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TgX and Graphics: Tlie State of the Problem 
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University of Utah 
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Internet: Beebe@science. utah. edu 

Abs t r ac t 
Inclusion of graphics in documents typeset by TgX is not yet a satis-

factorily solved problem, and no final general solution is in sight. 
This paper surveys alternatives for insertion of graphics in Tj]X doc-

uments. It summarizes graphics primitives of several modern software 
systems, and shows how TgX has seriously deficient support for their di-
rect incorporation in TgX itself. 

Several alternatives for the production of graphics at the pre-processing 
(METRFONT). input (TgX). and post-processing (DVI) stages are con-
sidered, and their advantages and disadvantages are analyzed. 
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1 Introduction 
Donald E. Knuth , Tj?X"s author , began work on T^X on May 4, 1977 [45]. The 
initial design of languages for typeset t ing and font generat ion were implemented 
in programs writ ten in the Sail language, available only on DEC-10 and DEC 1-20 
computers . 

The typesett ing program has since become known as TgX78. T h a t effort 
was described in a book in 1979 [37], and favorable user experience led to a 
complete redesign in a more widely-available p rogramming language, resulting 
in the release in 1982 of Tf]X and METRFONT, now writ ten in Web, a language 
tha t combines documenta t ion with Pascal p rogram f ragments . TJTX82, or jus t 
TjrX, is now frozen, except for extremely rare bug fixes, in order t h a t it can form 
a stable base on which computer-based typeset t ing can grow. The culminat ion 
of the nine-year long TjjJC Pro jec t at Stanford was the publ icat ion of the five-
volume chef d'cevre. Computers and Typesetting, [38, 39, 40, 41, 42]. 

A significant related effort, is the JATjrX Document Prepara t ion System [46], 
which builds upon the low-level typeset t ing machinery of TgX to provide a sys-
tem that, permits authors to write documents using famil iar concepts of chapters, 
sections, subsections, paragraphs , figures, tables, bibliographies, indexes, and so 
on, with almost all the stylistic considerations of layout hidden in a document 
style file prepared by, or with the assistance of, a professional document de-
signer. Change of a single keyword in the initial \documentstyle command is 
all tha t is required to change the style. 

The great virtue of IATJTX is t ha t the author can concentrate on the job of 
writing, without worrying about considerations of page layout which are best left 
to people skilled in document design, and tha t the same skills used to prepare 
a document in one style carry over unchanged to any other document style. 

Tf]X is now supported by numerous commercial vendors, and has been imple-
mented on almost every Commercially-significant comput ing system, f rom small 
personal machines like the IBM PC, Apple Macintosh, Atari , and Amiga, up 
to the Cray 2 supercomputer . T h e source programs for T^X and METRFCNT, 
while t rademarked by the American Mathemat ica l Society, remain freely and 
openly available to anyone to implement , and non-commercial implementa t ions 
of TfeXware can generally be freely exchanged with one significant, and desir-
able, restriction: the programs may not be called TgX and METRFONT unless 
they can correctly process two devious test files, trip and trap, prepared by 
Knuth . 

Tf]X is now being ever more widely used, with several vendors offering work-
stat ion publishing environments built upon Tf]X. Large publishing organiza-
tions, like the American Mathemat ica l Society i.ncl T V Guide 1 [47] are convert-
ing to TgX. The Maryland Bar Association has recommended tha t T^X be used 

1 TV G u i d e pub l i shes '20 mi l l ion issues weekly in t h e U n i t e d S t a t e s a n d C a n a d a , or a b o u t 
109 issues yearly, a n d r ende r s a b o u t 1 mi l l ion different pages , t n u n d in to 5000 d i f fe ren t 200-
p a g e m a g a z i n e s . 
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for the preparation of legal documents in that, state. The choice of multiple 
sources of TgX on almost any machine platform, the high quality of the code 
and the output , and the availability of complete source code were all critical 
issues that led these organizations to choose TfijX over traditional typesetting 
systems, or desktop publishing personal computers and workstations. 

The TgX Users Group (TUG) celebrates its tenth birthday at, Stanford Uni-
versity in the summer of 1989. with over 3400 members in dozens of countries. 
The existence of strong TgX users groups in other countries, such as GUTen-
berg, le Groupe francophone des Utilisateurs de TfrX, to which this paper is 
addressed, is evidence that, T^X is not only for the English-speaking world. 

However, there is a thorn in this rosy picture. Tj?X was developed in the 
late 1970's. when traditional typesett ing was moving away from hot lead type 
to optical type, and before personal computers, workstations, and laser printers 
were generally available. If there is a weakness in Tf]X's design, it is the rather 
primitive facilities for graphics, and it is tha t subject, which I wish to elaborate 
on in this paper. 

While traditional methods of preparation of typeset galleys, followed by 
paste-up of graphics images, are certainly possible with TgX- it, is clearly de-
sirable to move to an entirely electronic document preparation system. For re-
searchers in academia, it, is significant, tha t the intercontinental electronic mail 
connections that have been available to a. small body of people at a few large 
universities for a decade, just in the last, two years are becoming available to 
almost any academic personnel in the Western World. Just, in the last two 
months, gateways have been installed tha t now make trans-Atlantic file transfer 
and login sessions possible for a few sites. The way is rapidly opening when 
investigators at great geographic distances can collaborate on research projects 
almost, as if they were close neighbors, f or such activities, it is essential that, 
complete documents can be transferred in electronic form. 

Similarly, in the commercial publishing industry, particularly for periodicals 
that have large circulations distributed over a wide area, there is a strong need 
to be able to t ransmit complete publications electronically to local publishing 
houses for printing and local redistribution. 

For further background on the design of graphs for publication, I urge the 
reader to look at, Tufte 's outs tanding book [66]. Bentley and Kermghan have 
important, things to say as well [7]; I will discuss their work in the later section 
Languages for Typesetting Graphics. 

2 Primitives of Modern Graphics Systems 
To understand the inadequacies of T^X for graphics, it is necessary to first 
understand what facilities are available in modern graphics systems. 

Until 1976, graphics was a terrible mess. Almost every vendor of graph-
ics devices developed different, protocols for representing and communicating 
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graphics requests between the computer and the graphics device. Well over one 
hundred formats existed, and while certain large graphics hardware vendors of-
fered software packages that could use their hardware, tha t software was usually 
proprietary, non-portable, and expressly written to match the characteristics of 
the particular device. For example, plot coordinates for one vendor's plotter in 
Europe had to be sent in millimeters, while the same plotter model sold in the 
United States expected coordinates in inches. 

The significance of 1976 is that in May of tha t year, a Workshop on Graphics 
Standards Methodology was held in Seillac, France. T h a t effort, led to a first 
draf t of a proposal for a graphics software s tandard in 1977 [1], and a final 
proposal in 1979 [2]; it is known as the SIGGRAPH C O R E system. My own 
graphics system, < P L O T 7 9 > [4], is based on that proposal, and the year in the 
name commemorates the CORE system. 

Since the CORE] proposal, there have been two graphics systems s tandard-
ized, the Graphical Kernel System, GKS, [14, 26, 27, 73] and the Programmer ' s 
Hierarchical Interactive Graphics System, PHIGS [8, 75]. Work is in progress on 
an extended PHIGS, known as PHIGS+ [74], as well as the marriage of P H I G S + 
with the X Window System [31, 48, 49, 50. 59] in a system called PEX [56]. 
The X Window System is a significant development, because like TgX, its source 
code is freely available, the quality is generally high, it has been implemented 
on almost every commercial workstation architecture and two ma jo r operating 
systems, and because it is a network window system that decouples the client 
(output generating) program from the server (display generating) program. 

Besides the graphics standardization efforts, there has been one other signif-
icant, event- the development of the PostScript language by Adobe Systems for 
the control of printers and screen displays. PostScript has its roots in Salt Lake 
City, Utah, where in 1976. John Warnock at. Evans and Sutherland Corporat ion 
began the design of a powerful extensible language for page description. In 1978. 
he moved to Xerox PARC Laboratories, where an offshoot of his work gave rise 
to the Xerox Interpress page description language. In 1982, he and Charles 
Geschke founded Adobe Systems Incorporated, which produced the language 
specification and first implementation of PostScript. 

The first commercial printing device to provide PostScript was the Apple 
LaserWriter, introduced in early 1985. In the four years since that printer was 
introduced, PostScript has been adopted by most major computer manufac-
turers, been implemented in about two dozen printers, evolved into Display 
PostScript in the Sun NeWS and NeXT workstation windowing systems, and 
recently, independent implementations of PostScript have been produced by 
Imagen (now QMS/Imagen) , Compugraphic, Control-C Software, Custom Ap-
plications Inc. Tektronix, the Free Software Foundation, and others. At least 
five books on the language have now appeared [25, 30, 29, 53, 57], and there are 
also two periodicals [28. 70] devoted to PostScript. 

