Littlewood-Paley decompositions on manifolds with ends  [ Décomposition Littlewood-Paley des variétés à bouts ]
Bulletin de la Société Mathématique de France, Tome 138 (2010) no. 1, pp. 1-37.

Pour certaines variétés riemanniennes à bouts, satisfaisant ou non la condition de doublement de volume des boules géodésiques, nous obtenons des décompositions de Littlewood-Paley sur des espaces L p (à poids), en utilisant la fonction carrée usuelle définie via une partition dyadique.

For certain non compact Riemannian manifolds with ends which may or may not satisfy the doubling condition on the volume of geodesic balls, we obtain Littlewood-Paley type estimates on (weighted) L p spaces, using the usual square function defined by a dyadic partition.

DOI : https://doi.org/10.24033/bsmf.2584
Classification : 42B20,  42B25,  58J40
Mots clés : décomposition de Littlewood-Paley, fonction carrée, variétés à bouts, analyse semi-classique
@article{BSMF_2010__138_1_1_0,
     author = {Bouclet, Jean-Marc},
     title = {Littlewood-Paley decompositions on manifolds with ends},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {1--37},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {138},
     number = {1},
     year = {2010},
     doi = {10.24033/bsmf.2584},
     zbl = {1198.42013},
     mrnumber = {2638890},
     language = {en},
     url = {archive.numdam.org/item/BSMF_2010__138_1_1_0/}
}
Bouclet, Jean-Marc. Littlewood-Paley decompositions on manifolds with ends. Bulletin de la Société Mathématique de France, Tome 138 (2010) no. 1, pp. 1-37. doi : 10.24033/bsmf.2584. http://archive.numdam.org/item/BSMF_2010__138_1_1_0/

[1] J.-M. Bouclet - « Semi-classical functional calculus on manifolds with ends and weighted L p estimates », to appear in Ann. Inst. Fourier. | Numdam | MR 2918727 | Zbl 1236.58033

[2] -, « Strichartz estimates on asymptotically hyperbolic manifolds », to appear in Analysis & PDE. | Zbl 1230.35027

[3] J.-M. Bouclet & N. Tzvetkov - « Strichartz estimates for long range perturbations », Amer. J. Math. 129 (2007), p. 1565-1609. | MR 2369889 | Zbl 1154.35077

[4] -, « On global Strichartz estimates for non-trapping metrics », J. Funct. Anal. 254 (2008), p. 1661-1682. | MR 2396017 | Zbl 1168.35005

[5] N. Burq, P. Gérard & N. Tzvetkov - « Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds », Amer. J. Math. 126 (2004), p. 569-605. | MR 2058384 | Zbl 1067.58027

[6] T. Coulhon, X. T. Duong & X. D. Li - « Littlewood-Paley-Stein functions on complete Riemannian manifolds for 1p2 », Studia Math. 154 (2003), p. 37-57. | MR 1949048 | Zbl 1035.42014

[7] S. Klainerman & I. Rodnianski - « A geometric approach to the Littlewood-Paley theory », Geom. Funct. Anal. 16 (2006), p. 126-163. | MR 2221254 | Zbl 1206.35080

[8] N. Lohoué - « Estimation des fonctions de Littlewood-Paley-Stein sur les variétés riemanniennes à courbure non positive », Ann. Sci. École Norm. Sup. 20 (1987), p. 505-544. | Numdam | MR 932796 | Zbl 0636.43002

[9] G. Olafsson & S. Zheng - « Harmonic analysis related to Schrödinger operators », in Radon transforms, geometry, and wavelets, Contemp. Math., vol. 464, Amer. Math. Soc., 2008, p. 213-230. | MR 2440138 | Zbl 1256.42031

[10] W. Schlag - « A remark on Littlewood-Paley theory for the distorted Fourier transform », Proc. Amer. Math. Soc. 135 (2007), p. 437-451 (electronic). | MR 2255290 | Zbl 1159.42008

[11] -, « Lecture notes on harmonic analysis », http://www.math.uchicago.edu/~schlag/book.pdf.

[12] C. D. Sogge - Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge Univ. Press, 1993. | MR 1205579 | Zbl 0783.35001

[13] E. M. Stein - Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton Univ. Press, 1970. | MR 290095 | Zbl 0207.13501

[14] M. E. Taylor - « L p -estimates on functions of the Laplace operator », Duke Math. J. 58 (1989), p. 773-793. | MR 1016445 | Zbl 0691.58043

[15] -, Partial differential equations. III, Applied Mathematical Sciences, vol. 117, Springer, 1997. | Zbl 1206.35004