Conditions quantitatives de rectifiabilité
Bulletin de la Société Mathématique de France, Volume 125 (1997) no. 1, p. 15-53
@article{BSMF_1997__125_1_15_0,
     author = {Pajot, Herv\'e},
     title = {Conditions quantitatives de rectifiabilit\'e},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {125},
     number = {1},
     year = {1997},
     pages = {15-53},
     doi = {10.24033/bsmf.2298},
     zbl = {0890.28004},
     mrnumber = {98m:28014},
     language = {fr},
     url = {http://www.numdam.org/item/BSMF_1997__125_1_15_0}
}
Pajot, Hervé. Conditions quantitatives de rectifiabilité. Bulletin de la Société Mathématique de France, Volume 125 (1997) no. 1, pp. 15-53. doi : 10.24033/bsmf.2298. http://www.numdam.org/item/BSMF_1997__125_1_15_0/

[B1] Bishop (C.J.). - Harmonic measure supported on curves, Thèse, Université de Chicago, 1987.

[B2] Bishop (C.J.). - Some conjectures concerning harmonic measure, dans Partial differential equations with minimal smoothness, IMA vol. in Math. and its Applications, Springer Verlag, t. 42, 1991. | Zbl 0792.30005

[BJ] Bishop (C.J.) and Jones (P.W.). - Harmonic measure, L2 estimates and the schwarzian derivatives, J. Analyse Math., t. 62, 1994, p. 77-113. | MR 95f:30034 | Zbl 0801.30024

[Da] David (G.). - Wavelets and singular integrals on curves and surfaces, Lecture Notes in Math., Springer Verlag, t. 1465, 1991. | MR 92k:42021 | Zbl 0764.42019

[DS1] David (G.) and Semmes (S.). - Singular integrals and rectifiable sets in ℝn : au-delà des graphes lipschitziens, Astérisque, t. 193, 1991. | Zbl 0743.49018

[DS2] David (G.) and Semmes (S.). - Analysis of and on uniformly rectifiable sets, Math. Surveys and Monographs, Amer. Math. Soc., t. 38, 1993. | MR 94i:28003 | Zbl 0832.42008

[Fa] Falconer (K.J.). - Geometry of fractal sets. - Cambridge University Press, 1984. | Zbl 0587.28004

[Fe] Federer (H.). - Geometric measure theory. - Springer Verlag, 1969. | MR 41 #1976 | Zbl 0176.00801

[Ga] Garnett (J.). - Positive length but zero analytic capacity, Proc. Amer. Math. Soc., t. 24, 1970, p. 696-699. | MR 43 #2203 | Zbl 0208.09803

[J1] Jones (P.W.). - Square functions, Cauchy integrals, analytic capacity, and harmonic measure, in Harmonic analysis and Partial differential equations, Lecture Notes in Math., Springer Verlag, t. 1384, 1989, p. 24-68. | MR 91b:42032 | Zbl 0675.30029

[J2] Jones (P.W.). - Rectifiable sets and the traveling salesman problem, Inventiones Math., t. 102, 1990, p. 1-15. | MR 91i:26016 | Zbl 0731.30018

[Ma] Mattila (P.). - Geometry of sets and measures in euclidean spaces, Cambridge Studies in Advanced Math., Cambridge University Press, t. 44, 1995. | MR 96h:28006 | Zbl 0819.28004

[MMV] Mattila (P.), Melnikov (M.) and Verdera (J.). - The Cauchy integral, analytic capacity and uniform rectifiability, Annals of Math., t. 144, 1996, p. 127-136. | MR 97k:31004 | Zbl 0897.42007

[Ok] Okikiolu (K.). - Characterization of subsets of rectifiable curves in ℝn, J. London Math. Soc., t. 46, 1992, p. 336-348. | MR 93m:28008 | Zbl 0758.57020

[Pa] Pajot (H.). - Théorème de recouvrement par des ensembles Ahlfors-réguliers et capacité analytique, C. R. Acad. Sci. Paris, t. 323, série I, 1996, p. 133-135. | MR 97c:30034 | Zbl 0863.30033

[St] Stein (E.M.). - Singular integrals and differentiability properties of functions. - Princeton University Press, 1971. | Zbl 0207.13501

[StZ] Stein (E.M.) and Zygmund (A.). - On differentiability of functions, Studia Math., t. 23, 1964, p. 247-283. | MR 28 #2176 | Zbl 0122.30203