
Cahiers

O

m MKIV HYBRID TECHNOLOGY
P Hans Hagen

Cahiers GUTenberg, n 56 (2011), p. 182-300.

<http://cahiers.gutenberg.eu.org/fitem?id=CG_2011___56_182_0>

© Association GUTenberg, 2011, tous droits réservés.

L’accès aux articles des Cahiers GUTenberg
(http://cahiers.gutenberg.eu.org/),
implique l’accord avec les conditions générales
d’utilisation (http://cahiers.gutenberg.eu.org/legal.html).
Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

http://cahiers.gutenberg.eu.org/fitem?id=CG_2011___56_182_0
http://cahiers.gutenberg.eu.org/
http://cahiers.gutenberg.eu.org/legal.html

MkIV Hybrid Technology
Hybridní technologie MkIV

Hans Hagen

Abstract: The paper presents development, new features and tools of
LuaTEX and ConTEXtMkIV.

Key words: LuaTEX, ConTEXtMkIV, Mark II, Mark IV.

Abstrakt: Příspěvek představuje rozvoj, nové vlastnosti a nástroje LuaTEXu
a formátu ConTEXt Mark IV.

Klíčová slova: LuaTEX, ConTEXtMkIV, Mark II, Mark IV.

References
[1] LuaTEXhome page. Available at URL: http://www.luatex.org/
[2] The Programming Language Lua. Home page.

Available at URL: http://www.lua.org/

pragma (at) wxs (dot) nl
PRAGMA ADE, Ridderstraat 27

8061GH Hasselt, The Netherlands

182 doi: 10.5300/2011-2-4/182

100 100

100 100

2 Introduction

Introduction

We're halfway the development of LuaTEX (mid 2009) and substantial parts
of ConTEXt have been rewritten using a mixture of Lua and TEX. In another
document, “ConTEXt MkII--MkIV, the history of LuaTEX 2006--2009”, we have
kept track of how both systems evolved so far1. Here we continue that story
which eventually will end with both systems being stable and more of less
complete in their basic features.

The title of this document needs some explanation, although the symbols on
the cover might give a clue already. In ConTEXt MkIV, as it is now, we mix
several languages:

• good old TEX: here you will see {} all over the place
• fancy MetaPost: there we use quite some ()

• lean and mean Lua: both {} and () show up a lot there
• unreadable but handy xml: immediately recognizable by the use of <>

As we use all of them mixed, you can consider MkIV to be a hybrid system and
just as with hybrid cars, efficiency is part of the concept.

TEX

XML

MetaPost

ConTEXt PDF

UTILITIES

LUA

In this graphic we've given Lua a somewhat different place than the other three
languages. First of all we have Lua inside TEX, which is kind of hidden, but
at the same time we can use Lua to provide whatever extra features we need,
especially when we've reached the state where we can load libraries. In a sim-
ilar fashion we have utilities (now all written in Lua) that can manage your
workflow or aspects of a run (the mtxrun script plays a central role in this).

The mentioned history document was (and still is) a rather good testcase for
LuaTEX and MkIV. We explore some new features and load a lot of fonts, some
really large. This document will also serve that purpose. This is one of the

1
Parts of this have been published in usergroup magazines like the Maps, TugBoat, and con-
ference proceedings of EuroTEX and tug.

100

183

101 101

101 101

Introduction 3

reasons why we have turned on grid snapping (and occasionally some tracing).

Keeping track of the history of LuaTEX and MkIV in a document serves several
purposes. Of course it shows what has been done. It also serves as a reminder
of why it was done that way. As mentioned it serves as test, both in functionality
and performance, and as such it's always one of the first documents we run
after a change in the code. Most of all this document serves as an extension
to my limited memory. When I look at my source code I often can remember
when and why it was done that way at that time. However, writing it down
more explicitly helps me to remember more and might help users to get some
insight in the developments and decisions made.2

Of course, although I wrote most of the text, this document is as much a reflec-
tion of what Taco Hoekwater and Hartmut Henkel come up with, but all errors
you find here are definitely mine.

Hans Hagen, Hasselt NL,
September 2009 and beyond

http://www.luatex.org

2
I read a lot and regret that I forget most of wat I read so fast. I might as well forget what I wrote
so have some patience with me as I repeat myself occasionally.

101

184

102 102

102 102

4 The language mix

1 The language mix

During the third ConTEXt conference that ran in parallel to EuroTEX 2009 in
The Hague we had several sessions where MkIV was discussed and a few up-
coming features were demonstrated. The next sections summarize some of
that. It's hard to predict the future, especially because new possibilities show
up once LuaTEX is opened up more, so remarks about the future are not de-
finitive.