While PostScript is not intended for direct programming, one can certainly 
use it that way, and even a simple word processor has been implemented directly 
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in the language [57, p. 315]. However, it most cases, PostScript will be generated 
by other programs, and in practice, it is more of a device control language than 
a programming language. Nevertheless, its primitives are comparable in power 
to those of CORE, GKS, and PHIGS, and its inclusion of support for a wide 
range of high-quality scalable typesetting fonts makes it even more useful. 

In the graphics system surveys in the following subsections, I will completely 
ignore input primitives of CORE, GKS, PHIGS, and the X Window System, 
since they are irrelevant to us here. 

2.1 Minimal System 
The simplest graphics system imaginable requires only four primitives; others 
can be built up from these. 

• initialize 

• move (invisibly) 

• draw (visibly) 

• terminate 

At this level, there is no support for color, but it is most simply provided by 
the concept of a drawing pen, which might offer in addition to color, options for 
line endpoint, line width, line style, and line intensity. Most pen plotters, and 
most graphics terminals and raster printers (dot-matrix, ink jet, electrostatic, 
laser), can be supported with such a simple device model. 

2.2 CORE 
The C O R E system was the first to offer a rich well thought-out set of graphics 
primitives, and supported both 2-D and 3-D plotting. My < P L O T 7 9 > im-
plementation has extended these to 4-D homogeneous coordinates, since that 
provides full generality for support of parallel and perspective projections, scal-
ing, shearing, rotation, and translation, and representation of points at infinity. 

• initialize 

• current point 

• move, absolute or relative, 2-D or 3-D 

• line, absolute or relative, 2-D or 3-D 

• marker, absolute or relative, 2-D or 3-D 

• polyline, absolute or relative, 2-D or 3-D 
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• polymarker, absolute or relative, 2-D or 3-1) 

• polygon, absolute or relative. 2-D or 3-D 

• text 

• a t t r ibutes (pen, line width, line intensity, line style, polygon edge style, 
polygon interior style, visibility, highlighting, . . . ) 

• camera model of viewing specification (view up, view reference point, view 
distance, view plane normal) 

• world coordinate window selection 

• normalized device coordinate viewport selection 

• clipping control (front, back, window) 

• world and image modelling t ransformation matrices 

• inquiry of all user-settable values 

• single-level segments 

• device-independent, ou tpu t , including a graphics metafile (a generic graph-
ics file) 

• terminate 

The C O R E concept of 'current point ' makes it possible to support the use 
of relative coordinates, and important ly, to write 'black-box' procedures that 
draw objects relative to the current point at procedure entry. 

One of its most significant contributions tha t distinguishes it f rom all pre-
vious efforts is the provision of functions tha t can inquire what the current 
state of any user-settable value is. This critical feature makes it possible to 
write closed routines tha t can save the graphics state, reset it to something else 
for convenience, draw some object , and then restore the graphics state before 
returning. 

Another strong point of C O R E is its requirement for device independence; 
all primitives are available on all ou tput devices. In practice, this means that 
on most operating systems, compiled user code is linked with a particular de-
vice library to produce an executable program tha t produces output for one 
particular device. On systems tha t support sharable link libraries, it is possible 
to delay the choice of output device until run time, so tha t a single executable 
program suffices for all ou tpu t devices. < P L O T 7 9 > supports about 45 different 
ou tput device libraries, and some commercial C O R E implementat ions support 
even more. 
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Weak points of the C O R E system are single-level segments (analogous to 
having a programming language with a CALL statement that may be used only 
in the top-level main program), and the generally cluttered and disorganized 
specification [2]. 

The first edition of Harrington's book [18] used the C O R E system; the sec-
ond edition [19] uses an abstraction of graphics primitives common to several 
systems. Foley and van Dam's widely used book [15] employs a C O R E subset. 

2.3 GKS 
The Graphical Kernel System in some ways built on the lessons of the CORE 
System, and in other ways, seriously failed to learn from them. It rejects the 
concept of 'current point ' , eliminating the significant benefits of relative coor-
dinates for primitives, and offers only 2-D primitives. In this author 's view, 
it was a tragedy tha t GKS became an international s tandard. It set graphics 
development back years, by forcing vendors to spend development resources on 
an inferior system, instead of improving the defects of the C O R E system while 
retaining full support for 3-D. Efforts to retrofit 3-D graphics on GKS cannot, 
in my view, be done cleanly, and should be abandoned. 

Because of the restriction to 2-D, GKS primitives are simpler than those of 
the C O R E system: 

• initialize 

• polyline absolute 2-D 

• polymarker absolute 2-D 

• fill area 

• cell array 

• text 

• generalized drawing primitive 

• at tr ibutes (pen, line width, line intensity, line style, fill area pat tern and 
style, visibility, highlighting, . . . ) 

• inquiry of all user-settable values 

• single-level segments 

• device-independent output , including a graphics metafile (a generic graph-
ics file) 

• terminate 

Further descriptions of GKS can be found in the s tandard [73] and in three 
textbooks [14, 26, 27], 
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2.4 PHIGS 
The Programmer ' s Hierarchical Interactive Graphics System is a much more 
satisfactory descendant of C O R E than GKS is. PHIGS offers full 3-D capa-
bility, ou tput device independence, enhanced support for raster devices and 
interactive graphics, and unrestricted segment nesting. In addition, it provides 
a powerful display selection mechanism, wherein graphics segments can be given 
user-defined tags, and then display can be requested of all segments belonging, 
or not belonging, to a part icular tag set. As an example, an architectural ap-
plication might be to display a building plan with all the concrete parts drawn, 
and wooden and glass par ts eliminated. 

PHIGS [75] is relatively new, and evolution to P H I G S + [74] and PEX [56] 
is underway. There is only one short textbook describing PHIGS [8]. 

The PHIGS primitives are available in both 2-D and 3-D forms, and include: 

• initialize 

• polyline 

• polymarker 

• text 

• fill area 

• fill area set 

• cell array 

• generalized drawing primitive 

• a t t r ibutes (line type, line width, polyline color, marker size, marker type, 
polymarker color, fill area interior and edge color, style and pat tern , color 
model, visibility, highlighting, . . .) 

• local and global world and image modelling t ransformat ion matrices 

• te rminate 

PHIGS actually has many more primitives than these; for a detailed list, see 
[8, Appendix II]. P H I G S + [74] adds support for features of high performance 
graphics workstations, including lighting, shading, depth cueing, and curve and 
surface primitives. 

The generalized drawing primitive of both GKS and PHIGS is provided 
to give the programmer access to graphics facilities (usually in ou tpu t device 
hardware) not otherwise provided for by the s tandards; they include such things 
as circle, arc, and curve generators. However, in portable software, or software 
tha t must produce output for more than one device, such extensions cannot be 
used. 
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2.5 X Window System 
The X Window System (X for short) is the result of research, begun in 1984, at 
MIT Project Athena carried out in conjunction with IBM and DEC. In the last 
five years, it has gone through 11 versions, with the final one, X 11 Release 3, 
supposed to be the one t ha t is frozen to serve as a platform for fur ther vendor 
development. Only by late 1988 did the first books on programming with X 
appear; there are now five such volumes [31, 48, 49, 50, 59]. X runs on most 
UNIX systems, VAX VMS, and (in a l imited fashion) on P C DOS. 

It was a condition of MIT Project Athena tha t all code developed for the 
X Window System be publicly available for a nominal distr ibution cost. The 
COPYRIGHTS file in the X distr ibution s tates 

The MIT distr ibution of the X Window System is publicly avail-
able, bu t is not in the public domain . The difference is t ha t copy-
rights grant ing rights for unrestricted use and redistribution have 
been placed on all of the software to identify its authors. You are 
allowed and encouraged to take this software and build commercial 
products . 

No vendor can therefore get a strangle hold on it, and all vendors are free to take 
the source code and adapt it to their own hardware, making internal changes to 
improve efficiency, or take advantage of their part icular machine architecture. 

The free availability of source code for X means t ha t it provides a vendor-
independent window system, freeing the user of dependence on a single vendor, 
and greatly enhancing the potent ial portabil i ty of code writ ten to use the X 
Window System. However, X is wri t ten in C and uses long case-sensitive names 
and C d a t a structures; no interface has been defined to any other programming 
language, such as Fortran or Pascal. 

Impor tant ly , the X Window System was designed to separate the notions of 
generation of the da t a for the window display, the actual display of tha t window, 
and the management of windows. In part icular , generation and display can be 
on separate machines, since all communicat ion between the two processes goes 
through the X library, which uses the X protocol on top of a network protocol, 
like T C P / I P or DECnet . 

