Odd values of the Ramanujan τ-function
Bulletin de la Société Mathématique de France, Volume 115 (1987), p. 391-395
@article{BSMF_1987__115__391_0,
     author = {Murty, Maruti Ram and Murty, V. Kumar and Shorey, T. N.},
     title = {Odd values of the Ramanujan $\tau $-function},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {115},
     year = {1987},
     pages = {391-395},
     doi = {10.24033/bsmf.2083},
     zbl = {0635.10020},
     mrnumber = {89c:11071},
     language = {en},
     url = {http://www.numdam.org/item/BSMF_1987__115__391_0}
}
Murty, M.Ram; Murty, V.Kumar; Shorey, T.N. Odd values of the Ramanujan $\tau $-function. Bulletin de la Société Mathématique de France, Volume 115 (1987) pp. 391-395. doi : 10.24033/bsmf.2083. http://www.numdam.org/item/BSMF_1987__115__391_0/

[1] Baker (A.), A sharpening of the bounds for linear forms in logarithms I, Acta Arith., Vol. 21, 1972, pp. 117-129. | MR 46 #1717 | Zbl 0244.10031

[2] Baker (A.), A sharpening of the bounds for linear forms in logarithms II, Acta Arith., Vol. 24, 1973, pp. 33-36. | MR 51 #12724 | Zbl 0261.10025

[3] Feldam (N. L.), An effective refinement of the exponent in Liouville's theorem (Russian), Izv. Akad. Nauk., Vol. 35, 1971, pp. 973-900.

[4] Ramanujan (S.), On certain arithmetical functions, Trans. Cambr. Phil. Soc., Vol. 22, 1916, pp. 159-184.

[5] Roth (K. F.), Rational approximations to algebraic numbers, Mathematika, Vol. 2, 1955, pp. 1-20. | MR 17,242d | Zbl 0064.28501

[6] Serre (J.-P.), Divisibilité de certaines fonction arithmétiques, L'Ens. Math., Vol. 22, 1976, pp. 227-260. | MR 55 #7958 | Zbl 0355.10021

[7] Sprindzuk (V. G.), Hyperelliptic diophantine equations and class numbers of ideals (Russian), Acta Arith., Vol. 30, 1976, pp. 95-108. | MR 54 #5111 | Zbl 0335.10021