
Cahiers
enbergGUTGUTGUT

m DRAWING TREE STRUCTURES WITH GWEZ
P Bernard Leguy

Cahiers GUTenberg, n 10-11 (1991), p. 135-146.

<http://cahiers.gutenberg.eu.org/fitem?id=CG_1991___10-11_135_0>

© Association GUTenberg, 1991, tous droits réservés.

L’accès aux articles des Cahiers GUTenberg
(http://cahiers.gutenberg.eu.org/),
implique l’accord avec les conditions générales
d’utilisation (http://cahiers.gutenberg.eu.org/legal.html).
Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

http://cahiers.gutenberg.eu.org/fitem?id=CG_1991___10-11_135_0
http://cahiers.gutenberg.eu.org/
http://cahiers.gutenberg.eu.org/legal.html

Cahiers GUTenberg n * 10-11 — Septembre 91

Drawing tree structures with GWEZ

Bernard LEGUY

Université de Lille Flandres Artois, laboratoire d'informatique fondamentale de
Lille, bâtiment MS, 59655 Villeneuve d'Ascq Cedex
l e g u y b f i l i f l . l i i l . f r

Abstract. GWEZ is a set of macros able to build tree structures and to draw
them; these macros aie written with TgX; they use only plain TfeJC commands
and fonts and can as well be used with I^TgX.

R é s u m é . GWEZ est un ensemble de macros permettant de construire des
structures arborescentes et de les tracer; ces macros sont écrites en T£K; elles
n'utilisent que des commandes et des polices de plain TfèK et peuvent aussi
bien être utilisées avec MTgX.

Key words: tree structures, program design, macros.

1. What kind of trees can we draw?

Tree structures are often used for describing a lot of hierarchical
organizations: a firm, a table of contents, genealogies, directories of disk
systems... Let us have a look at some examples shown in figure 1.

Figure 1. two trees.

When a tree is made of several nodes, one of them, usually above the
others, is called the root, or parent, or main node. That main node is linked
directly by straight lines to some other nodes which are put in a row under
it and called the children of the main node. The children are in fact the
roots of subtrees. These subtrees are said to depend on the main node: they

135

B. Leguy

program LCM

X
read a and b compute r = lcm(a, b) write r

(m a < mb}

Figure 2. a tiny program.

represent groups under the authority of the main node, offspring of the
parent, components of the root...

In L I L L E , we also use trees for the design of algorithms by stepwise top
down refinements. The figure 2 is an example of such a design for a tiny
problem in arithmetic. The main idea is that the children of any node are a
series of statements that achieves the action stated in the node. Some nodes
in round boxes like if and while represent the control structures we find in
most of the programming languages; the angle boxes contain the conditions
associated with them.

% read a and b
\message{a=?} \read-l to\answer \nencount\a \a\ansver
\message{b=?} \read-l tcAanswer \ne»count\b \b\anseer

X compute r • lan(a,b)
\nevcount\ma \na\a \newcount\nb \mb\b
\loop\if\ifnum\na-\mb01\.else00\f iX while a <> b

\ifnum\ma<\mb \advance\na\a \else \advance\nb\b \ f i \repeat
\newcount\x \r\»a

X «rite r
\nessage-ClcB(\the\a, \the\b)-\the\r>\bye

Figure 3. example of lcm program.

136

Drawing tree structures with GWEZ

The figure 3 is an example of translation of this algorithm1 in your favorite
programming language.

+ + + + 8

/ \ / \
+ + + 3 5 3

/ \ / \ / \ / \
+ + + 1 + 2 2 1 3 2

/ \ / \ / \ / \
+ 1 1 1 1 1 2 1

/ \

1 1
Figure 4. a series of trees.

As a last example, figure 4 is a series of trees representing arithmetical
expressions. The series begins with a Fibonacci tree; the other trees represent
different steps of the computation; the last step is a single Fibonacci number.

You can draw all these trees by using any wysiwyg system. But these
systems, very efficient at drawing simple geometric patterns, are unable to
understand the structure you are designing. So you have the tedious task of
drawing (sometimes by copying) every node and every link. It is just a little
more tedious if you want to have the nodes precisely aligned. Moreover, if
you want a style for your trees (I mean they will look the same and they will
be balanced in the same way), you have to be disciplined and trained at this
kind of drawing.