These are exceedingly impor tan t design features. They mean tha t , in the 
words of its developers, X provides mechanism, but not policy. 

Several different window managers have been developed, based on both over-
lapping and tiled (non-overlapping) models, and users can run any one they 
choose. 

A program generating graphical da t a for X might run on a supercomputer , 
while the display is viewed on a low-cost desktop workstation, possibly thou-
sands of miles away. T h a t si tuation has existed since 1987 with the NASA Cray 
2 at Moffett, Field, CA and NASA researchers at Langley, VA. 
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It is possible to design a terminal t ha t displays X Windows, without offering 
an operating system environment. There are now about a half-dozen vendors 
with such products, ranging in price f rom about U. S. $600 to $2000 (comparable 
to terminal pricing of only 5 years ago). This makes it possible to reduce even 
fur ther the cost of providing an extremely productive workstation environment, 
which otherwise currently represents an investment of U. S. $5000 to $30000 per 
user, depending on the power of the workstation. 

Is X the final solution? No, certainly not . Further research in software 
and hardware will result in many new ideas tha t lead to new products . X 
will certainly provide a solution for most of the next decade. It does have a 
fundamenta l l imitation, in tha t it is designed around the notion of bitmaps; 
all graphical operations must have knowledge of the resolution of the window 
they work in, and display results only to t ha t resolution. Typical current screen 
displays have 480 to 1200 dots on a raster line, with a few systems reaching 
as many as 2048; on a large 19-inch diagonal monitor , tha t represents about 
100 dots / inch (40 dots /cm) . Popular laser printers today have 300 dots / inch 
(118 do ts /cm) , and phototypesetters have 1500 to 5300 dots / inch (600 to 2100 
do ts /cm) . T h a t higher quality is completely inaccessible with the X Window 
System. 

Here is a list of the X graphics primitives; these currently are restricted to 
2-D, but the PEX extensions [56] add 3-D support . 

• initialize 

• point and polypoint 

• line and polyline 

• rectangle and polyrectangle 

• filled rectangle and polyrectangle 

• arc and polyarc 

• filled arc and polyarc 

• filled polygon 

• clip mask b i tmap and origin 

• text 

• a t t r ibutes (line type, line width, line endpoint style, line join style, fore-
ground and background color, tile pa t tern , stipple pa t tern , fill pat tern , 
Boolean drawing operation, plane mask, polygon fill rule, . . . ) 

• te rminate 
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X does not support the C O R E concept of 'current point ' , but its polyxxx 
primitives have an argument tha t permits coordinates after the first to be rel-
ative to the preceding point. Because X is a windowing system, it has many 
more primitives tha t are relevant to window operations. 

2.6 PostScript 
The PostScript language is best described in the red, blue, and green volumes 
produced by Adobe Systems [30, 29, 53]. Because it is intended for page descrip-
tion, rather than graphics system standardization, it is quite different in many 
respects f rom CORE, GKS, and PHIGS. Nevertheless, it is useful to compare its 
basic graphics primitives with those of the other systems. All of its primitives 
are restricted to 2-D only. 

• initialize 

• current point 

• arc 

• Bezier curve 

• move, absolute or relative 

• line, absolute or relative 

• path 

• text (typeset quality) 

• pat tern and halftone area fill 

• a t t r ibutes (color, halftone, line style, line width, line endpoint and join 
styles) 

• clipping path 

• terminate 

This list is necessarily a great simplification. PostScript is a programming 
language with named scalar and array variables and procedures, integer and 
floating-point arithmetic, bitwise and ari thmetic operators. In addition, it pro-
vides user-defined dictionaries, or symbol tables, which make it possible to over-
ride the definition of any previously-defined name, and thereby arbitrarily ex-
tend the language, or even change its meaning. 

The typeset-quality text provided by PostScript is the first obvious distinc-
tion from the other graphics systems. The notion of a path, which may be 
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either stroked or filled, or used as a clipping path on other objects, general-
izes the line, polyline, marker, polymarker, and generalized drawing primitives 
of earlier systems. In addition, objects on the path need not be just points 
or line segments. They can be curve segments, and importantly, they can be 
procedures that are invoked dynamically when the path is traced. This facility 
offers enormous power. The support for color and halftoning, and support for 
arbitrary rescaling and resampling of raster images with one or more bits per 
pixel, are truly remarkable. 

It seems quite clear tha t PostScript-based window systems will eventually 
replace bi tmapped window systems like the X Window System, because they 
offer much greater power, and importantly, independence from output device 
resolution. 

If PostScript has a weakness, it is that its painting model is opaque; that 
is, any object, whether black, white, or colored, when drawn on top of another 
object in the page image, completely replaces it. This feature can make prepa-
ration of complex images rather tricky. Further details can be found in [57. p. 3, 
p. 201], 

Clearly, the fu ture growth of graphics with systems like PHIGS, PEX, NeWS, 
and PostScript is going to be exciting. 

3 Why Graphics is Hard in TfeX 
In the preceding section, I gave an overview of what facilities modern graphics 
systems can provide. A limited understanding of those facilities is essential to 
appreciate why graphics is hard in Tf^X. 

TgX was perhaps developed a decade too soon, because it based its capa-
bilities on typesetting models of 1978, and those models have radically changed 
since then. TgX is unparalleled in its ability to set beautiful text, particularly-
mathemat ica l text, and its hyphenation, line breaking, and page breaking algo-
r i thms are very significant advances in publishing. 

METAFONT [40, 41], "IJEX'S sister, provides a way for a font designer to 
prepare entire families of fonts parametrized in such a way that the family 
resemblance is retained, tha t a computer can do the tedious work of generating 
the filled outlines, and tha t relatively simple parameter changes can be made to 
account for the differing imaging characteristics and resolution of output devices. 
Knuth ' s Computer Modern font family [42] is clearly a. masterpiece using META-
FONT, but it is also a first effort. Many decades will pass before we are likely 
to have other widely-used font families produced by other type designers with 
METAFONT. For fur ther discussions of other approaches to computer-aided font 
design, see Karow's excellent book [33]. 

Tf]X solves the problem of placing characters on the page, but what about 
other, non-textual , marks. Well, TgX has horizontal and vertical rules (variable-
width lines). And tha t is it! There are no diagonal lines, no line styles, no circles, 
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r.o arcs, no Bezier or B-spline curves, no halftones, no color, no fill areas, no fill 
patterns, no floating-point arithmetic, no 3-D. 

While l ^ X can be made to handle right-to-left and top- to-bot tom typeset-
ting of Semitic [36, 52] and Oriental [58] languages, it is impossible for it to 
rotate character boxes to obtain text in any direction other than what the font 
designer provided for. 

TgX's ari thmetic is scaled fixed point, and its expression syntax is about as 
painful to write as tha t of Cobol; with suitable variable declarations, the simple 
assignment x = 3*y + 4/z must be written as 

\x = \y 

\multiply \x by 3 

\temp = 4 

\divide \temp by \z 

\advance \x by \terap 

I have tried to write a general expression parser for TfjX tha t would let one 
shorten this to something like 

\x=\expr{3*\y + 4/\z> 

but have yet to succeed in that goal. Without it, writing macros that require 
significant calculation of expressions is exceedingly tedious and error-prone. 

Aside from the four arithmetic primitives, TjjX offers nothing in the way of 
elementary function support . It would be a nightmare to program implementa-
tions of sin, cos, sqrt, log, and so on in scaled fixed point arithmetic with the 
expression syntax requirements illustrated above. This is regrettable, because 
those functions are all available in the host language that Tf^X is written in. 
but the hooks to access them are absent. Presumably, Knuth 's goal of complete 
machine independence to ensure identical output interdicted these facilities. 
Nevertheless, it would have been possible to provide a software emulation of a 
decent floating-point ari thmetic system, such as the IEEE one [51], tha t could 
have preserved machine independence. TgX itself actually uses floating-point 
ari thmetic internally for certain operations; METAFONT uses integer ari thmetic 
exclusively. 

T^X has no real concept of 'current point ' accessible to the programmer. It 
certainly maintains such a quantity internally, but it is not available as a stan-
dard primitive. This necessitates memory-consuming workarounds, like using 
horizontal and vertical kerns to position objects in boxes. 

Similarly, TgX has no way for the programmer to refer to an absolute page 
coordinate. The output routine collects the page image into a box and sends it 
to the DVI file, but there is no hook called \everyshipout to attach a function 
that could provide absolute page addressing. 

