Un diviseur de zéro induisant un élément d'homotopie central
Bulletin de la Société Mathématique de France, Volume 125 (1997) no. 3, p. 337-344
@article{BSMF_1997__125_3_337_0,
     author = {Dupont, Nicolas},
     title = {Un diviseur de z\'ero induisant un \'el\'ement d'homotopie central},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {125},
     number = {3},
     year = {1997},
     pages = {337-344},
     doi = {10.24033/bsmf.2310},
     zbl = {0899.55011},
     mrnumber = {99a:55008},
     language = {fr},
     url = {http://www.numdam.org/item/BSMF_1997__125_3_337_0}
}
Dupont, Nicolas. Un diviseur de zéro induisant un élément d'homotopie central. Bulletin de la Société Mathématique de France, Volume 125 (1997) no. 3, pp. 337-344. doi : 10.24033/bsmf.2310. http://www.numdam.org/item/BSMF_1997__125_3_337_0/

[1] André (M.). - Hopf algebras with divided powers, J. Algebra, t. 18, 1971, p. 19-50. | MR 43 #3323 | Zbl 0217.07102

[2] André (M.). - Le caractère additif des déviations des anneaux locaux, Comment. Math. Helvetici, t. 57, 1982, p. 648-675. | MR 85a:14006 | Zbl 0509.13007

[3] Avramov (L.L.). - Homological asymtotics of modules over local rings, Commutative algebra, Proceedings of a microprogram held June 15-July 2, ed. M. Hochters, C. Huneke and J.D. Sally, Springer-Verlag, 1989, p. 33-62. | MR 90i:13014 | Zbl 0788.18010

[4] Avramov (L.L.). - Local algebra and rational homotopy, Homotopie algébrique et algèbre locale, journées S.M.F., éd. J.-M. Lemaire et J.-C. Thomas, Astérisque 113-114, Société Mathématique de France, 1984, p. 15-43. | MR 85j:55021 | Zbl 0552.13003

[5] Halperin (S.). - The non-vanishing of the deviations of a local ring, Comment. Math. Helvetici, t. 62, 1987, p. 646-653. | MR 89d:13015 | Zbl 0639.13011

[6] Halperin (S.) and Stasheff (J.). - Obstructions to homotopy equivalences, Adv. in Math., t. 32, 1979, p. 233-279. | MR 80j:55016 | Zbl 0408.55009

[7] Levin (G.). - Homology of local rings, Ph.D. Thesis, Univ. of Chicago, 1965.

[8] Löfwall (C.). - Central elements and deformations of local rings, J. Pure and Applied Algebra, t. 91, 1994, p. 183-192. | MR 95g:13018 | Zbl 0798.55009

[9] Milnor (J.) and Moore (J.C.). - On the structure of Hopf algebras, Annals Math., t. 81, 1965, p. 211-264. | MR 30 #4259 | Zbl 0163.28202

[10] Sjödin (G.). - Hopf algebras and derivations, J. Algebra, t. 64, 1980, p. 218-229. | MR 84a:16016 | Zbl 0429.16008

[11] Tate (J.). - Homology of noetherian rings and local rings, Illinois J. Math., t. 1, 1957, p. 14-27. | MR 19,119b | Zbl 0079.05501