Surfaces minimales non orientables de genre quelconque
Bulletin de la Société Mathématique de France, Volume 121 (1993) no. 2, p. 183-195
@article{BSMF_1993__121_2_183_0,
     author = {Toubiana, Eric},
     title = {Surfaces minimales non orientables de genre quelconque},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {121},
     number = {2},
     year = {1993},
     pages = {183-195},
     doi = {10.24033/bsmf.2206},
     zbl = {0787.53004},
     mrnumber = {94c:53013},
     language = {fr},
     url = {http://www.numdam.org/item/BSMF_1993__121_2_183_0}
}
Toubiana, E. Surfaces minimales non orientables de genre quelconque. Bulletin de la Société Mathématique de France, Volume 121 (1993) no. 2, pp. 183-195. doi : 10.24033/bsmf.2206. http://www.numdam.org/item/BSMF_1993__121_2_183_0/

[1] Gackstatter (F.) and Kunert (R.). - Construktion vollstandiger minimal flachen von endlicher gesomtkrummung, Arch. Rational Mech. Anal., t. 65, 1977, p. 289-297. | MR 56 #6573 | Zbl 0357.53004

[2] Gerretsen (J.) and Sansone (G.). - Lectures on the theory of functions of a complex variable. - P. Noordhoff, Groningen, 1960. | MR 22 #4819 | Zbl 0093.26803

[3] Ishihara (T.). - Complete non-orientable minimal surfaces, preprint, 1989. | Zbl 0795.53005

[4] Kichoon (Y.). - Meromorphic functions on a compact Riemann surface and associated complete minimal surface, Proc. A.M.S., vol. 105, 3, 1989. | MR 89h:53029 | Zbl 0669.53007

[5] Klotz (T.) and Sario (L.). - Existence of complete minimal surfaces of arbitrary connectivity and genus, Proc. Nat. Acad. Sci. U.S.A., t. 54, 1965, p. 42-44. | MR 31 #2665 | Zbl 0154.21202

[6] Meeks Iii (W.H.). - The classification of complete minimal surfaces with total curvature greater than -8π, Duke Math. J., t. 48, 1981, p. 523-535. | Zbl 0472.53010

[7] Elisa (M.) and De Oliveira (G.G.). - Some new examples of non-orientable minimal surfaces, Proc. A.M.S., 98, n° 4, 1986, p. 629-635. | Zbl 0607.53003

[8] Rosenberg (H.) and Toubiana (E.). - Complete minimal surfaces and minimal herissons, J. Differential Geom., t. 28, 1988, p. 115-132. | MR 89g:53010 | Zbl 0657.53004

[9] Zhang (S.). - On complete minimal immersion x : RP2 - a, b ATT R3 with total curvature -10π, preprint, 1990.