The tangent complex to the Bloch-Suslin complex
Bulletin de la Société Mathématique de France, Volume 135 (2007) no. 4, p. 565-597

Motivated by a renewed interest for the “additive dilogarithm” appeared recently, the purpose of this paper is to complete calculations on the tangent complex to the Bloch-Suslin complex, initiated a long time ago and which were motivated at the time by scissors congruence of polyedra and homology of SL 2 . The tangent complex to the trilogarithmic complex of Goncharov is also considered.

À la suite de travaux récents sur le « dilogarithme additif », on se propose de compléter une étude du complexe tangent au complexe de Bloch-Suslin, initiée il y a plus de vingt ans en rapport avec le troisième problème de Hilbert et l’homologie de SL 2 . On considère aussi le complexe tangent au complexe trilogarithmique de Goncharov.

DOI : https://doi.org/10.24033/bsmf.2546
Classification:  11G55,  14F42,  19E15
Keywords: Bloch-Suslin complex, additive dilogarithm, tangent functors
@article{BSMF_2007__135_4_565_0,
     author = {Cathelineau, Jean-Louis},
     title = {The tangent complex to the Bloch-Suslin complex},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {135},
     number = {4},
     year = {2007},
     pages = {565-597},
     doi = {10.24033/bsmf.2546},
     zbl = {1217.11065},
     mrnumber = {2439199},
     language = {en},
     url = {http://www.numdam.org/item/BSMF_2007__135_4_565_0}
}
Cathelineau, Jean-Louis. The tangent complex to the Bloch-Suslin complex. Bulletin de la Société Mathématique de France, Volume 135 (2007) no. 4, pp. 565-597. doi : 10.24033/bsmf.2546. http://www.numdam.org/item/BSMF_2007__135_4_565_0/

[1] S. Bloch - « On the tangent functor to Quillen K-theory », in Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle Wash., 1972), Springer, 1973, p. 205-210. Lecture Notes in Math. Vol. 341. | MR 466264 | Zbl 0287.18016

[2] -, Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, CRM Monograph Series, vol. 11, American Mathematical Society, 2000. | MR 1760901 | Zbl 0958.19001

[3] S. Bloch & H. Esnault - « The additive dilogarithm », Doc. Math. (2003), p. 131-155, Kazuya Kato's fiftieth birthday. | MR 2046597 | Zbl 1052.11048

[4] -, « An additive version of higher Chow groups », Ann. Sci. École Norm. Sup. (4) 36 (2003), p. 463-477. | Numdam | MR 1977826 | Zbl 1100.14014

[5] P. Cartier - « Décomposition des polyèdres: le point sur le troisième problème de Hilbert », Astérisque (1986), p. 261-288, Séminaire Bourbaki, vol. 1984/85. | Numdam | MR 837225 | Zbl 0589.51032

[6] J.-L. Cathelineau - « Sur l’homologie de SL 2 à coefficients dans l’action adjointe », Math. Scand. 63 (1988), p. 51-86. | MR 994970 | Zbl 0682.55013

[7] -, « λ-structures in algebraic K-theory and cyclic homology », K-Theory 4 (1990/91), p. 591-606. | MR 1123180 | Zbl 0735.19005

[8] -, « Remarques sur les différentielles des polylogarithmes uniformes », Ann. Inst. Fourier (Grenoble) 46 (1996), p. 1327-1347. | MR 1427128

[9] J. L. Dupont - Scissors congruences, group homology and characteristic classes, Nankai Tracts in Mathematics, vol. 1, World Scientific Publishing Co. Inc., 2001. | MR 1832859 | Zbl 0977.52020

[10] J. L. Dupont & C. H. Sah - « Scissors congruences. II », J. Pure Appl. Algebra 25 (1982), p. 159-195. | MR 662760 | Zbl 0496.52004

[11] P. Elbaz-Vincent - « The indecomposable K 3 of rings and homology of SL 2 », J. Pure Appl. Algebra 132 (1998), p. 27-71. | MR 1634380 | Zbl 0926.19001

[12] -, « Homology of linear groups with coefficients in the adjoint action and K-theory », K-Theory 16 (1999), p. 35-50. | MR 1673927 | Zbl 0918.19001

[13] P. Elbaz-Vincent & H. Gangl - « On poly(ana)logs. I », Compositio Math. 130 (2002), p. 161-210. | MR 1883818 | Zbl 1062.11042

[14] A. Goncharov - « Polylogarithms and motivic Galois groups », in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., 1994, p. 43-96. | MR 1265551 | Zbl 0842.11043

[15] -, « Geometry of configurations, polylogarithms, and motivic cohomology », Adv. Math. 114 (1995), p. 197-318. | MR 1348706 | Zbl 0863.19004

[16] -, « Volumes of hyperbolic manifolds and mixed Tate motives », J. Amer. Math. Soc. 12 (1999), p. 569-618. | MR 1649192 | Zbl 0919.11080

[17] -, « Euclidean scissor congruence groups and mixed Tate motives over dual numbers », Math. Res. Lett. 11 (2004), p. 771-784. | MR 2106241 | Zbl 1122.11043

[18] T. G. Goodwillie - « Relative algebraic K-theory and cyclic homology », Ann. of Math. (2) 124 (1986), p. 347-402. | MR 855300 | Zbl 0627.18004

[19] J.-G. Grebet - « Aspects infinitésimaux du troisième problème de Hilbert », Thèse, Univ. de Nice Sophia-Antipolis, 2001.

[20] M. Green & P. Griffiths - « Formal deformation of Chow groups », in The legacy of Niels Henrik Abel, Springer, 2004, p. 467-509. | MR 2077581 | Zbl 1142.14302

[21] -, On the tangent space to the space of algebraic cycles on a smooth algebraic variety, Annals of Mathematics Studies, vol. 157, Princeton University Press, 2005. | MR 2110875 | Zbl 1076.14016

[22] W. Van Der Kallen - « Le K 2 des nombres duaux », C. R. Acad. Sci. Paris Sér. A-B 273 (1971), p. A1204-A1207. | MR 291158 | Zbl 0225.13006

[23] M. Kontsevich - « The 11 2-logarithm. Appendix to: “On poly(ana)logs. I” [Compositio Math 130 (2002), no. 2, 161-210] by P. Elbaz-Vincent and H. Gangl », Compositio Math. 130 (2002), p. 211-214. | MR 1884238 | Zbl 1062.11042

[24] S. Lichtenbaum - « Groups related to scissors-congruence groups » 1987), Contemp. Math., vol. 83, Amer. Math. Soc., 1989, p. 151-157. | MR 991980 | Zbl 0674.55012

[25] H. Matsumura - Commutative algebra, W. A. Benjamin, Inc., New York, 1970. | MR 266911 | Zbl 0441.13001

[26] J. Park - « Regulators on additive higher Chow groups », preprint, 2006. | MR 2488491 | Zbl 1176.14001

[27] -, « Algebraic cycles and additive dilogarithm », Int. Math. Res. Not. IMRN (2007). | MR 2358889 | Zbl 1124.14013

[28] K. Rülling - « Additive Chow groups with higher modulus and the generalized de Rham-Witt complex », J. Algebraic Geom. (2007), p. 109-169.

[29] C. H. Sah - Letter to the author, August 1986.

[30] J-P. Serre - Corps locaux, Hermann, 1968, 2e édition, Publications de l'Université de Nancago, No. VIII. | MR 354618 | Zbl 0137.02601

[31] A. Suslin - « K 3 of a field and the Bloch group », Proc. Steklov Inst. Math. 4 (1991), p. 217-239. | Zbl 0741.19005