

[5] Lusin (N.), Leçons sur les Ensembles Analytiques, Gauthier-Villars, 1930. | JFM 56.0085.01