Unfortunately, things are often even worse. Imagine you have already
wasted a lot of time coping with the drawing, and you change your mind:
one node gets wider and you must make room for it! When this happens,
it is generally much more efficient to return to true wysiwyg: draw the new
node somewhere, print the whole thing on true paper, take true scissors and
glue and do the job in the old way. It will save a lot of time and keep you
from running out of patience!

' T h i s a lgo r i thm is not very efficient, i t would be much b e t t e r to compu te first t he gcd of a a n d
b , a n d t h e n mul t ip ly a b y the quo t ien t of b by t he gcd.

137

B. Leguy

2. Using T£jX for drawing trees

TpX, which is able to cope with a lot of structured documents, does not
provide any tool for trees. Fortunately, it is open to new ideas and the main
part of its power is its ability to learn. So, after some weeks (I had to learn
a lot about T£X before trying to control it), I was able to draw these trees
by simply describing their structures with a small set of commands which
are very close to the programs we write in usual programming languages.
The main idea is that the subtrees under a node are viewed as components
embedded in the node such as blocks in block structured languages. So the
tree of figure 2 is defined by the commands given in figure 5.

Ybegintree
Yblock program LCM!! 1, a block has children

\leafblock read a and b!! X a leaf has no children
\block compute r • lcm{a, b))!

\leafblock $ma\leftarrow a$!$mb\leftarrow b$!!
% two lines in one node!

\leafblock $ma\leftarrow ma + a$!! % then part
\leafblock $mb\leftarrow mb + b$!! % else part

\endif
\endblock

\endwhile
\leafblock $r\leftarrow na$!!

\endblock
\leafblock write r!!

\endblock % endblock is needed to know where is the last child
\endtree

The text we want to put in a node is ended with a double exclamation
mark2 . If the text is to be put on several lines, these lines are separated by
a single exclamation mark as in the second leaf in figure 5.

A single \begintree3 command is needed to draw several trees in a row
as shown in figure 1. In fact, these trees are orphan subtrees; ie, they are

2 exc lamat ion m a r k s a re not of ten used in trees, so it was a convenient marker .
3 A b e t t e r n a m e for the c o m m a n d would be b a g i n t r a a s , b u t mos t of the t ime we use it to draw

a single tree. Pe rhaps it would be b e t t e r to use t he b r e ton word gwez which is the collective name
for t ree or trees. B u t the word t ree proved to be unde r s tood by a few more people.

\while $ma\ne nb$! !
\block grow the smaller ! !

\ifblock $na < mb$! !

% while has a condition
f, and a single child
t, if nay have two children

Figure 5. Example of commands to draw a program tree.

138

Drawing tree structures with GWEZ

drawn as if they were under some parent node which had disappeared. The
node introduced by \comments has no box around its text and no link to its
parent (see figure 6).
\begintree

Yblock parent!!

\endblock
\block root!!

\block subtree 1!!
\leafblock leaf 1!!
\comments ...!!
\leafblock leaf n! !

\endblock
\leafblock last leaf!!

\endblock}
\endtree

\node $+$! !
\node $+$)!

\leaf 3 ! !
\leaf 2!!

\endnode
\leaf 3 ! !

\endnode

Figure 6. Example of commands to
draw two trees.

Figure 7. Commands for nodes without
boxes.

The nodes in figure 4 have links but no box, since they are defined by other
commands. The third tree of figure 4 is defined as shown in figure 7. The
commands \node, \endnode and \ l e a f act exactly like \b lock , \endblock
and \ l e a f b l o c k but no box is visible around them.

3. The way GWEZ stores trees.

The command \ b e g i n t r e e opens anew scope by the mean of a \beg ingroup
command; then it initializes some variables. Every command like \ b l o c k
builds an hbox which contains the text of the node, and then the node is
inserted in a complex structure.

