
Cahiers
enbergGUTGUTGUT

m AN INTERNATIONAL VERSION OF
MAKEINDEX
P Joachim Schrod

Cahiers GUTenberg, n 10-11 (1991), p. 81-90.

<http://cahiers.gutenberg.eu.org/fitem?id=CG_1991___10-11_81_0>

© Association GUTenberg, 1991, tous droits réservés.

L’accès aux articles des Cahiers GUTenberg
(http://cahiers.gutenberg.eu.org/),
implique l’accord avec les conditions générales
d’utilisation (http://cahiers.gutenberg.eu.org/legal.html).
Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

http://cahiers.gutenberg.eu.org/fitem?id=CG_1991___10-11_81_0
http://cahiers.gutenberg.eu.org/
http://cahiers.gutenberg.eu.org/legal.html

Cahiers GUTenberg n " 10-11 — Septembre 91

An International Version of Makeindex
Joachim SCHROD

Technical Universiiy of Darmstadt, Institut für Theoretische Informatik
Alexanderstraße 10, W-6100 Darmstadt, FR Germany
Email: x i t i j sch®ddathd21 .bitnet

Abstract.
Makelndex is a powerful, portable, index processor which may be used

with several formatters. But it is only usable for English texts; non-English
texts - especially with non-Latin alphabets, like Russian, Arabic, or Chinese -
may not easily be worked on. The tagging of index entries is often tedious and
errorpione: If a markup is used within the index key, an explicit sort key must
be given. A new version of Makelndex is presented which allows the automatic
creation of sort keys from index keys by user specified mappings. This new
version does support documents in non-Latin alphabets. Furthermore it needs
less main memory than the former one, and may now be used for large indexes
even on small computers.

R é s u m é . Makelndex est un logiciel d'indexation puissant et portable,
utilisable par plusieurs formatteurs. Mais il n'est réellement utilisable que
pour les textes anglais, car il n'est pas très facile de lui faire traiter les textes
écrits dans une autre langue - plus spécialement avec des alphabets non-latins,
comme le russe, l'arabe ou le chinois. Le placement des entrées de l'index est
souvent pénible et inducteur d'erreurs : si une entrée de l'index utilise un code
de balisage il faut explicitement donner une clef de tri. Cet article présente
une nouvelle version de Makelndex gui permet la création automatique des
clefs de tri en utilisant les règles de correspondance définies par l'utilisateur.
Cette version résoud le problème des alphabets non-latins. Utilisant moins de
mémoire que la version précédente, elle peut donc traiter de plus gros index,
même sur des petites machines.

K e y words: index, non-english index generation, international usage of
TEX, Makelndex.

1. The Existing System

One of the most important things in a well written document is a good index.
One of the most tedious work to do is the creation of a good index. Since
the research on the automatic generation of indexes did not yield software
systems for the general usage, the index entries must still be marked by

81

J. Schrod

humans. But the processing of these entries: Association with page numbers,
sorting, and producing a final form, may be done by computers.

For the scope of this paper we assume the usage of a markup system with
tags by the author. (For a classification of markup systems see Coombs et
al. [2].) Furthermore we assume that there is an interpreter for the tags
available which produces a typeset, i.e. formatted, document. Examples
of such systems are T^X, t r o f f , Scribe, and SGML with an associated
formatter. Then the index markup may be - and often is - incorporated
into the usual text markup. The formatter may then output the raw index,
1.e., the information on which pages the index entries are placed. The raw
index may be sorted, polished, and transformed to a tagged index by an
index processor. The tagged index will be an input for the formatter again
thus producing the final index.

Makelndex [L] is such an index processor. It was written by Pehong C H E N

and Michael A. H A R R I S O N , later on the portability was improved by Nelson
B E E B E . Makelndex is not bound to any formatter, it may be adapted to
different systems. This adaption is done in a so-called index style file. There
a user may specify how the syntax of the raw index file will be and what
tags should be used for the output.

The transformation from raw to tagged index done by Makelndex is not
only a sorting process: It involves merging of page numbers for an index
entry and subentry handling. At the end of the run all entries are grouped
in letter groups containing all entries that start with a given letter. Entries
starting with a non-letter are put into a special group.

Makelndex was created with the intention "to build a complete system
by analyzing the tasks involved in index processing" [1]. Well, they almost
succeeded - for authors writing English documents.

2. The Problem

Of course the index markup should be as convenient as possible: It should
allow other markups within the index entries, i.e., for the creation of symbols
and logos, or for the specification fonts to be used for the later formatting. It
should not be necessary to specify the sort order for markups anew for each
index entry. Such markups fed into Makelndex are quite often not exotic
symbols but just national letters, like German umlauts, the French cedille,
etc. Such national letters may be input as non-ASCII (or non-EBCDIC)

82

f

International Makelndex

letters, too. The user expects them to be properly ordered as his language
needs it.