1.1 TEX
From now on, if I refer to TEX in the perspective of LuaTEX I mean “Good Old
TEX”, the language as well as the functionality. Although LuaTEX provides
a couple of extensions it remains pretty close to compatible to its ancestor,
certainly from the perspective of the end user.

As most ConTEXt users code their documents in the TEX language, this will re-
main the focus of MkIV. After all, there is no real reason to abandon it. However,
although ConTEXt already stimulates users to use structure where possible and
not to use low level TEX commands in the document source, we will add a few
more structural variants. For instance, we already introduced \startchapter

and \startitem in addition to \chapter and \item.

We even go further, by using key/value pairs for defining section titles, book-
marks, running headers, references, bookmarks and list entries at the start
of a chapter. And, as we carry around much more information in the (for TEX
so typical) auxiliary data files, we provide extensive control over rendering the
numbers of these elements when they are recalled (like in tables of contents).
So, if you really want to use different texts for all references to a chapter header,
it can be done:

\startchapter

[label=emcsquare,

title={About $e=mc^2$},

bookmark={einstein},

list={About $e=mc^2$ (Einstein)},

reference={$e=mc^2$}]

... content ...

\stopchapter

Under the hood, the MkIV code base is becoming quite a mix and once we have

102

185

103 103

103 103

The language mix 5

a more clear picture of where we're heading, it might become even more of a
hybrid. Already for some time most of the font handling is done by Lua, and
a bit more logic and management might move to Lua as well. However, as we
want to be downward compatible we cannot go as far as we want (yet). This
might change as soon as more of the primitives have associated Lua functions.
Even then it will be a trade off: calling Lua takes some time and it might not
pay off at all.

Some of the more tricky components, like vertical spacing, grid snapping, bal-
ancing columns, etc. are already in the process of being Luafied and their
hybrid form might turn into complete Lua driven solutions eventually. Again,
the compatibility issue forces us to follow a stepwise approach, but at the cost
of (quite some) extra development time. But whatever happens, the TEX input
language as well as machinery will be there.

1.2 MetaPost
I never regret integrating MetaPost support in ConTEXt and a dream came true
when mplib became part of LuaTEX. Apart from a few minor changes in the
way text integrates into MetaPost graphics the user interface in MkIV is the
same as in MkII. Insofar as Lua is involved, this is hidden from the user. We
use Lua for managing runs and conversion of the result to pdf. Currently
generating MetaPost code by Lua is limited to assisting in the typesetting of
chemical structure formulas which is now part of the core.

When defining graphics we use the MetaPost language and not some TEX-like
variant of it. Information can be passed to MetaPost using special macros
(like \MPcolor), but most relevant status information is passed automatically
anyway.

You should not be surprised if at some point we can request information from
TEX directly, because after all this information is accessible. Think of some-
thing w := texdimen(0) ; being expanded at the MetaPost end instead of w :=

\the\dimen0 ; being passed to MetaPost from the TEX end.

1.3 Lua
What will the user see of Lua? First of all he or she can use this scripting
language to generate content. But when making a format or by looking at the
statistics printed at the end of a run, it will be clear that Lua is used all over
the place.

So how about Lua as a replacement for the TEX input language? Actually, it is
already possible to make such “ConTEXt Lua Documents” using MkIV's built

103

186

104 104

104 104

6 The language mix

in functions. Each ConTEXt command is also available as a Lua function.

\startluacode

context.bTABLE {

framecolor = "blue",

align= "middle",

style = "type",

offset=".5ex",

}

for i=1,10 do

context.bTR()

for i=1,20 do

local r= math.random(99)

if r < 50 then

context.bTD {

background = "color",

backgroundcolor = "blue"

}

context(context.white("%#2i",r))

else

context.bTD()

context("%#2i",r)

end

context.eTD()

end

context.eTR()

end

context.eTABLE()

\stopluacode

Of course it helps if you know ConTEXt a bit. For instance we can as well say:

if r < 50 then

context.bTD {

background = "color",

backgroundcolor = "blue",

foregroundcolor = "white",

}

else

context.bTD()

end

context("%#2i",r)

context.eTD()

104

187

105 105

105 105

The language mix 7

And, knowing Lua helps as well, since the following is more efficient:

\startluacode

local colored = {

background = "color",

backgroundcolor = "blue",

foregroundcolor = "white",

}

local basespec = {

framecolor = "blue",

align= "middle",

style = "type",

offset=".5ex",

}

local bTR, eTR = context.bTR, context.eTR

local bTD, eTD = context.bTD, context.eTD

context.bTABLE(basespec)

for i=1,10 do

bTR()

for i=1,20 do

local r= math.random(99)

bTD((r < 50 and colored) or nil)

context("%#2i",r)

eTD()

end

eTR()

end

context.eTABLE()

\stopluacode

Since in practice the speedup is negligible and the memory footprint is about
the same, such optimization seldom make sense.