TgX has no notion of graphics planes, or of writing modes; modern raster 
graphics hardware generally provides the 16 possible Boolean operations be-
tween source and destination pixels. In Tf]X, the mechanism for mapping of 
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objects to a page b i tmap is curiously left to the DVI driver; most choose ei-
ther a Boolean or operation, or a replacement operation, so overlapping objects 
simply overwrite one another. There are no white objects tha t can be used for 
erasure. 

W h a t does Tg]X offer to resolve these deficiencies? Almost nothing, except 
a \specialO command, tha t like the GKS and PHIGS generalized drawing 
primitive, provides an escape mechanism for getting a device-dependent request 
into its otherwise device- independent ou tpu t file, the DVI file. 

4 T^X and the \ s p e c i a l { } Command 
One of the great virtues of Tj^X is tha t it was very carefully designed to perform 
identically on all systems, independent of the underlying host computer archi-
tecture. In particular, its DVI file ou tpu t must be identical, bit for bit, on all 
machines, permit t ing TgX to be used on a variety of machines in the publication 
process. 

Translator programs, called DVI drivers, then have the job of interpreting 
this compact binary file tha t encodes T^X's typesett ing results, merging type-
setting commands with character b i tmaps f rom font files to produce output for 
particular devices. While the speed, resolution, and quality of these devices 
may differ, the. document layout, in part icular, the line breaks, page breaks, 
and hyphenations, will be the same on all of them. 

Yet, if one takes advantage of the \special{> command, the DVI file is 
no longer independent of the output device. The argument of the \special{} 

command is not interpreted by Tj]X, and is therefore solely a mat te r between 
the user, and the DVI driver program. Scores of such drivers exist, and I 
have argued [5] for maintaining all drivers in a common base with shared code, 
implemented portably to run on multiple operat ing systems, and with the code 
in the public domain. Version 3.0 of my DVI driver family currently under 
development consists of more than 45,000 lines of C code with over 200 pages 
of documentat ion, and supports more than 30 output devices on six different 
operating systems. Over 1000 sites in 28 countries are using earlier versions of 
this family, testifying, I believe, to the soundness of my principles. 

Thus, at present, there exists little chance of compatibilities in \special{> 
commands between DVI drivers. The issue is complex, and a committee of the 
TgX Users Group has been working for almost two years now on the problem of 
DVI driver, and \ s p e c i a l O command, s tandardizat ion. I am a member of that 
committee, and I do not see an end in sight in the near future. The committee 
uses the wonderful medium of network electronic mail to exchange ideas and 
commentaries, and the accumulated mail volume as of early April, 1989, is 615 
Kbytes, corresponding to about 200 tightly-spaced pages of text. 

The problem of driver dependence of \special{} command is brought, home 
in this article, because I cannot i l lustrate the incorporation of a graphical image 
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here for you. because I have no control over what I)V1 driver the publisher of 
this article will use! 

The inclusion of graphics files in response to requests f rom \special{} com-
mands introduces a difficult problem because of the great variety of graphics file 
formats tha t exist. The commonest vector file formats in practice are those of 
popular graphics terminals and plotters, such as Tektronix, HPGL, and Post-
Script formats . There are about as many raster file formats as there are raster 
ou tput devices, and they are additionally resolution-dependent. Graphics stan-
dards have included generic graphics files, called metafiles, but the amount of 
code required to parse such a file is larger than most existing DVI drivers. 

Aside from the \special-Q command, how can Tg]X support electronic in-
corporation of graphics? There appear to be four distinct avenues, all of which 
are likely to be useful for certain purposes. I choose to locate these in pre-
processing, input processing, output processing, and post-processing steps. 

5 TgX and Graphics Pre-processing 
By pre-processing, I mean the stage before TJT̂ C begins to read the user's 
manuscript . Since its input must be well-formed according to definite rules 
described in the T[^Xbook [38], the only opportuni ty here is to take advantage 
of Knuth ' s design decision that TgX is entirely ignorant of the shape or ap-
pearance of font characters. It only knows their measurements (width, height, 
descender depth, etc.), which it obtains from the T F M (Tjr̂ X. Font Metric) files 
produced by the font generating program. 

Since TgX can be directed to place character images anywhere on the page 
with great precision, and cares little about how big those images are, we may 
elect to store pictures in them. 

The fonts most commonly used with Tf^X come from METRFONT, and METR-
FONT was designed to be able to draw characters. Thus, even though METR-
FONT [40, 41] has mostly been used for font design [42, 61, 62, 60, 63, 65, 
64] and font generation, we should examine it for graphics capabilities, so we 
can compare it with the graphics systems discussed earlier. Like PostScript, 
METRFONT is a. true programming language, with scalar and array variables, 
procedures, and operators for ari thmetic, bit manipulat ion, and drawing. Here 
is a. summary of METRFONT primitives: 

• initialize 

• move 

• line 

• polyline 

• curve (Bemshtem polynomials, of which Bézier curves are a special case) 
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• pen shape 

• pen 'color' (black to draw, white to erase) 

• path 

• terminate 

METAFONT has no concept of true color, or of line style (solid vs. dashed). 
Line thickness and endpoint style can be controlled by the pen shape. 

As in PostScript, METAFONT's path notion is a powerful generalization of 
polylines and polygons, and can contain procedural objects in addition to simple 
points, lines, and curves. Unlike PostScript, METAFONT draws with pens whose 
shapes can be defined by the user, subject to the restriction tha t they can be 
represented as convex polygons. This is in fact not a serious l imitation, because 
a concave polygonal pen could be simulated by multiple convex polygonal pens 
moving on parallel paths, some drawing, and some erasing. 

METAFONT's ou tpu t is not designed to be device independent; it is a set of 
characters in a font, where the characters are compactly represented in the font 
file as run-length encoded bi tmaps . However, by suitable parametr izat ion, it is 
rather simple to get METAFONT to produce characters in any desired size for 
any desired output device resolution. 

PostScript goes to great lengths to hide the underlying raster representation 
by encouraging programmers to use device-independent coordinates and paths, 
leaving the realization of the representation as a b i tmap to the very end. Post-
Script has no primitives at all for accessing the b i tmap; it must be viewed as a 
'write-only' object. 

METAFONT, on the other hand, admits f rom the s tar t tha t it is drawing on 
a bi-level b i tmap . 

There are advantages to both approaches. For METAFONT and font design, 
where the resolution of common current ou tpu t devices is marginal (50-200 
dots /cm) , knowledge of the raster resolution is essential to prepare acceptable 
character descriptions. 

PostScript presupposes tha t the hard work of font design for the output 
device resolution has already been carried out, and in fact, current implementa-
tions of PostScript do not define the format of internal fonts, and use encrypted 
representations for them, even though the rest of the language has been specified 
publicly in [29]. 

One very reasonable approach for preparat ion of graphics to be included in 
T15X documents is therefore to use METAFONT to produce font characters that 
encode the picture as a bi-level b i tmap . As noted earlier, this representation 
is dependent on ou tpu t device resolution, but can be easily scaled by META-
FONT for other resolutions. We can therefore achieve document portability, at 
the expense of perhaps having to generate several different METAFONT font 
representations, one for each output device resolution tha t will be used by the 
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DVI drivers. Since METRFONT program representations are printable text, just 
like TgX input files, they can be t ransmit ted electronically with equal ease. Any 
properly-written DVI driver should be able to correctly handle Tf]X output with 
large font characters, so the only precaution the user must take is to ensure that 
the resolution of the METRFONT-generated pictures matches that of the output 
device. 

Naturally, we should not expect tha t individuals learn METRFONT program-
ming just so they can create pictures in their T^X documents. Instead, existing 
graphics packages based on the CORE, GKS, and PHIGS models could be mod-
ified to support yet another output device—METRFONT. Machine-independent 
translators for common graphics formats (e.g. Tektronix and HPGL) could be 
developed to permit conversion of existing graphics files to METRFONT input. 

The two major difficulties here are (a) how to handle color, and (b) how to 
handle text characters tha t the graphics device is expected to generate itself. 

Difficulty (a) is present in other approaches as well, and best ignored for 
now. 

Difficulty (b) probably does not have a satisfactory solution that will produce 
output essentially identical to the original output device. For example, the 
HPGL language used on Hewlett-Packard pen plotters, and clones, provides 
for hardware characters tha t contain smooth curve segments generated by an 
unspecified method. One could of course generate the plotter 's entire character 
repertoire, then redigitize it into vector form, but this leaves open the question 
of font copyright violation. Some graphics systems, such as my own < P L O T 7 9 > 
system, reject the use of hardware-dependent character sets in their quest for 
output device independence, and use vector character descriptions, such as those 
developed by A. V. Hershey at the U. S. Naval Weapons Laboratory [20, 21, 
22, 23, 24, 69] and placed in the public domain. For such systems, the output 
graphics files contain no text requests, since all text characters were reduced to 
vectors at a higher level. 