The first part of that structure defines the tree structure. Each node has
seven fields defined by T^X registers:

• a box register t x t which contains the text of the node

• a dimen register pos which is the distance to the left margin

• two dimen registers dx and dy that define the link to the parent

• a count register f r r which is a pointer to the right sibling

• a count register nbf which is the number of children

• a token register typ which is the type of node.

139

B. Leguy

So, when we have a pointer to a node in a given structure, we can know
everything about it and its siblings to the right. Pointers are integers. The
first child of any node is introduced immediately after its parent, and its
pointer is one more than the pointer of its parent. So, from any node we can
determine its children without the need of a first child pointer.

Actually, the f r r register is a pointer to the next right sibling when the
node is not the last child of its parent. Otherwise, if the node has a right
cousin or grand cousin... at the same level (for example, in figure 1 'leaf 1'
is the right cousin4 of 'last one') then f r r is a pointer to this cousin with a
minus sign. In any row, only the last node has f r r equal to 0. In this way,
we are able to visit a whole row if we know the pointer to the node of that
row farthest to the left.

The second part of the structure is related to the rows of nodes. These
rows are numbered from one. For every row or level there are six fields:

• a count register p tn which points to the node which was the last visited
at that level. The stack of these registers is used as a tree cursor; when
we want to return to a node after having finished visiting its children,
we find a pointer to that node in p tn .

• a count register cpn used to count the children of the current node.

• a count register egn which points to the first node of that level.

• a count register edn which points to the current node of that level
farthest to the right.

• a dimen register pon which is the current width of the row.

• a dimen register epn which is the depth of that level; the nodes have
no height but only a depth, epn is useful to get the nodes aligned in a
row.

Only egn and epn are useful throughout the entire process. The other four
fields are useful only when the structure is being built. TgX does not provide
as many registers as we could hope, so we have to set a limit to the complexity
of the trees. By now, the number of nodes is limited to 50 and the number
of levels to 10.

Here is how pointers are used. Let the counter variable \ e be the number
of the current node. When the field pos of this node is to be used, it is

* Actually they are g rand 'g rand cousins ' if we r emember t h a t the i r g r andpa ren t s a re orphans
a n d supposed to have h a d the same d i sappeared pa r en t .

140

Drawing tree structures with GWEZ

\dei\nkptrfl{\c"#l\advance\c} % \c is a counter with many uses
\def\sptrpoB{\akptr\e50\diaendef\pos«\c>

Figure 8, example of macro to use pointers

convenient just to say \pos as if it were a dimension variable. In order to
get that , it is just necessary to call the macro \ s p t r p o s defined in figure 8.
The value 50 is there because the pos fields are (very arbitrarily) supposed
to be the dimension registers 51, 52,... (for the node i, the pos field is the
dimension register whose number is ¿ + 50). Other macros are defined in the
same way for the other fields.

parent root

first child second child third child ¡ubtree 1
grand child 1 grand child 2 last one leaf 1

last leaf

leaf n
Figure 9. two awfully packed trees.

When the commands describing the trees are finished, almost everything
is settled in these structures. But, the link dimensions dx and dy remain
undefined and the pos field which is intended to define the position of each
node in its row is just a left boundary of that position: the nodes are put
one after another in their row like hboxes in a line. You can think that the
nodes of the trees of figure 1 axe packed to the left as shown in figure 9, when
the \endtree command is reached. This macro is finished by an \endgroup
command.

4. The way GWEZ computes the positions of the nodes.

At first sight, we could proceed recursively: draw the subtrees of a node in
hboxes, put the row of hboxes in a single hbox, then put the node in the
middle of a line over that hbox, perhaps by using a vbox. But it would waste
a lot of space. For instance, the first tree of figure 1 would look like the one
in figure 10 and there would not be enough place for the second tree.

The algorithm presently used is not so easy. We begin with the next to
the last level and go upward, level after level until the first level is reached.
For every node at the current level, we try to put its subtrees at what we
consider to be their best place relative to their parent.

141

B. Leguy

Figure 10. one tree with wasted space.