At some point this interface will be extended, for instance when we can use
TEX's main (scanning, parsing and processing) loop as a so-called coroutine
and when we have opened up more of TEX's internals. Of course, instead of
putting this in your TEX source, you can as well keep the code at the Lua end.

The script that manages a ConTEXt run (also called context) will process files
with that consist of such commands directly if they have a cld suffix or when
you provide the flag --forcecld.3

3
Similar methods exist for processing xml files.

105

188

106 106

106 106

8 The language mix

34 6 13 46 76 81 71 56 62 19 9 79 55 77 69 57 28 68 60 4

98 38 9 84 71 80 43 33 39 22 51 49 70 85 87 30 42 98 82 6

35 26 42 10 57 97 76 51 17 35 47 32 87 11 79 80 27 74 21 30

56 63 99 13 73 34 58 21 9 45 15 74 3 97 42 69 3 5 89 45

61 62 66 20 33 6 1 70 63 32 76 80 51 49 88 33 78 65 11 83

8 49 4 84 20 88 68 95 4 80 78 48 62 71 80 2 57 87 9 72

53 66 97 44 75 47 41 61 52 6 84 23 49 8 84 49 74 67 38 65

53 76 21 57 50 98 7 54 57 82 41 95 93 6 27 18 60 89 85 42

87 1 73 84 21 81 97 73 78 21 21 96 19 9 93 62 83 95 14 91

11 86 41 38 14 91 60 41 14 74 51 10 8 10 24 55 89 99 88 50

Figure 1.1 The result of the shown Lua code.

context yourfile.cld

But will this replace TEX as an input language? This is quite unlikely because
coding documents in TEX is so convenient and there is not much to gain here.
Of course in a pure Lua based workflow (for instance publishing information
from databases) it would be nice to code in Lua, but even then it's mostly
syntactic sugar, as TEX has to do the job anyway. However, eventually we will
have a quite mature Lua counterpart.

1.4 xml
This is not so much a programming language but more a method of tagging
your document content (or data). As structure is rather dominant in xml, it is
quite handy for situations where we need different output formats and multiple
tools need to process the same data. It's also a standard, although this does
not mean that all documents you see are properly structured. This in turn
means that we need some manipulative power in ConTEXt, and that happens
to be easier to do in MkIV than in MkII.

In ConTEXt we have been supporting xml for a long time, and in MkIV we made
the switch from stream based to tree based processing. The current implemen-
tation is mostly driven by what has been possible so far but as LuaTEX becomes
more mature, bits and pieces will be reimplemented (or at least cleaned up and
brought up to date with developments in LuaTEX).

One could argue that it makes more sense to use xslt for converting xml into
something TEX, but in most of the cases that I have to deal with much effort

106

189

107 107

107 107

The language mix 9

goes into mapping structure onto a given layout specification. Adding a bit of
xml to TEX mapping to that directly is quite convenient. The total amount of
code is probably smaller and it saves a processing step.

We're mostly dealing with education-related documents and these tend to have
a more complex structure than the final typeset result shows. Also, readability
of code is not served with such a split as most mappings look messy anyway
(or evolve that way) due to the way the content is organized or elements get
abused.

There is a dedicated manual for dealing with xml in MkIV, so we only show a
simple example here. The documents to be processed are loaded in memory
and serialized using setups that are associated to elements. We keep track of
documents and nodes in a way that permits multipass data handling (rather
usual in TEX). Say that we have a document that contains questions. The
following definitions will flush the (root element) questions:

\startxmlsetups xml:mysetups

\xmlsetsetup{#1}{questions}{xml:questions}

\stopxmlsetups

\xmlregistersetup{xml:mysetups}

\startxmlsetups xml:questions

\xmlflush{#1}

\stopxmlsetups

\xmlprocessfile{main}{somefile.xml}{}

Here the #1 represents the current xml element. Of course we need more as-
sociations in order to get something meaningful. If we just serialize then we
have mappings like:

\xmlsetsetup{#1}{question|answer}{xml:*}

So, questions and answers are mapped onto their own setup which flushes
them, probably with some numbering done at the spot.