To my knowledge, no serious work in this direction has yet begun, although 
we have discussed it in the T U G DVI Standards Committee exchanges. 

There will also be an as-yet-unknown limit to the complexity of graphics 
images tha t can be produced this way, due to the internal design of METR-
FONT. 

6 T^X and Graphics Input Processing 
The second approach to support of graphics in TgX is to implement a limited set 
of graphics primitives as TgX macros. This is certainly a common approach, and 
has enjoyed some limited success. lATgX picture mode [46, pp. 101-110] is prob-
ably the most widely available system. It provides lines (in a restricted set of 
two dozen slopes), vectors (lines with an arrowhead), rectangles (boxes), ovals, 
empty and filled circles, and with the bezier document style option, quadratic 
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Bezier curves. Its \put and \multiput commands allow easy positioning of 
objects, which may themselves be picture objects, allowing hierarchical decom-
position of pictures into subpictures. The units of the coordinate system, and 
therefore, the size of the pictures, can be easily scaled with the \unitlength 

command. 
Picture mode has many limitations, however. There are only two line widths 

available, and only one kind of line dashing is available, and then only in a rect-
angle. We will illustrate later how dotted lines can be obtained in picture mode. 
Special fonts are used for the diagonal lines, ovals, circles, and arrowheads, lim-
iting the number of slopes and sizes. Coordinate scale must be the same hori-
zontally and vertically. Changing the picture scale with \unitlength does not 
scale text objects. Coordinates are restricted by T^X's underlying fixed point 
representation of dimensions, permit t ing values with integer values up to 21 4 — 1 
(16383) and fractions in units of 2~ 1 6 , so overflow and underflow can sometimes 
be a problem (TgX catches such errors, so they can be worked around). There 
are no filled areas, so the common publishing technique of shading text, boxes 
for emphasis is unavailable. Curves must be produced by juxtaposi t ion of small 
boxes; this introduces resolution dependence, as illustrated in the Bezier curve 
figures below. Font characters cannot be scaled, rotated, or otherwise trans-
formed, restricting labelling flexibility. Picture mode has 110 color primitives. 
SLI'T^X provides limited color support which could be used in picture mode; see 
the later section Color and TpX-

Here are some examples that I produced for our Local lATgX Guide to il-
lustrate the bezier style option, which appeared after the IATj?X book was 
published, and is therefore not described there. The figures show the exact 
sequence of picture mode commands used to produce each image. 
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\bsgin{cent«r} 
\Betlengthi\unitlengthHo . 02f> in} 
\begin{picture K100,105) 

\put(0,0)(\l ine(l ,0){25}} 
\put(0,0){\r;ircle*{2}} 

\bezier{150}(0,25)(0,0)<25,0) 
\put(0,2S){Mins(0,-l){25H 
\put(0,25){\circle»{2H 
\put(25,0){\circle»{2}} 
\bezieri150}(100,40)(40,0)(100,0) 
\put(100,40){\line(-3,-2){60}> \put(40,0){\1ine(),0){60}} 
\put(100,40){\circle»{2}} \put(40,0){V; ire le»{2}} 
\put(100,0){\circle*{2}> 
\bezier{150}(75,100)(95,95)(100,75) 
\put(75,100){\line(4,-1){20}} \put(95,95){\line<l,-4){5}> 
\put(100,75){\circle*{2}} \put(95,95){\circle*{2}} 
\put(75,100){\circle*{2}} 
\bezier{150}(0,75)(50,50)(25,100) 
Vput (0 ,75) {\line(2 ,~1){50}} \put (50,50) {Mine (-1, 2){25}} 
\put(25,100){\circle*{2}} \put(50,50){\circle*{2}} 
\put(0,75){\circle*{2}} 

\end{picture} 
\end{center} 

Figure I: Quadratic Bezier curves (150 dots) 
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\begin{center} 
\setlength{\unitlengthHO. 03in} 
\begin{picture}(100,110) 

\bezier{50}(0,0)(50,100)(100,0) \put(80,95){\makebox(10,10) [r]{25}} 
\bezier{100>(0,0)(50,80)(100,0) \put(80,75){\makebox(10,10)[r]{50}} 
\bezier{150}(0,0)(50,60)(100,0) \pTrt(80,55){\makebox(10,10) [r] {75}} 
\bezier{200}(0,0)(50,40)(100,0) \put(80,35){\makebox(10,10)[r]{100}} 
\bezier{250}(0,0) (50,20) (100,0) \put(80,15){\makebox(10,10) [r]{125» 

\put(0 ,0){\c i rc le*{4» \put(100,0){\cìrcle*{4}} 

\multiput(50,100)(0,-20){5}{\circle*{2}} 

\end{picture} 
\end{center} 

25 

50 

75 

100 

125. 

Figure 2: Quadrat ic Bezier curves with varying dot counts 

32 



TfiX and Graphics: The State of the Problem, 

\begin{center} 

\setlength{\unitlength}{0.03in> 

\begin{picture}(100,110) 

\bezier{200>(50,50)(0,100)(50,100) 

\bezier{200>(50,100)(100,100)(50,50) 

\bezier{200}(50,50)(0,0)(50,0) 

\bezier{200>(50,0)(100,0)(50,50) 

\put(0,0){\circle*{l» \put(50,0){\circle*{2>> 

\put(100,0){\circle*{l}> \put(60,50){\circle*{4>> 

\put(100,100){\circle*{l» \put(50,100){\circle*{2}} 

\put(0,100){\circle*{l>> 

\end{picture} 

\end{center} 

Figure 3: Quadrat ic Bezier figure eight, constructed of four segments. Control 
point diameters are proportional to usage counts. 
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A more complex example is illustrated in the next pair of figures, which 
show the various lATgX page layout parameters. I developed these in October 
1986, and they should now be available in all s tandard TgX distributions as a 
file named page-layout.tex, or something similar. T h a t file contains about 
250 lines of macros definitions, and 210 lines of their use in picture mode, which 
is rather too long to include here. 

Figure 4: I^TgX single-column page layout. The actual proportions correspond 
to parameter values in the l l p t BOOK document style. Note tha t s tandard-
conforming DVI drivers are required to place the TgX upper-left, page corner 
one inch over and down f rom the corner of the physical ou tpu t page. This figure 
is scaled to 50% of actual page size. It was produced on April 17, 1989 at 12:41. 
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Figure 5: lA'l jsX double-column pagc layout,. T h e actual proport ions correspond 
to parameter values in the l lp t , BOOK document style. Note t ha t s tandard-
conforming DV1 drivers are required to place the Tf]X upper-left page corner 
one inch over and down from the corner of the physical ou tpu t page. This figure 
is scaled to 50% of actual page size. It was produced on April 17, 1989 at 12:41. 
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With some addi t ional effort at macro writing, picture mode can be extended 
to make certain types of common graphics i l lustrations fairly painless to pro-
duce. For a recent talk on workstat ions, 1 prepared some bar chart macros to 
make such figures. A set of about, 130 lines of macros are needed to define the 
basic \HBAR and \VBAR macros, in te rms of which are defined simpler-to-use 
macros like \PERFORMANCE and \REVENUES i l lustrated below. 
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For bar charts, it is d e s i r a b l e lo r I.lie u s e r t o h e a I > W • t o e n t e r the d a t a in t h e 
o r i g i n a l r a w C o n n , w h i c h in g e n e r a l wil l h a v e d i f f e r e n t h o r i z o n t a l a n d ve r t i r a . l 
s c a l e . M y macros support I.his. In t h e l i g u r e s . o n e a x i s is a r b i t r a r i l y g i v e n a 
s c a l e of 100. t.o facilitate p o s i t i o n i n g ol b a r s lo r d i l l e r e n t , v e n d o r s , and t h e o t h e r 
a x i s h a s a s c a l e d e p e n d i n g o n performance o r s a l e s r e v e n u e s . 

I lie m a j o r l i m i t , a t , i o n s of t h e s e m a c r o s a r e tha t , fractional v a l u e s fo r l ia r 
l e n g t h s a r e not, s u p p o r t e d , a n d t h a t e x c e s s i v e l y l a r g e v a l u e s m a y r e q u i r e r e s c a l -
i n g t o a v o i d e x c e e d i n g T|,;X s f i x e d - p o i n t , n u m b e r r a n g e limit,at,ions. 

H e r e n o w a r e t w o b a r c h a r t e x a m p l e s i l l u s t r a t i n g h o r i z o n t a l a n d v e r t i c a l b a r 
s t y l e s . 

