Generalization of von Neumann's spectral sets and integral representation of operators
Bulletin de la Société Mathématique de France, Tome 127 (1999) no. 1, p. 25-41
@article{BSMF_1999__127_1_25_0,
     author = {Delyon, Bernard and Delyon, Fran\c cois},
     title = {Generalization of von Neumann's spectral sets and integral representation of operators},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {127},
     number = {1},
     year = {1999},
     pages = {25-41},
     doi = {10.24033/bsmf.2340},
     zbl = {0937.47004},
     mrnumber = {2000e:47017},
     language = {en},
     url = {http://www.numdam.org/item/BSMF_1999__127_1_25_0}
}
Delyon, Bernard; Delyon, François. Generalization of von Neumann's spectral sets and integral representation of operators. Bulletin de la Société Mathématique de France, Tome 127 (1999) no. 1, pp. 25-41. doi : 10.24033/bsmf.2340. http://www.numdam.org/item/BSMF_1999__127_1_25_0/

[1] Brunel (A.). - Les M-espérances conditionnelles. - Laboratoire de probabilités, Université Pierre et Marie Curie, Paris, 1996.

[2] Krengel (U.). - Ergodic Theorems. - Walter de Gruyter, Berlin, 1985. | MR 87i:28001 | Zbl 0575.28009

[3] Von Neumann (J.). - Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachrichten, t. 4, 1951, p. 258-281. | MR 13,254a | Zbl 0042.12301

[4] Riesz (F.), Nagy (B.Sz.). - Leçons d'analyse fonctionnelle. - Gauthier-Villars, Paris, 1968.

[5] Kato (T.). - Perturbation theory for linear operators. - Springer-Verlag, 1966. | MR 34 #3324 | Zbl 0148.12601

[6] Rudin (W.). - Real and complex analysis. - Mc Graw-Hill, 1974. | MR 49 #8783 | Zbl 0278.26001

[7] Stein (E.). - Topics in Harmonic Analysis. - Princeton University Press, 1970. | Zbl 0193.10502

[8] Stein (E.). - On the maximal ergodic theorem, Proc. Nat. Acad. Sci. USA, t. 47, 1961, p. 1894-1897. | MR 24 #A1367 | Zbl 0182.47102

[9] Zaharopol (R.). - On products of conditional expectation operators, Can. Math. Bull., t. 33, n° 3, 1990, p. 257-260. | MR 91j:47007 | Zbl 0755.47008