In this mechanism Lua is sort of invisible but quite busy as it is responsible
for loading, filtering, accessing and serializing the tree. In this case TEX and
Lua hand over control in rapid succession.

You can hook in your own functions, like:

107

190

108 108

108 108

10 The language mix

\xmlfilter{#1}{(wording|feedback|choice)/function(cleanup)}

In this case the function cleanup is applied to elements with names that match
one of the three given.4

Of course, once you start mixing in Lua in this way, you need to know how we
deal with xml at the Lua end. The following function show how we calculate
scores:

\startluacode

function xml.functions.totalscore(root)

local n = 0

for e in xml.collected(root,"/outcome") do

if xml.filter(e,"action[text()='add']") then

local m = xml.filter(e,"xml:///score/text()")

n = n + (tonumber(m or 0) or 0)

end

end

tex.write(n)

end

\stopluacode

You can either use such a function in a filter or just use it as a TEX macro:

\startxmlsetups xml:question

\blank

\xmlfirst{#1}{wording}

\startitemize

\xmlfilter{#1}{/answer/choice/command(xml:answer:choice)}

\stopitemize

\endgraf

score: \xmlfunction{#1}{totalscore}

\blank

\stopxmlsetups

\startxmlsetups xml:answer:choice

\startitem

\xmlflush{#1}

\stopitem

\stopxmlsetups

4
This example is inspired by one of our projects where the cleanup involves sanitizing (highly
invalid) html data that is embedded as a CDATA stream, a trick to prevent the xml file to be
invalid.

108

191

109 109

109 109

The language mix 11

The filter variant is like this:

\xmlfilter{#1}{./function('totalscore')}

So you can take your choice and make your source look more xml-ish, Lua-
like or TEX-wise. A careful reader might have noticed the peculiar xml:// in
the function code. When used inside MkIV, the serializer defaults to TEX so
results are piped back into TEX. This prefix forced the regular serializer which
keeps the result at the Lua end.

Currently some of the xml related modules, like MathML and handling of ta-
bles, are really a mix of TEX code and Lua calls, but it makes sense to move
them completely to Lua. One reason is that their input (formulas and table
content) is restricted to non-TEX anyway. On the other hand, in order to be
able to share the implementation with TEX input, it also makes sense to stick
to some hybrid approach. In any case, more of the calculations and logic will
move to Lua, while TEX will deal with the content.

A somewhat strange animal here is xsl-fo. We do support it, but the MkII
implementation was always somewhat limited and the code was quite complex.
So, this needs a proper rewrite in MkIV, which will happen indeed. It's mostly a
nice exercise of hybrid technology but until now I never really needed it. Other
bits and pieces of the current xml goodies might also get an upgrade.

There is already a bunch of functions and macros to filter and manipulate xml
content and currently the code involved is being cleaned up. What direction
we go also depends on users' demands. So, with respect to xml you can expect
more support, a better integration and an upgrade of some supported xml
related standards.

1.5 Tools
Some of the tools that ship with ConTEXt are also examples of hybrid usage.

Take this:

mtxrun --script server --auto

On my machine this reports:

MTXrun | running at port: 31415

MTXrun | document root: c:/data/develop/context/lua

MTXrun | main index file: unknown

109

192

110 110

110 110

12 The language mix

MTXrun | scripts subpath: c:/data/develop/context/lua

MTXrun | context services: http://localhost:31415/mtx-server-ctx-startup.lua

The mtxrun script is a Lua script that acts as a controller for other scripts, in
this case mtx-server.lua that is part of the regular distribution. As we use
LuaTEX as a Lua interpreter and since LuaTEX has a socket library built in, it
can act as a web server, limited but quite right for our purpose.5

The web page that pops up when you enter the given address lets you currently
choose between the ConTEXt help system and a font testing tool. In figure 1.2
you seen an example of what the font testing tool does.

Figure 1.2 An example of using the font tester.

Here we have LuaTEX running a simple web server but it's not aware of having
TEX on board. When you click on one of the buttons at the bottom of the screen,
the server will load and execute a script related to the request and in this case
that script will create a TEX file and call LuaTEX with ConTEXt to process that
file. The result is piped back to the browser.

You can use this tool to investigate fonts (their bad and good habits) as well as
to test the currently available OpenType functionality in MkIV (bugs as well as
goodies).

5
This application is not intentional but just a side effect.

110

193

111 111

111 111

The language mix 13

So again we have a hybrid usage although in this case the user is not confronted
with Lua and/or TEX at all. The same is true for the other goodie, shown
in figure 1.3. Actually, such a goodie has always been part of the ConTEXt
distribution but it has been rewritten in Lua.