\setlength{\unitlength}{0.008in> 

\newcommand{\PERFORMANCE}[3]{\HBAR{0}{#2}{#1}{5}{#3}{#1}} 

\HEIGHT=700 

\WIDTH=550 

\begin{picture}(\WIDTH,\HEIGHT)(0,0) 

\YMAX=90 

\XMAX=100000 

\thicklines 

\put(275,650){\makebox(0,0){\Large\bf Dhrystones per second}? 

\put(275,630){\makebox(0,0){Source: 

Byte, April 1989, p. 1 1 » 

\put(275,610){\makebox(0,0){Source: 

UNIX Review, December 1988, p. 65>> 

\put(275,590){\makebox(0,0){Source: 

UNIX Review, January 1989, p. 1 0 2 » 

\put(275,570){\makebox(0,0){Source: 

Research \& Development, March 1989, p. 5 3 » 

\put(0,0){\framebox(\WIDTH,\HEIGHT){» 

\labellingtrue 

\dottedlinestrue 

\VLINES{0>{\YMAX>{10000>{10000>{90000> 

\PERF0RMANCE{1640}{80}{\shortstack{\\VAX\\l1/780» 

\PERF0RMANCE{3246}{70}{\shortstack{\\Sun\\3/160}} 

\PERF0RMANCE{13043}{60}{\shortstack{\\Cray\\2» 

\PERF0RMANCE{18530}{50}{\shortstack{\\Cray\\X-MP/48}} 

\PERF0RMANCE{19230}{40}{\shortstack{\\Sun\\4/260}} 

\PERFQRMANCE{24876}{30}{\shortstack{\\MIPS\\M/120-5}} 

\PERF0RMANCE{31250}{20}{\shortstack{\\IBM\\3090/200}} 

\solidbarialse 

\PERF0RMANCE{85000}{10}{\shortstack{\\Intel\\80860}} 

\end{picture} 

F i g u r e 6: I n p u t f o r h o r i z o n t a l b a r c h a r t . 
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1640: 

Dhrystones: per isecoind 
Source: Byte, April 1989, p. 14 

Sourte: Resèarch & Development 

Source: JUNIX Review,'December 1988, p. 65 
Source: 'UNIX Review; January 1989, p. 102 

24876 

31250 

March. 1989, p. 53 

85D00 

10000 20000 30000 40000 50000 60000 70000 80000 90000 

Figure 7: Horizontal bar chart, illustrating Dhrystone string manipulation 
benchmarks. Larger values mean better performance. 
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\setlength{\unitlength}{0 • 0Û9in> 

\newcommand{\REVENUES}[3]{\VBAR{#1}{0}{5}{#2}{\$#2}{#3}} 

\HEIGHT=700 

\WIDTH=550 

\begin{picture}(\WIDTH,\HEIGHT)(0,0) 

'/, Data ranges (x = 10*company number, y = megabucks) 

\XMAX=90 

\YMAX=1300 

\thicklines 

\put(275,650){\makebox(0,0){\Large\bf 

1988 Workstation Revenues}} 

\put(275,620){\makebox(0,0){\Large\bf 

(U.~S. \$1,000,000)}} 

\put(275,590){\makebox(0,0){Source : 

Digital News 6-Mar-89 p. 85}} 

\put(0,0){\framebox(\WIDTH,\HEIGHT){}} 

\dottedlinestrue 

\labellingtrue 

\ H L I N E S { OH \ X M A XH OH I O OH I I O O } 

\REVENUES{10}{ll65}{Sun} 

\REVENUES{20}{765}{DEC} 

\REVENUES{30}{695}{HP} 

\REVENUES{40}{555}{Apollo} 

\REVENUES{50}{275}{Intergraph} 

\REVENUES{60}{180}{SGI} 

\REVENUES{70}{105}{IBM} 

\REVENUES{80}{370}{0thers} 

\end{picture} 

Figure 8: Input for vertical bar chart . 
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ff1l,r 1988 Workstation Revenues 
$1105 

Figure 9: Vertical bar chart. 
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Normally, one does not bother with a background grid on bar charts, because 
it is visually distracting. The \HLINES and W L I N E S macros provide a facility 
for drawing a grid; the lines will be solid, unless \dottedlinestrue is specified. 
How are the dotted lines created? Simple—they are quadrat ic Bezier curves 
with the 3 control points at the s tar t , middle, and end of a s traight line. The 
lATgX implementat ion in bezier. sty requires the user to specify the number 
of dots to draw along the pa th ; I chose 100 dots in the macro definitions. When 
I tried 150 for the dot count, the second bar chart overflowed TfjX's memory. 
This suggests tha t a normal-sized TgX can handle only slightly more than 1000 
Bezier dots. T h a t rather small number is caused by the need to represent them 
inefficiently as kerned boxes. 

To fur ther investigate TgX's handling of Bezier curve dots, I turned on the 
option tracingstats [38, p. 300] on pages containing only Bezier curves. T h a t 
revealed tha t TgX uses 15 words (60 bytes) of internal memory for each dot 
(actually a square 0.4pt rule); by comparison, the compact Tektronix vector 
encoding fo rmat averages about 3 bytes per coordinate pair in a polyline in 
typical hidden-line and contour plots. S tandard Tf^X has 30000 words of memory 
[39, p. 6], which imposes a strict limit, of 2000 Bezier dots when there is nothing 
else on the page. Each Bezier dot takes 18 to 19 bytes in the ou tpu t DVI file 
(positioning and setrule commands) , which is about 6 t imes as verbose as the 
Tektronix encoding. 

Were we to use Bezier curves with dense dots to create diagonal lines on a 
300 do t / inch laser printer, a single line as wide as the page would fill TEX's 
memory! 

This si tuation could be improved greatly if TgX had a general vector prim-
itive. In fact , an even bet ter choice would be a non-uniform rational B-spline 
curve primitive, which is used in the Alpha-1 Computer-Aided Design and Mod-
elling System developed at the University of Utah. Tha t single primitive can 
represent straight lines, general space curves, and exact circles and arcs. 

If TgX had a grey-scale primitive t ha t supplied an intensity for rules (filled 
rectangles), then it would be simple in these bar charts to draw a white rule 
covering the legend area, erasing anything already there, before drawing the 
legend text . Without, such a primitive, obtaining the same effect is tedious in 
general, and in some cases, impossible. Since virtually all current TgX out-
put devices, with the exception of older optical phototypeset ters , are easily 
capable of grey-scale rectangle fill, it, is regrettable tha t such a primitive is 
missing from TgX. It would also supply the need for light, background shad-
ing of emphasized text. Wi thout it, one must either use grey-scale fonts to 
fill a rectangular region (a non-trivial operation to program in Tj;X). or the 
DVI driver must provide such a feature with the \ s p e c i a l O command. It 
seems evident tha t support, for something like \special{ruleblackness=0 . 0} 
for white rules, \special{ruleblackness=0.2} for lightly-shaded rules, and 
\special{ruleblackness=l.0} for black rules, would be a valuable addition 
to DVI drivers. 
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A student named Thomas Taylor produced an X Window System Version 
10 Release 4 interface to UTgX picture mode called TgXdraw; the sources were 
distributed on the Internet, but I cannot find an institutional affiliation for 
him. Availability of such a graphical interface can help to relieve the tedium of 
preparing picture mode graphs by hand. 

Other approaches than IATJTX picture mode are possible. 
Ehrbar [13] described a set of macros for the production of statistical graphs 

with plain Tj^X. 
Van Haagen [17] discussed the production of box and scatter plots with TgX 

macros. 
PjCTp^X [68] seems to be reasonably powerful, but unfortunately has distri-

bution restrictions that will likely prevent its wide adoption. 
TgXtyl [54] was developed in support of the Music Typesetting Project under 

the direction of Professor John Gourlay at Ohio State University [16]. Music 
is itself an interesting application of both TgX and graphics, but appears to 
be very difficult, and the OSU project has since been terminated. For further 
details on computer music software, see [55, Section 3], 

In the TUG DVI Standards Committee, we have been experimenting with 
sets of macros that define graphical primitives for TgX, and I have prepared 
a < P L O T 7 9 > device driver to produce TpX output using those macros. The 
results are not encouraging, because even with careful coding of the macros by a 
seasoned Tj^Xpert,, practical pictures with the complexity of contour and hidden 
line plots produce TgX files that are hundreds of kilobytes long with up to fifty 
thousand line segments. The compact Tektronix vector files are 6 or 7 times 
smaller than the graphics files using these T^X macros. 

Such files can be processed only by greatly enlarged versions of TgX with 
internal tables increased to over two megabytes; on my Sun workstation, the 
virtual memory image of such a Tf]X is over 7 Mbytes. Comparison of the 
number of line segments with TgX's internal memory sizes suggests that each 
segment requires about 44 words of memory; later redesign of the macros has 
reduced that figure, but not sufficiently to permit handling of large graphs. 