Makelndex does not know anything of markups within entries or of
national letters. It handles this problem with a workaround: It allows to
attach a sort key to an index entry. This sort key is used for sorting; merging
is controlled by the printed index entry. So an author can specify where its
index entry should be placed. Of course this method is error-prone: One
may easily forget the sort key or may misspell it. The author might even
not consider that he must specify a sort key, his national letters are nothing
special to him. (In the case of national letters - say coded in ISO Latin-1 -
the sort order is completely machine-dependent and may not be relied on.)

Or the index entry is not produced by hand after all; other (higher level)
markups may output entries as it is senseful. Furthermore specification of a
sort key may clutter the input unnecessary if there is no special structured
editor available which may hide the index entries. This is a point which is
often underestimated: An input must be readable per se. It will be changed,
and a structured and readable input helps to find the places where the change
shall happen.

But for the usage of Makelndex for non-English documents problems arise
even with this workaround. It's obvious for languages that don't use Latin
characters, like Russian, Chinese, or Arabic. There the author must specify
a sort key for every index entry, which is of course not acceptable. But even
with other European languages it's problematic: The sort order differs (e.g.,
where are the digits to be placed?), and is sometimes not consistent within
one language. An example for this are the German umlauts. The standard
DIN 5007 states that they are sorted like the corresponding vowel with a
following 'e'. I.e., 4a' is sorted like *ae\ But in phone books the umlaut is
just sorted like the vowel, i.e., 'a ' is sorted like 'ae\ This leads to the case
that even for languages like German or French a sort key must be specified
for almost every index entry.

As this was (and is) not usable, Andreas B R O S I G added a patch to
Makelndex, implementing the German DIN sort order. Now we could
have add a lot of other patches, for every language anew, but this was
not desireable. Needed is a generalized approach that enables the easy
specification of different sort orders and the usage of arbitrary markups
within index entries.

83

J. Schrod

Still unsolved was the problem that the creation of letter groups is
language dependent, as every language (or even every document) might
decide in an other way what a "letter" is. Non-English languages might
want to add other letters - sometimes specified as markups - which shall
make up a new letter group.

An other problem does not address the functionality. Makelndex uses too
much main memory. Therefore a medium sized index may not be processed
on systems with little memory. But a lot of authors use IBM PCs running
MS-DOS and have only 640 KB available there. So the usage of Makelndex
was discouraged for a wide - if not for the widest - range of potential users.

Besides the problems explained above there is another inconvenience:
One is not able to share parts of index styles. That lowers the reusability
enourmously. E.g., there is a part of the style which describes the basic
TgX markups and another part which describes the markups for a special
macro package. If one skips to another macro package one has to rewrite the
complete style, an automated inclusion of work already done is not possible.

3. A First Approach for an International Makelndex

After analyzing the problems outlined in the previous section I decided to
enhance Makelndex to become an international version. Such a new version
would not support multi-linguality, i.e., it assumes that the language is the
same for all indexes processed in one run. A multi-lingual Makelndex would
not be of much use: Foreign words written in the same alphabet should be
sorted in the order of the base language. How words written in an other
alphabet are to be sorted is a problem of its own, the transliteration must
often be chosen on a per document basis. If a document has really different
parts written in different languages than it's best to create an index for every
part. Of course, an international Makelndex may be used for each of those
indexes.

It was clear from the beginning that the first version would not be the
final one. It was just created for checking the methods which I will describe
below. So only the problems of different languages and markups within one
index entry were addressed. All other problems were postponed.

The idea in principle is simple: An index entry consists of the index key
and the explicit sort key, the last may be missing. Sorting is done by the

84

International Makelndex

sort key, which is either the explicit sort key - if available - or which is
generated from the index key. This generation is done by a key mapping. In
the former Makelndex this mapping was just the identity, in the new version
the mapping may be specified by the user in the index style file.

The mapping is just a description how parts of an index key are
transformed to parts of the created sort key. The part of the index key is
specified by a UNIX-style regular expression (often called pattern or regexp).
The created part of the sort key is a string with up to nine variable parts,
parenthesized subexpressions from the index key pattern are inserted there.
If there are several patterns matching on a part of the index key the longest
one is taken. If there are several of the same length the one specified first in
the index style file is taken.

As an example consider the mapping

It's a part of a mapping for the TjrX typesetting system with the Plain
macro package for German texts with some French words in between. The
line numbers are only given for references, they are not part of the mapping
specification. Line 1 specifies that a German umlaut (input as and the
corresponding vowel) will be sorted as specified by DIN, i.e., as the vowel
(the first parenthesized subexpression in the pattern) with a following 'e'.
Line 2 ignores all French accents. Line 4 specifies that the TfjX grouping
symbols and math shift symbol are to be ignored. But this is wrong if they
are to be typeset, therefore we add line 3. The order of that two lines would
not matter as the rule given in line 3 is longer than those of line 4, and would
therefore take precedence anyhow. Line 5 ignores all accents which were not
output properly to the raw index by the macro package.