Figure 1.3 An example of a help screen for a command.

The ConTEXt user interface is defined in an xml file, and this file is used for sev-
eral purposes: initializing the user interfaces at format generation time, type-
setting the formal command references (for all relevant interface languages),
for the wiki, and for the mentioned help goodie.

Using the mix of languages permits us to provide convenient processing of
documents that otherwise would demand more from the user than it does now.
For instance, imagine that we want to process a series of documents in the so-
called Epub format. Such a document is a zipped file that has a description
and resources. As the content of this archive is prescribed it's quite easy to
process it:

context --ctx=x-epub.ctx yourfile.epub

This is equivalent to:

texlua mtxrun.lua --script context --ctx=x-epub.ctx yourfile.epub

111

194

112 112

112 112

14 The language mix

So, here we have LuaTEX running a script that itself (locates and) runs a script
context. That script loads a ConTEXt job description file (with suffix ctx). This
file tells what styles to load and might have additional directives but none of
that has to bother the end user. In the automatically loaded style we take care
of reading the xml files from the zipped file and eventually map the embedded
html like files onto style elements and produce a pdf file. So, we have Lua
managing a run and MkIV managing with help of Lua reading from zip files and
converting xml into something that TEX is happy with. As there is no standard
with respect to the content itself, i.e. the rendering is driven by whatever kind
of structure is used and whatever the css file is able to map it onto, in practice
we need an additional style for this class of documents. But anyway it's a good
example of integration.

1.6 The future
Apart from these language related issues, what more is on the agenda? To
mention a few integration related thoughts:

• At some point I want to explore the possibility to limit processing to just
one run, for instance by doing trial runs without outputting anything but
still collecting multipass information. This might save some runtime in
demanding workflows especially when we keep extensive font loading and
image handling in mind.

• Related to this is the ability to run MkIV as a service but that demands
that we can reset the state of LuaTEX and actually it might not be worth
the trouble at all given faster processors and disks. Also, it might not save
much runtime on larger jobs.

• More interesting can be to continue experimenting with isolating parts of
ConTEXt in such a way that one can construct a specialized subset of func-
tionality. Of course the main body of code will always be loaded as one
needs basic typesetting anyway.

Of course we keep improving existing mechanisms and improve solutions using
a mix of TEX and Lua, using each language (and system) for what it can do best.

112

195

113 113

113 113

Font Goodies 15

2 Font Goodies
2.1 Introduction
The Oriental TEX project is one of the first and more ambitious users of LuaTEX.
A major undertaking in this project is the making of a rather full features
and complex font for typesetting Arabic. As the following text will show some
Arabic, you might get the impression that I'm an expert but be warned that
I'm far from that. But as Idris compensates this quite well the team has a lot
of fun in figuring out how to achieve our goals using OpenType technology in
combination with LuaTEX and MkIV. A nice side effect of this is that we end up
with some neat tricks in the ConTEXt core.

Before we come to some of these goodies, an example of Arabic is given that
relates quite well to the project. It was first used at the euroTEX 2009 meeting.
Take the following 6 shapes:

ل و ا ت﮴ ي﮵ خ﮲

l w ā t ī kh

With these we can make the name LuaTEX and as we use a nice script we can
forget about the lowered E. Putting these characters in sequence is not enough
as Arabic typesetting has to mimick the subtle aspects of scribes.

In Latin scripts we have mostly one-to-one and many-to-one substitutions.
These can happen in sequence which in in practice boils down to multiple
passed over the stream of characters. In this process sometimes surrounding
characters (or shapes) play a role, for instance ligatures are not always wanted
and their coming into existence might depend on neighbouring characters. In
some cases glyphs have to be (re)positioned relative to each other. While in
Latin scripts the number of substitutions and positioning is not that large but
in advanced Arabic fonts it can be pretty extensive.

With OpenType we have some machinery available, so we try to put as much
logic in the font as possible. However, in addition we have some dedicated
optimizing routines. The whole process is split into a couple if stages.

The so called First-Order Analysis puts a given character into isolated, initial,
middle, or final state. Next, the Second-Order Analysis looks at the charac-
ters and relates this state to what characters precede or succeed it. Based on
that state we do character substitutions. There can be multiple analysis and
replacements in sequence. We can do some simple aesthetic stretching and

113

196

114 114

114 114

16 Font Goodies

additional related replacements. We need to attach identity marks and vowels
in proper but nice looking places. In most cases we're then done. Contrary to
other fonts we don't use many ligatures but compose characters.