The choice of the best place depends on the types of nodes. Let us
consider only plain nodes like those built by \b lock , \ l e a f b l o c k , \node or
\ l e a f . We choose to have the subtrees of a node as tight as possible without
overlapping. The best place for the middle of the node is at a point at an
equal distance from the middle of the first child to the middle of the last one.
This gives well balanced trees even when subtrees have very different widths.
(Convince yourself by looking at figure 4.) When we begin this process, the
nodes are packed to the left with a standard small space between them. We
can say that they are not too far towards the right, and we will proceed as
if they were never too far towards the right. This is almost always true and
it avoids left-shifting.

parent root

first child j second child third child subtree 1 last leaf
grandchild 1 grandchild 2 last one [leaf 1 ••• leaf n

Figure 11. when first child has been processed.

If the node is too far to the left, we just have to shift it to the right
until it reaches its best place. But doing so, it will overlap its right siblings
or cousins, and we will have to shift them by the same amount. We need
not be aware of the subtrees of these siblings or cousins. In any case they
are not already at their best places and will be visited later. The figure 11
shows what we get after applying this process to the 'first child'. The 'second
child' needs no processing because it has no children. Then either the 'third
child' is too far to the right, or its child is too far to the left; so the child
is shifted to the right as shown in figure 12. The 'subtree 1' is processed in
the same way as 'first child' and, 'last leaf' having no child, the processing
of the second level is finished as shown in figure 13.

Unfortunately, when the node is too far to the right, the shifting of its
children is quite time consuming because we have to shift to the right all the

142

Drawing tree structures with GWEZ

parent root

first child second child

grandchild 1 grandchild 2

third child

last one

subtree 1

leaf 1

last leaf

leaf n
Figure 12. When first and third children have been processed.

parent root

first child second child

grandchild 1 gram Jchild 2
Figure 13. T

third child

last one

subtree 1

leaf 1

last leaf

leaf n
xe second level has been processed.

nodes that are to the right of the first child, and recursively, the first grand
child and all the nodes to its right, and so on...

first child

grandchild 1 grandchild 2

parent

second child

root

third child subtree 1 last leaf

last one leaf 1 ... leaf n
Figure 14. Every level has been processed

When every node of every level has been processed up to the last node of
the first level, the nodes are at their best places and the trees are (almost)
as narrow as possible.

At this point we can compute the links (ie dx and dy). The process ends
with the output of the result, which is done one row at a time by using the
t x t fields, which are hboxes, and by putting kerns between them. The links
are also drawn between two rows of nodes.

5. When the result is not what we expected.

When a node has more than two children, nothing is stated about the
positions of the subtrees that are between the first child and the last one.
Actually, they are close to the first one. Sometimes it does not look as good
as we would like. We can improve the tree by introducing void comments
that contain only a kern or an hskip. We can also make use of the \espace
command which takes a one dimension parameter (the width of the blank
space inserted). It would be better if GWEZ could manage \hf i l , but it
would probably be much more time consuming.

143

B. Leguy

\begintree
\block program LCM! !

\leafblock read a and b! !
\block compute r • lcm(a, b)!!

\espace{6mn}
\leafblock $ma\leftarrow a$!$mb\leftarrow b$!!
\vhile $ma\ne mb$!! ...

Figure 15. change in a tiny program.

After a close look at the tree in figure 2, we notice that there is a gap at
the left of the 'while1 node. This gap occurs because the first time that the
position of that node is computed, the condition 'ma ^ mb' as well as the
left sibling of 'while' are against the left margin. The 'while' node has to
be shifted to the right until its center is vertically aligned with the center of
the node representing the action of the 'while'; then a gap is made between
the 'while' node and its left sibling. When the parent of the 'while' node
is processed, its subtrees are shifted all together to the right and the gap is
never removed. We can avoid or reduce that gap by inserting a blank space
to the right of the row (see the change in commands figure 15 and the new
tree figure 16). Some of these adjustments could be avoided by revisiting

Figure 16. a better looking tiny program.

the tree. But it is not sure that it will always work. Moreover, there are the
points that it would be quite time consuming, that adjustments are easy to
make, and that the trees are often quite acceptable without any adjustment.

