Compactification conforme des variétés asymptotiquement plates
Bulletin de la Société Mathématique de France, Tome 125 (1997) no. 1, pp. 55-92.
@article{BSMF_1997__125_1_55_0,
     author = {Herzlich, Marc},
     title = {Compactification conforme des vari\'et\'es asymptotiquement plates},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {55--92},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {125},
     number = {1},
     year = {1997},
     doi = {10.24033/bsmf.2299},
     mrnumber = {98d:53054},
     zbl = {0938.53020},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.24033/bsmf.2299/}
}
TY  - JOUR
AU  - Herzlich, Marc
TI  - Compactification conforme des variétés asymptotiquement plates
JO  - Bulletin de la Société Mathématique de France
PY  - 1997
SP  - 55
EP  - 92
VL  - 125
IS  - 1
PB  - Société mathématique de France
UR  - http://archive.numdam.org/articles/10.24033/bsmf.2299/
DO  - 10.24033/bsmf.2299
LA  - fr
ID  - BSMF_1997__125_1_55_0
ER  - 
%0 Journal Article
%A Herzlich, Marc
%T Compactification conforme des variétés asymptotiquement plates
%J Bulletin de la Société Mathématique de France
%D 1997
%P 55-92
%V 125
%N 1
%I Société mathématique de France
%U http://archive.numdam.org/articles/10.24033/bsmf.2299/
%R 10.24033/bsmf.2299
%G fr
%F BSMF_1997__125_1_55_0
Herzlich, Marc. Compactification conforme des variétés asymptotiquement plates. Bulletin de la Société Mathématique de France, Tome 125 (1997) no. 1, pp. 55-92. doi : 10.24033/bsmf.2299. http://archive.numdam.org/articles/10.24033/bsmf.2299/

[1] Anderson (M.T.). - Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc., t. 2, 1989, p. 455-490. | MR | Zbl

[2] Andersson (L.), Chruściel (P.T.) and Friedrich (H.). - On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboidal initial data for Einstein's equations, Commun. Math. Phys., t. 149, 1992, p. 587-612. | Zbl

[3] Ashtekar (A.). - On the boundary conditions for gravitational and gauge fields aat spatial infinity, Asymptotic behaviour of mass and spacetime geometry, F.J. Flaherty, ed., Proceedings, Corvallis, Oregon, 1983, Lect. Notes in Physics, t. 202, Springer, 1984, p. 95-109. | Zbl

[4] Ashtekar (A.) and Hansen (R.O.). - A unified treatment of null and spatial infinity in general relativity, J. Math. Phys., t. 19, 1978, p. 1542-1566. | MR

[5] Ashtekar (A.) and Magnon (A.). - From i0 to the 3 + 1 description of infinity, J. Math. Phys., t. 25, 1984, p. 2682-2691. | MR | Zbl

[6] Bando (S.), Kasue (A.), and Nakajima (H.). - On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math., t. 97, 1989, p. 313-349. | MR | Zbl

[7] Bartnik (R.). - The mass of an asymptotically flat manifold. - Commun. Pure Appl. Math., t. 39, 1986, p. 661-693. | MR | Zbl

[8] Bers (L.), John (F.) and Schechter (M.). - Partial differential equations. - American Mathematical Society, Providence, 1974.

[9] Besse (A.L.). - Einstein manifolds, Ergeb. Math. Grenzgeb., t. 10, Springer, Berlin, 1987. | MR | Zbl

[10] Cartan (É.). - Les espaces à connexion conforme, Ann. Soc. Pol. Mat., t. 22, 1923, p. 171-221. | JFM

[11] Friedrich (H.). - Cauchy problems for the conformal vacuum field equations in General Relativity, Commun. Math. Phys., t. 91, 1983, p. 445-472. | MR | Zbl

[12] Friedrich (H.). - Einstein equations and conformal structure : existence of Anti-de Sitter-type spacetimes, J. Geom. Phys., t. 17, 1995, p. 125-184. | MR | Zbl

[13] Gauduchon (P.). - Connexion canonique et structures de Weyl en géométrie conforme, Juin 1990, non publié.

[14] Greene (R.), Petersen (P.) and Zhu (S.). - Riemannian manifolds of faster-than-quadratic curvature decay, Int. Math. Res. Notices, t. 9, 1994, p. 363-377. | MR | Zbl

[15] Hawking (S.W.) and Ellis (G.F.R.). - The large-scale structure of space-time. - Cambridge Univ. Press, Cambridge, 1973. | MR | Zbl

[16] Hebey (E.) and Herzlich (M.). - Convergence of riemannian manifolds; a status report, Preprint École Polytechnique (Palaiseau), n° 1096, 1995.

[17] Lee (J.) and Parker (T.H.). - The Yamabe problem, Bull. Amer. Math. Soc., t. 117, 1987, p. 37-91. | MR | Zbl

[18] Lockhart (R.B.). - Fredholm properties of a class of elliptic operators on non-compact manifolds, Duke Math. J., t. 48, 1983, p. 289-312. | MR | Zbl

[19] Lockhart (R.B.) and Mcowen (R.). - Elliptic differential operators on non-compact manifolds, Ann. Scuola. Norm. Sup. Pisa, t. 12, 1985, p. 409-447. | Numdam | MR | Zbl

[20] Maz'Ya (V.G.) and Plameneevski (B.A.). - Estimates in Lp and in Hölder classes and the Miranda-Agmon Maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary (en russe), Math. Nachr., t. 81, 1978, p. 25-82; trad. anglaise Amer. Math. Soc. Transl., t. 123, 1984, p. 1-56. | Zbl

[21] Penrose (R.). - Conformal treatment of infinity, Relativity, groups and topology (C. de Witt and B. de Witt, eds.), École d'été de Physique Théorique, Les Houches 1963. - Gordon and Breach, 1963.

[22] Schoen (R.). - Conformal deformation of a Riemannian manifold to constant scalar curvature, J. Diff. Geom, t. 20, 1984, p. 479-495. | MR | Zbl

[23] Weyl (H.). - Zur Infinitesimalgeometrie : Einordnung der projektiven und den konform Auffassung, Göttinger Nachrichten, 1921, p. 99-112, repris dans Gesammelte Abhandlungen, vol. II, Chelsea, New York, 1967, p. 195-207. | JFM

Cité par Sources :