The previous steps already give reasonable results and implementing it also
nicely went along with the development of LuaTEX and ConTEXt MkIV. Cur-
rently we're working on extending and perfecting the font to support what
we call Third-Order Contextual Analysis. This boils down to an interplay be-
tween the paragraph builder and additional font features. In order to get pleas-
ing spacing we apply further substitutions, this time with wider or narrower
shapes. When this is done we need to reattach identity marks and vowels.
Optionally we can apply hz like stretching as a finishing touch but so far we
didn't follow that route yet.

So, let's see how we can typeset the word LuaTEX in Arabic using some of these
techniques.

no order (kh ī t ā w [u] l) خ﮲ي﮵ت﮴اولُ

first order خ﮲ي﮵ت﮴اولُ

second order خ﮲ي﮵ت﮴اولُ

second order (Jiim-stacking) خي﮵ت﮴اولُ ﮲

minimal stretching خي﮵ت﮴اولُ ﮲

maximal stretching (level 3) خي﮵ت﮴اولُ ﮲

chopped letter khaa (for e.g. underlining) خي﮵ت﮴اولُ ﮲

114

197

115 115

115 115

Font Goodies 17

As said, this font is quite complex in the sense that it has many features and
associated lookups. In addition to the usual features we have stylistic and jus-
tification variants. As these are not standardized (after all, each font can have
its own look and feel and associated treatments) we store some information in
the goodies files that ships with this font.

feature meaning
js01 Raawide

js02 Yaawide

js03 Kaafwide

js04 Nuunwide

js05 Kaafwide Nuunwide Siinwide Baawide

js06 final Haa wide

js07 thin Miim

js08 short Miim

js09 wide Siin

js10 thuluth-style initial Haa, final Miim, MRw_mf

js11 level-1 stretching

js12 level-2 stretching

js13 level-3 stretching

js14 final Alif

js15 hooked final Alif

js16 aesthetic medial Faa/Qaaf

js17 fancy isol Haa after Daal, Raa, and Waaw

js18 Laamwide, alternate substitution

js19 level-4 stretching, only siin and Hhaa for basmalah

js20 level-5 stretching, only siin and Hhaa for basmalah

js21 Haa.final_alt2

ss01 Allah, Muhammad

ss02 ss01 + Allah_final

ss03 level-1 stack over Jiim, initial entry only

ss04 level-1 stack over Jiim, initial/medial entry

ss05 multi-level Jiim stacking, initial/medial entry

ss06 aesthetic Faa/Qaaf for FJ_mm, FJ_mf connection

ss07 initial-entry stacking over Haa

ss08 initial/medial stacking over Haa, minus HM_mf strings

ss09 initial/medial Haa stacking plus HM_mf strings

ss10 basic dipped Miim, initial-entry B_S-stack over Miim

ss11 full dipped Miim, initial-entry B_S-stack over Miim

ss12 XBM_im initial-medial entry B_S-stack over Miim

ss13 full initial-medial entry B_S-stacked Miim

ss14 initial entry, stacked Laam on Miim

ss15 full stacked Laam-on-Miim

ss16 initial entry, stacked Ayn-on-Miim

115

198

116 116

116 116

18 Font Goodies

ss17 full stacked Ayn-on-Miim

ss18 LMJ_im already contained in ss03--05, may remove

ss19 LM_im

ss20 KLM_m, sloped Miim

ss21 KLM_i_mm/LM_mm, sloped Miim

ss22 filled sloped Miim

ss23 LM_mm, non-sloped Miim

ss24 BR_i_mf, BN_i_mf

ss25 basic LH_im might merge with ss24

ss26 full Yaa.final special strings: BY_if, BY_mf, LY_mf

ss27 basic thin Miim.final

ss28 full thin Miim.final to be moved to jsnn

ss29 basic short Miim.final

ss30 full short Miim.final to be moved to jsnn

ss31 basic Raa.final strings: JR and SR

ss32 basic Raa.final strings: JR, SR, and BR

ss33 TtR to be moved to jsnn

ss34 AyR style also available in jsnn

ss35 full Kaaf contexts

ss36 full Laam contexts

ss37 Miim-Miim contexts

ss38 basic dipped Haa, B_SH_mm

ss39 full dipped Haa, B_S_LH_i_mm_Mf

ss40 aesthetic dipped medial Haa

ss41 high and low Baa strings

ss42 diagonal entry

ss43 initial alternates

ss44 hooked final alif

ss45 BMA_f

ss46 BM_mm_alt, for JBM combinations

ss47 Shaddah-<kasrah> combo

ss48 Auto-sukuun

ss49 No vowels

ss50 Shaddah/MaaddahHamzah only

ss51 No Skuun

ss52 No Waslah

ss53 No Waslah

ss54 chopped finals

ss55 idgham-tanwin

It is highly unlikely that a user will remember all these features, which is why
there will be a bunch of predefined combinations. These are internalized as
follows:

116

199

117 117

117 117

Font Goodies 19

featureset definitions
default analyze=true anum=true calt=true ccmp=true

curs=true fina=true init=true js16=true

kern=true language=dflt mark=true medi=true

mkmk=true mode=node number=32 rlig=true

salt=true script=arab ss01=true ss03=true

ss07=true ss10=true ss12=true ss15=true

ss16=true ss19=true ss24=true ss25=true

ss26=true ss27=true ss31=true ss34=true

ss35=true ss36=true ss37=true ss38=true

ss41=true ss42=true ss43=true

maximal_stretching analyze=true anum=true calt=true ccmp=true

curs=true fina=true init=true js05=true

js09=true js13=true js16=true kern=true

language=dflt mark=true medi=true mkmk=true

mode=node number=35 rlig=true salt=true

script=arab ss01=true ss03=true ss07=true

ss10=true ss12=true ss15=true ss16=true

ss19=true ss24=true ss25=true ss26=true

ss27=true ss31=true ss34=true ss35=true

ss36=true ss37=true ss38=true ss41=true

ss42=true ss43=true

medium_stretching analyze=true anum=true calt=true ccmp=true

curs=true fina=true init=true js05=true

js12=true js16=true kern=true language=dflt

mark=true medi=true mkmk=true mode=node

number=36 rlig=true salt=true script=arab

ss01=true ss03=true ss07=true ss10=true

ss12=true ss15=true ss16=true ss19=true

ss24=true ss25=true ss26=true ss27=true

ss31=true ss34=true ss35=true ss36=true

ss37=true ss38=true ss41=true ss42=true

ss43=true

minimal_stretching analyze=true anum=true calt=true ccmp=true

curs=true fina=true init=true js03=true

js11=true js16=true kern=true language=dflt

mark=true medi=true mkmk=true mode=node

number=31 rlig=true salt=true script=arab

ss01=true ss03=true ss07=true ss10=true

ss12=true ss15=true ss16=true ss19=true

ss24=true ss25=true ss26=true ss27=true

ss31=true ss34=true ss35=true ss36=true

ss37=true ss38=true ss41=true ss42=true

ss43=true

117

200

118 118

118 118

20 Font Goodies

shrink analyze=true anum=true calt=true ccmp=true

curs=true fina=true flts=true init=true

js16=true js17=true kern=true language=dflt

mark=true medi=true mkmk=true mode=node

number=34 rlig=true salt=true script=arab

ss01=true ss03=true ss05=true ss06=true

ss07=true ss09=true ss10=true ss11=true

ss12=true ss15=true ss16=true ss19=true

ss24=true ss25=true ss26=true ss27=true

ss31=true ss34=true ss35=true ss36=true

ss37=true ss38=true ss41=true ss42=true

ss43=true

wide_all analyze=true anum=true calt=true ccmp=true

curs=true fina=true init=true js05=true

js09=true js11=true js12=true js13=true

js16=true kern=true language=dflt mark=true

medi=true mkmk=true mode=node number=33

rlig=true salt=true script=arab ss01=true

ss03=true ss07=true ss10=true ss12=true

ss15=true ss16=true ss19=true ss24=true

ss25=true ss26=true ss27=true ss31=true

ss34=true ss35=true ss36=true ss37=true

ss38=true ss41=true ss42=true ss43=true

2.2 Color
One of the objectives of the oriental TEX project is to bring color to typeset
Arabic. When Idris started making samples with much manual intervention it
was about time to figure out if it could be supported by a bit of Lua code.

As the colorization concerns classes of glyphs (like vowels) this is something
that can best be done after all esthetics have been sorted out. Because things
like coloring are not part of font technology and because we don't want to mis-
use the OpenType feature mechanisms for that, the solution lays in an extra
file that describes these goodies.