144

Drawing tree structures with GWEZ

6. Graphics drawing with T£jX

The drawing of rectangular boxes is easy and well known. The round boxes
are built with hrules and parentheses. The boxes with angles which are used
for the conditions of 'while' and ' if ' are more difficult to draw because left
and right angles cannot be very high with plain TgX; such angles are built
by the repeated use of slashes and back slashes.

\def\linetopoints{\kern\dtx
\vrule width\dempt height\ph depth\pb X one point
\advance\ph\dty \adsance\pb by -\dty \advance\c by -1
\ifnum\c>0 \let\next\linetopointB \else \let\next\relax \fi \next}

Figure 17. macro to draw a line.

Another difficulty arises in line drawing. In a tree we can find a lot of links.
We can say nothing about their slopes, which inhibits the use of the picture
environment of I^TgX. Moreover, the lines have to fit with the rules used
for boxes. The figure 17 is the main part of the line drawing macro used by
GWEZ. It makes use of the following variables.

• dempt is the dimension of the points used to draw lines (0.5pt).
• dtx is the space to put between points (may be negative).
• dty is the vertical shift from one point to another.
• c is the number of points needed for the line.

Before calling \ l i n e t o p o i n t s the registers have to be set to values
depending on the line we want to draw. This is done by direct computation.
Actually, the result of \ l i n e t o p o i n t s is put into an hbox whose width,
height and depth are zero. This line drawing is a little slow and space
consuming, but I was unable to find any better way.

7. Conclusion

The present version of GWEZ was built piece after piece; the design was
overly imposed by our peculiar program trees. So the structure of the whole
is quite odd. But it works, we use it and, by using it, we get new ideas about
the next version5. Actually, GWEZ can be run with plainT^X and M g X on
a SUN without any problem. On a PC, it works with T^X; but with M j j X ,

5 I f you wish to t ry i t , I can send it t o you by email .

145

B. Leguy

the TjrX capacity is often exceeded because GWEZ uses a lot of registers and
runs out of save size. For instance, the present article is proceeded easily on
a SUN but not on a PC. However, if I have time to learn more about T^jX,
I think the next version will be better and less space gready.

One could be doubtful about the usefulness of writing everything in TEX.
I tried to import drawings from other systems. But it does not work on every
computer (the command \ s p e c i a l has different uses when it works). In the
trees, there is a lot of text and it does not look nice when the fonts are not
TfcX fonts. Moreover, the number of operations needed is greater: (draw the
tree, put the special command, make room in the document...). In case of
any change in trees or text, we have to reconsider the whole process (more
room may be needed). In any case, other drawing systems do not give any
efficient help in drawing trees. GWEZ is completely portable; it needs only
plain T^X and you can use screen drivers and dot printers.

What is lacking most in TgX is simple drawing capabilities. First of all,
lines of any slope and any thickness: almost anything else could be made
easily with them. It seems that the idea of using a post-processor on dvi
files could be a good one. Another way could be to build a M E T R F O N T file
that would define a new font with characters having size zero; each new
line drawing could add a new character definition in that file and put that
character in the text processed by TEX. After the end of the process, we
could ask to M E T R F O N T 6 to process the new created file and build the font
which could be used by the output drivers.

References
[Hendrickson90] Amy HENDRICKSON, "Getting TgXnica]: Insights into TEX Macro

Writing Techniques", TUGboat, Volume 11 (1990), No. 3 - Proceedings of the 1990
Annual Meeting.

[01ejniczak-Burhert89] Rolf OLEJNICZAK-BURHERT, "iexpic — Design and Implementa-
tion of a Picture Graphics Language in T£X a la pic", TUGboat, Volume 10 (1989),
No. 4 — 1989 Conference Proceedings.

[Rogers89] David F. ROGERS, "Computer Graphics and TfeX — A Challenge", TUGboat,
Volume 10 (1989), No. 1, pp. 39-44.

[Wilcox89] Patricia P. WILCOX, "METAPLOT, Machine Independent Line Graphics for
T^X", TUGboat, Volume 10 (1989), No. 2, pp. 179-187.

6 o r p e r h a p s some specific p r o g r a m , b e c a u s e d r a wi ng s imple l ines d o e s n o t requires the whole
power of METRFONT.

146