Given that many Tf]X users employ personal computer versions of the pro-
gram, use of enlarged T^X's that cannot run on small machines is a great hin-
drance to document portability. I'EX's internal design is such that a single page 
is constructed at, one time, and there is no provision for preparation of partial 
pages by implementing software virtual memory swapping. Modified versions of 
TEX that, actually do this exist,. The first was apparently also the first port of 
I'EX to a small machine, the HP-3000, by Lance Carnes [9], who later used his 
skills to produce the first, IBM PC port of Tf^X, and found Personal TpX Inc. 
The second seems to be Kinch Computer ' s TurboTjrX. a new port of Tj?X to 
the IBM P( ' and other machines: it supports very large internal table sizes, at 
t he expense of soft ware-managed virtual memory swapping. My own experience 
with it, is that on a IBM PC XT without an extended memory RAM disk, it 
runs many t imes slower t han non-virtual implementations of Tf]X. 

41 



NELSON H . F . BEEBE 

One might wonder whether it is possible to get T^gX to empty its memory 
contents to the DVI file on command, without s tar t ing a new page in the DVI 
file. Examination of the program [39, part 32], and experiment, show tha t this 
is not possible. TgX does not call the \output routine until either it deter-
mines tha t the collected vertical list of boxes is larger than the current page, 
or an \eject has been issued. The \output routine in tu rn handles the jobs 
of at taching headers, footers, inserts, and footnotes, boxing and output t ing the 
page with \shipout, and advancing the page counter, \shipout moves TgX's 
page image to the DVI file, followed by an eop (end-of-page) command, and 
then frees the page memory. This makes it impossible to d u m p a partial page 
to the DVI file, \shipout can be called at any t ime on the page to force pre-
mature output of the current page image, but in order to make use of this for 
memory reduction, it would be necessary to add a feature to the DVI driver, 
presumably through a \ s p e c i a l O command, to identify the incomplete page. 
This approach therefore does not seem attractive. 

7 Graphics and TEX Post-Processing 
We can delay the handling of graphics until the DVI driver processing stage, 
after Tf]X has finished off the DVI file, if we use the \special{} command. We 
have already discussed tha t in an earlier section. 

There is another possibility which has been suggested in the T U G DVI 
s tandards exchanges. T h a t is to use font characters numbers, rather than their 
bi tmaps, to encode graphics commands. Thus, instead of TgX macros gener-
ating lots of little dots to represent a diagonal line, they could instead output 
a series of characters in a special font tha t the DVI driver could interpret as 
graphics commands. This would reduce the size of the DVI file, since vectors 
are not expanded into points, and also reduce TgX's memory requirements. By 
a suitable definition of the font file, it could be made to produce no visible char-
acters if processed by an older DVI driver, and newer ones would be able to act 
upon the request codes. 

8 Color and T^X 
SuTgX provides a simple scheme for making color transparencies. It produces 
multiple pages in the output DVI file which can be printed on colored trans-
parencies that can be overlaid to give a multicolor image. For support of appli-
cations that only require a few different colors, this seems a reasonable approach. 
The macros necessary to permit the user to type something like 

Celui-1\'{a} est {\blue bleu} et celle-ci est {\red rouge}. 

Les autres sont tous noirs. 
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could be extracted from the file s l i t e x . t e x present in every standard TgX 
distribution. Nothing is put into the DVI file to identify the color required for 
each page; that job must be done manually. 

The TUG DVI Standards Committee has spent considerable time on the 
subject of color. Because Tf;X itself lacks any notion of color, support for that 
feature must be done by other methods, such as the use of \ s p e c i a l O com-
mands. 

While one can imagine simple uses of color, such as for shaded backgrounds, 
for which simple \ s p e c i a l { > commands might be specified, the subject is really 
much more complicated. 

The reason color is hard is that its specification depends on the characteris-
tics of the output device, on the ambient light when the output is viewed, and 
on the physiology of the human visual system. The author of a color document 
may have some control over the first, but none whatever over the second and 
third. 

Let us first consider the output device. The same printing or photographic 
device on different runs may not produce the same colors, because of changes 
in the inks or film. As in the case of high-quality professional photography, 
calibration of batches of film or color toner material may be necessary for con-
sistent results. A particular mix of primary colors, such as red, green and blue 
for additive color display (e.g. a display screen), or cyan, magenta, and yellow 
for subtractive color display (e.g. color printing with ink or wax) will not result 
in the same appearance on different types of output devices, again requiring 
calibration. For some types of color printing, it is necessary to prepare color 
separations, in three or four colors. This is not as trivial as one might think, be-
cause the lack of purity of the inks or waxes used for the color primaries results 
in equal blends producing muddy brown, instead of black. To get around this 
problem, the printing industry uses a technique known as undercolor removal, in 
which part of the contribution of the primaries is replaced by black. This may 
serve an economic purpose as well, since black ink is usually less expensive than 
colored inks. When each of the primary colors is overprinted to prepare the final 
image, paper registration will be slightly different each time, resulting in color 
overlap tha t gives spurious colors around edges. This phenomenon is known 
as a color trap. The color resulting from overprinting of inks depends on the 
transparency of the inks; a completely opaque ink will mask underlying colors, 
rather than producing a blend. Even if one is producing a grey-level image, it is 
unlikely tha t a linear intensity scale will produce a uniform linear intensity pat-
tern on the display; a non-linear adjustment known in the photographic trade 
as gamma correction is necessary. There are several other technical problems 
in color printing tha t we will not go into here. Further details can be found in 
[57, p. 192, p. 302, p. 263], [15, ch. 17], and [19, ch. 10]. 

The human visual system is not equally sensitive to different colors (light 
frequencies). The eye is most sensitive to yellow, and least sensitive to blue, 
and the relative sensitivities may vary between individuals. Various forms of 
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color blindness also affect color perception, as do other colors surrounding the 
one being looked at. 

W h a t all of this means in practice for computer applications of color printing 
is tha t it is impossible to unambiguously specify colors by names like red, yellow, 
and blue, or even as fractions of three pr imary colors. Thus, it must be possible 
to remap the intensities of color primaries after an electronic document has been 
produced, but prior to the printing process. 

For TgX, this means tha t DVI drivers that support color via \special{} 

commands should probably do so via a single color model, probably red-green-
blue. and tha t they should be able to read mapping tables from s ta r tup files. If 
named colors are to be supported, it must be possible to provide the mapping 
of color name to color primary values at run time. The X Window System 
provides this in the form of a s tandard library file, rgb.txt, which contains over 
300 entries like 

112 219 147 aquamarine 

50 204 153 medium aquamarine 

50 204 153 MediumAquamarine 

0 0 0 black 

0 0 255 blue 

255 127 0 coral 

0 255 255 cyan 

142 35 35 firebrick 

165 42 42 brown 

0 0 0 greyO 

3 3 3 greyl 

5 5 5 grey2 

250 250 250 grey98 

252 252 252 grey99 

255 255 255 greylOO 

The first three values on each line are the intensities of red, green, and blue 
on a scale of 0 to 255. The remaining text is a color name, spelled in lower-
rase letters with embedded blanks, or with initial capitals with blanks removed. 
Synonyms are often available; black, greyO, and grayO all map to the triple () 0 (J. 
X programs accept these color names as values of command-line options: they 
also accept hexadecimal strings defining the red-green-blue mix. A standard 
library routine takes care of t he da ta base lookup and parsing. 

Recent, work at. Xerox PARC Laboratories on the specification of color has 
resulted in the publication of a new color encoding mechanism [11]: an article 
discussing this will appear in [12]. The Xerox standard contains a good descrip-
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t ion of several color encoding schemes, and also t rea ts the mapp ing of color onto 
monochrome. 

9 Halftone Images and TEX 
The commonest T^gX ou tpu t devices are capable of displaying only two colors, 
usually black and white. Grey-level images can be displayed on such devices 
by either of two techniques—dither ing and ha l f toning [15, ch. 17]. In dithering, 
rectangular blocks of pixels with varying numbers of black pixels are used to 
s imulate intensities. In hal f toning, intensity is s imulated by variable dot. sizes. 
Half toning is the me thod commonly used in the pr int ing industry. 

Significant progress in computer-genera ted hal f toning has occurred in the 
last few years, with contr ibut ions f r o m PostScript developers [53, pp. 131-135] 
[57, ch. 10], K n u t h himself [43, 44], and IJlichney [67], T h e work of Knu th and 
Ulichney happened around the same t ime wi thout either apparent ly being aware 
of the other, even though Ulichney used T^X to typeset his book! 