I hope that this gives an impression how powerful such a specification
might be - at least at first glance.

A basic sort function was defined: The printable ASCII characters are
divided into two classes, letters and other characters. Letters are sorted case
insensitive. The other characters are sorted according to the ASCII order.
Two special characters are available in addition, \b and \ e . The first one is a

\ " ([aouAOU]) t-f \ l e

\ [" -] (.) ~ U
\ (C O $]) ~ M

(1)

(2)

(3)
(4)
(5) \ a c c e n t u " •-u u • • u

85

J. Schrod

character which comes before all other characters in the alphabet, the second
comes after. These new characters are needed for inserting new characters
on arbitrary places.

With these concepts realized we made first positive results. But we were
not satisfied:

• Non-ASCII characters were still not supported. This is especially bad
with the usage of T^X 3 which now supports such characters.

• The above approach addresses only two of the outlined problems,
different languages and markups inside index entries. But to be honest
it solves only the last; different languages are only supported in so far
as this problem may be tackled by markups.

• One could not specify how letter groups are to be built. This is
especially bad for languages based on non-Latin alphabets, like Russian,
Greece, or Chinese.

• What if the generated sort key, i.e., the result of the key mapping
contains a national letter or a symbol. Its translation to ASCII
characters must be specified immediately and might not be postponed
until later. This means, e.g., that if a generated sort key should contain
a German umlaut the chosen sort order must be known during the
creation of the sort key. One cannot just create the German umlaut
and look later how to sort this national letter.

• A similar problem arises because the author may still specify an explicit
sort key. If this sort key should contain a German umlaut, how should
it be input? The convenient way would be its markup form or just as a
non-ASCII letter. The existing (and unconvenient) way was the input
in its converted form - but the author often did not know what the
converted form will be!

• Furthermore an open problem was still the merging of several index
entries. What is the criterion to decide if they are equal? The index key
or the sort key? The usual way was the index key. But the creation of
two index entries containing the same index key, tagged in two different
ways, is possible and sometimes not under the control of the user. This
happens if the index is created partly automatically and partly "by
hand."

86

International Makelndex

4. International MakeJndex, Revisited

The mapping between index keys and generated sort keys is clearly too
inflexible. A better way is to split this mapping into two mappings: The
first one handles all imbedded markups in index keys and the second is
responsible for the correct sort order.

So let's summarize the concept: A merge key is generated from the index
entry. Either it is the explicit sort key given by the user (if such does exist) or
it is mapped from the index key. This mapping is called the merge mapping.
Afterwards the merge key is transformed into the final sort key by the sort
mapping. This final sort key consists solely of printable ASCII characters
and of the characters \b and \ e . Sorting on these characters is done strictly
according to the ASCII coding. On the result letter groups are identified by
prefixes. Each prefix Tesembles a letter (or a letter class) in an alphabet.

As the name merge key implies, the decision if two index entries are the
same is now based on this key instead on the index key. If two index entries
with two different index keys will have the same merge key it is undefined
what index key will be used for the tagged index.

Both mappings, the merge and the sort mapping, are described in the
index style file by rules like those explained in the previous section. A rule
consists of a keyword (mergejrule for the merge mapping and s o r t j r u l e for
the sort mapping), a string with the pattern which describes on what index
keys this rule should be used, and a string describing how the resulting key
should be. In the description of the last string up to nine subexpressions
from the pattern may be inserted.

A merge key may be mutable or immutable. If it is mutable the merge
mapping will be applied again thus yielding a new merge key. The user
who has specified the mapping is responsible that this evaluation will not
result in an endless loop. An immutable merge key is not transformed any
further. By default rules in the merge mapping produce immutable keys,
transformation rules must be specially marked to create a mutable key. The
mark is an asterisk preceding the output string.

Please note that the user is responsible for the fact that non-ASCII
characters are not allowed in the final sort key. I.e., they must all be filtered
out by the sort mapping.

A letter group is identified by a common prefix. This prefix is announced
by a rule in the index style file consisting of the keyword sor t -group, a

87

J. Schrod

pattern describing the prefix, and a group number. If this group number
does not equal zero then group heads may be output for this group. Usually
a group head consists of the prefix determining this group. This might be
changed by a rule consisting of the keyword group head, the group number,
and a string which shall be taken as the group head. If group heads are
output to the tagged index after all, is controlled by the flag headings_f lag.

It must be emphasized that two incompatibilities to the former Makelndex
version were introduced: (1) Merging is now controlled by the merge key
and not by the index key. (2) An index style file is now needed in any
case as the pure ASCII sort order is of no use. The first incompatibility
is not so important as different index entries shall have different merge
keys - they would be sorted the same otherwise. The second is more
a point of convenience as standard index styles are available. Style files
may include each other and are searched by an environment variable (or
something similar) if the operating system provides such. The most tedious
thing is that the author of an index style must remember that he should
usually include a standard style which lays down the basics for the chosen
formatting system and the used language.

5. Fine Tuning and Cleanup Actions

When the implementation was finished we tested my approach with some
"real-life examples": The biggest ones were an index for a manual on a
DVI driver family, an index for a IATj?X tutorial, and an index for a course
on concrete mathematics. Especially the last one showed the reasonability:
There were index (sub-)entries consisting of formulas - but we needed neither
an explicit sort key in any index entry nor any speciaJ rule which was just
introduced for only one index entry.

But we discovered two big disadvantages: Our new Makelndex was much
slower (by a factor of 3) and it needed more main memory (about 50 %).
The increasing memory requirements were at least unsatisfying, the old
Makelndex was already too large for small systems without virtual memory.
So Makelndex needed some fine tuning.

Looking at the code we discovered that for every index entry two keys
were stored in a fixed length array. Besides the wasted space it set an limit
for the maximum length of an index. Now each string is allocated seperately

88

International Makelndex

with just the space it needs. Furthermore each string is only stored once;
many entries may point to the same string. This reduced the amount of
memory for large indexes by magnitudes. Now one may process them on
small DOS PCs, too.

Simple, but common, cases in the mappings (e.g., patterns without
variable parts) are now treated specially. The linear search for a keyword of
the index style was replaced by a hash table with a perfect hash function.1

The style file scanner was completely rewritten; it is now only a third of size,
the code structure is cleaner, and it is faster.

All changes resulted in a final version which needs less memory than
the original one, and is at least as fast. (The performance depends on the
amount of rules for the mappings.)

Since we had changed large parts of the system, we had to tackle the
portability again. We decided to throw away all parts which substitute
statements according to the used operating system respectively the used
compiler. Instead we added a configuration file which describes the features
of the target system and this may be used for the implementation later on.
The configuration file is based on Larry W A L L ' S Configure script; there
exists already a lot of such configurations for other software systems which
will be a good start for a new target system. This resulted in a noticable
degree of code size.

6. Availability and Distribution

The resulting is system is called Make Index, Version 3.0. It is free software
and available under the conditions of the GNU General Public License.
Commercial companies should notice that they may sell it; they only must
provide the source to their costumers (and their costumers can give it away
for free). At the time of the conference Makelndex 3.0 will be available "from
all good TjjpC archives."

Now, at the time of writing, Makelndex is tested on different UNIX
systems (BSD, System V, AIX, and XENIX flavours), MS-DOS PCs, and
VAX VMS. Test for EBCDIC mainframes will be done at the time of the
conference. Other machines will be supported then, too.

l T h i s function is generated by gp«rf , the perfect hash function generator of the GNU project.
This program is available freely. So new keywords may be still introduced easily, we do not depend
on proprietary software.

89

J. Schrod

7. Open Problems and Future Works

Although we have tackled quite a few problems successfully, Makelndex 3.0
is far from perfect. Just to name some open problems still waiting for
volunteers: The scanner for the raw index file should be rewritten completely
(I don't want to offend the author of this piece of the source - but it's flawky
and bad written.) Perhaps it would be nice to allow for different types of
index entries within the raw index. This would help to create different
indexes out of the raw index (e.g., a person and a subject index, or indexes
with two different languages) and would lower the amount of created/needed
files for one TgX run.2

Acknowledgments

First of all I want to thank Gabor H E R R who did most of the coding. He
implemented all my specifications very quick and very carefully. The first
positive feedback on my first ideas I got at a discussion at EuroTf?X90 in
Cork which pushed me forward starting the work. Klaus GUNTERMANN

made a lot of helpful comments. And last, but not least, Christine D E T I G

was there to discuss whole evenings on the possibilities not outlined in this
articles; "possibilities" which did not last longer than an evening.

References

[1] Pehong CHEN and Michael A. HARRISON, "Index preparation and processing",
Software: Practice and Experience, Vol. 19, No. 9, September 1988, pp. 897-915.

[2] James COOMBS, Allen RENEAR, and Steven DEROSE, "Markup systems and the future
of scholarly text processing", Communications of the ACM, Vol. 30, No. 11, November
1989, pp. 933-947.

2 Please note the latter argument is a non-technical issue (for the system the amount of files
should not matter) - but a lot of "plain users" are irritated if a bunch of files are created, and
they do not know what good the files are for. For a survey of the used files see my article "The
Components of TfeX," published in Baskerville and in T^Xline.

90