From the point of view of the Tji]X user, wha t this means is that it is in 
principle possible to s imulate grey-scale images on most kinds of output, devices. 
The m a j o r problem is how to get a grey-scale image into the TjrX document . 

Knu th ' s approach [44] is to use METRFONT to create fonts whose characters 
represent a, range of grey levels, then to use these to typeset, images represented 
as scanlines, each pixel of which has a specific intensity, and is in turn repre-
sented by a single pr intable character . T h e i m p o r t a n t advantage of this scheme 
is document portabil i ty. 

Another approach would be to request the DVI driver, through a, \ s p e c i a l - Q 
command , to incorporate a grey-level image file in some fo rma t , using a dithering 
or half toning algor i thm to convert it to a bi-level image t h a t could be displayed 
on the page. It, would be best to implement this conversion in a separate filter 
tha t maps a grey-level image onto a bi-level image, and then to require only of 
the DVI driver t ha t it be able to input, a bi-level image in some (preferably sim-
ple) fo rma t . Such a fo rmat has yet to be specified by the T U G DVI S tandards 
( ' ommi t t ee . 

The m a j o r difficulty here is the profusion of image formats . Almost every 
vendor has adopted different encoding schemes, jus t as happened with vector 
graphics in the 1960's and 1970's. A few vendors espouse a fo rma t called Tag 
Image File Format ( T I F F ) [10], which is produced by some grev-level scanners 
now on the marke t . The specification of this fo rma t is long, and I es t imate 
that, implementat ion of a complete T I F F decoder would take between 5 and 15 
t housand lines of ( ' code. For comparison, the DVI drivers in my family average 
10 to 12 t housand lines of code each. 

Some work has already happened on the problem of conversion between 
various image formats . 

Jiirgen Wagner < g a n d a l f O c s l i . S t a n f o r d . edu> at, Stanford University has 
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produced a package called bmx, which is library of C functions tha t supports 
conversions of about 20 different b i tmap, grey-level, and color image formats , 
including two types of FAX images. 

Jef Poskanzer, <apple!well!pokey®bloom-beacon.mit.edu> and cjefQ-

rtsg. ee . lbl. gov>, at Lawrence Berkeley Laboratory has produced a portable 
b i tmap package, pbm, t ha t is included in the X Window System contributed 
software distribution; it handles only monochrome images. 

Michael Mauldin <Michael.Mauldin®ril. cs . emu. edu> at Carnegie-Mellon 
University has a 'fuzzy p ixmap ' package, fbm., for conversion between a variety 
of b i tmap, grey-level, and color image formats . His code includes one of the 
new halftoning algori thms discovered by Ulichney. 

The Alpha-1 Computer-Aided Design and Modelling group at the Univer-
sity of Utah Computer Science Depar tment has produced a package called the 
'Utah Raster Toolkit ' , or urt, which handles conversions between many differ-
ent formats , and also includes facilities for compression, scaling, rotation, and 
reflection of images. 

The Internet X-WINDOWS newsgroup has recently carried extensive dis-
cussions about a portable image file format , pdf, tha t has been proposed. We 
may hope tha t this leads to something useful. 

All of these packages are freely available, but are likely to be directly usable 
only on the UNIX operat ing system. Tg]X users on other systems are still largely 
without support software. Considering this lack, it might prove desirable for a 
collaborative project to be initiated by interested individuals to provide similar 
tools written in Web, and perhaps even for TgX User Groups to contribute 
financial support to such a project 

10 Languages for Typesett ing Graphics 
Before TjrX, there was troff., a typesett ing system developed by Joseph Osanna 
at AT&T Bell Laboratories about 1976 on the UNIX operating system. This 
has been fur ther enhanced into device-independent, troff, ditroff, by Brian W. 
Kernighan [32, 34]. troff is a very low-level format ter , and in the UNIX tra-
dition, it has been enhanced by the addition of separate filters tha t preprocess 
higher-level input into troff commands. Such filters include eqn [3, ch. 9] for 
mathematics , tbl [3, ch. 10] for tables, pic: [6, 35] for pictures, grap [7] for line 
graphs, and ideal [71, 72] for pictures. 

Most of these were developed at, AT&T Bell Laboratories, and are available 
in some, but not all, versions of UNIX, and are completely unavailable outside 
that, operating system, ideal was produced at, Stanford University where its 
author worked under the direction of Knuth, but was polished and released at 
AT&T Bell Laboratories. 

pic, grap, arid ideal are notewort hy in handling the common requirement of 
simple sketches of text, in boxes or ovals connected with lines with very little 
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effort f rom the author . However, they are all much more powerful, and can he 
used to prepare quite sophisticated diagrams. 

So far, little has been done in the TgX world to emula te these, grap is 
actually t rans la ted to pic, so only pic and ideal need to worry about t ransla t ion 
to typesetter codes. Since T^X can easily do anything t h a t troff can, there is no 
significant impediment to reimplementing grap, pic, and ideal in publ ic-domain 
Web code t h a t could make these valuable tools available to a wider community. 

PICTEX [68] and TgXtyl [54] seem to be the closest in spirit to these UNIX 
tools, but are only superficially similar. I do not have sufficient personal expe-
rience with them to comment on their relative power. 

11 Conclusions 
In this paper , I have surveyed several approaches to the incorporat ion of graphics 
in T^]X documents . No single solution emerges as a clear choice. 

The most desirable solutions retain device independence; this is possible 
only when the graphics primitives are implemented entirely with Tp]X macros, 
possibly suppor ted by fonts for primitive objects (as in IAT^X picture mode) or 
grey scale. 

If the graphics are generated by METAFONT programs, then font characters 
containing the graphics images are resolut ion-dependent , but can straightfor-
wardly be regenerated for any ou tpu t device resolution. 

With either of these approaches, no addi t ional suppor t f rom DVI drivers is 
needed. This means tha t it is possible to display DVI files on a screen with a 
suitable DVI driver, and see the graphics embedded with the typeset text . 

Less desirable approaches are to use special fonts to encode graphics primi-
tives, and \ s p e c i a l O commands for requesting graphics file inclusion, or out-
put of specified graphical objects. Both of these require changes to DVI drivers, 
and in the case of graphics file inclusion, require resolution of the messy issues 
of file fo rmat , and image positioning and scaling. DVI driver s tandard iza t ion 
efforts may assist in resolution of some of these problems, and may define a rec-
ommended syntax for the content of the \ s p e c i a l O strings, so t ha t different 
DVI drivers at least could be expected to do the same th ing with the request. 

I personally find extremely a t t ract ive the idea of little languages for graph-
ics typeset t ing, as discussed in the section Languages for Typesetting Graphics. 
Having new public-domain highly portable re- implementat ions of the existing 
work in this area would be extremely valuable. In the past , A T & T Bell Lab-
oratories has been willing to release some of their copious software production 
for free use elsewhere, subject, only to their retention of copyright. If someone 
wishes to s ta r t such a project,, then it would be a good idea to discuss the 
possibility of prior source code release with the relevant authors . 

It would also be advisable to discuss the project with the Free Software 
Foundation, in Cambridge, MA, whose goal is to produce a complete UNIX-like 
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operating system, called GNU, tha t will be freely available t.o all; they may 
already have work in progress on these languages. Interestingly, they use Tf,)X 
for all their documentat ion, and when their version of troff is completed, it will 
output DVI files, rather than old style C / A / T phototypeset.ter files, or ditroff 
output files. 

Finally, fur ther work is necessary on the problem of handling complex graphs 
that exceed TgX's (or METRFONT's) memory limitations. I have intentionally 
refrained from suggesting changes to either TfjX. or METAFONT, because I be-
lieve strongly that these programs must remain frozen if we are not to interfere 
with their widespread adoption. It is not clear whether modification of Tf]X 
output routines is a viable approach for handling large graphs, but it deserves 
to be further investigated by people who are intimately familiar with TgX macro 
programming. The output routines of Plain T^gX and M g X are fragile pieces 
of code, and changes to them must be made with great care if one is to avoid 
breaking the output of non-graphics pages. 

If, at some t ime in the future , Donald Knuth wants to implement upward-
compatible additions to TgX, then I would suggest tha t the following be con-
sidered: 

• a non-uniform rational B-spline curve primitive 

• grey-scale rules 

• selected graphics primitives f rom PostScript 

In the meantime, they can be added by suitable \special{} commands with 
support f rom DVI driver code. A properly-designed set of graphics macros could 
hide the \specialO commands entirely, so tha t later addition of their features 
in Tf]X itself could be handled without changes to any user documents. It would 
also give the chance for considerable experimentat ion about what a suitable set 
of graphics primitives for TgX might be, before they become hard-coded in TgX 
itself. 
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