ة﮴لي﮵لوة﮴لي﮵لف﮲لأٔخ﮲ي﮵ت﮴اولُ

118

201

119 119

119 119

Font Goodies 21

ة﮴لي﮵لوة﮴لي﮵لف﮲لأٔخ﮲ي﮵ت﮴اولُ

ة﮴لي﮵لوة﮴لي﮵لف﮲لأٔخ﮲ي﮵ت﮴اولُ

The second and third of these three lines have colored vowels and identity
marks. So how did we get the colors? There are actually two mechanisms
involved in this:

• we need to associate colorschemes with classed of glyphs
• we need to be able to turn on and off coloring

The first is done by loading goodies and selecting a colorscheme:

\definefontfeature

[husayni-colored]

[goodies=husayni,

colorscheme=default,

featureset=default]

Turning on and off coloring is done with two commands (we might provide a
proper environment for this) as shown in:

\start

\definedfont[husayni*husayni-colored at 72pt]

\righttoleft

\resetfontcolorscheme خيتاوُل فلأ ةليل ةليلو \par

\setfontcolorscheme خيتاوُل[1] فلأ ةليل ةليلو \crlf

\setfontcolorscheme خيتاوُل[2] فلأ ةليل ةليلو \crlf

\stop

If you look closely at the feature definition you'll notice that we also choose a
default featureset. For most (latin) fonts the regular feature definitions are con-
venient, but for fonts that are used for Arabic there are preferred combinations
of features as there can be many.

119

202

120 120

120 120

22 Font Goodies

Currently the font we use here has the following colorschemes:

colorscheme numbers
default 1 2 3 4 5

2.3 The goodies file
In principle a goodies files can contain anuy data that makes sense but in order
to be useable some entries have a prescribed structure. A goodies file looks as
follows:

return {

name = "husayni",

version = "1.00",

comment = "Goodies that complement the Husayni font by Idris Samawi Hamid.",

author = "Idris Samawi Hamid and Hans Hagen",

featuresets = {

default = {

key = value, <table>, ...

},

...

},

stylistics = {

key = value, ...

},

colorschemes = {

default = {

[1] = {

"glyph_a.one", "glyph_b.one", ...

},

...

}

}

}

We already saw the list of special features and these are defined in the stylistics
stable. In this document, that list was typeset using the following (hybrid) code:

\startluacode

local goodies = fonts.goodies.get("husayni")

local stylistics = goodies and goodies.stylistics

if stylistics then

local col, row, type = context.NC, context.NR, context.type

context.starttabulate { "|l|pl|" }

120

203

121 121

121 121

Font Goodies 23

col() context("feature") col() context("meaning") col() row()

for feature, meaning in table.sortedpairs(stylistics) do

col() type(feature) col() type(meaning) col() row()

end

context.stoptabulate()

end

\stopluacode

The table with colorscheme that we showed is generated with:

colorscheme numbers
default 1 2 3 4 5

In a similar fashion we typeset the featuresets:

\startluacode

local goodies = fonts.goodies.get("husayni")

local featuresets = goodies and goodies.featuresets

if featuresets then

local col, row, type = context.NC, context.NR, context.type

context.starttabulate { "|l|pl|" }

col() context("featureset") col() context("definitions") col() row()

for featureset, definitions in table.sortedpairs(featuresets) do

col() type(featureset) col()

for k, v in table.sortedpairs(definitions) do

type(string.format("%s=%s",k,tostring(v)))

context.quad()

end

col() row()

end

context.stoptabulate()

end

\stopluacode

The unprocessed featuresets table can contain one or more named sets and
each set can be a mixture of tables and key value pairs. Say that we have:

default = {

kern = "yes", { ss01 = "yes" }, { ss02 = "yes" }, "mark"

}

Given the previous definition, the order of processing is as follows.

121

204

122 122

122 122

24 Font Goodies

1. { ss01 = "yes" }

2. { ss02 = "yes" }

3. mark (set to "yes")
4. kern = "yes"

So, first we process the indexed part if the list, and next the hash. Already set
values are not set again. The advantage of using a Lua table is that you can
simplify definitions. Before we return the table we can define local variables,
like:

local one = { ss01 = "yes" }

local two = { ss02 = "yes" }

local pos = { kern = "yes", mark = "yes" }

and use them in:

default = {

one, two, pos

}

That way we we can conveniently define all kind of interesting combinations
without the need for many repetitive entries.

The colorsets table has named subtables that are (currently) indexed by num-
ber. Each number is associated with a color (at the TEX end) and is coupled to
a list of glyphs. As you can see here, we use the name of the glyph. We prefer
this over an index (that can change during development of the font). We cannot
use Unicode points as many such glyphs are just variants and have no unique
code.

2.4 Optimizing Arabic
The ultimate goal of the Oriental TEX project is to improve the look and feel of
a paragraph. Because TEX does a pretty good job on breaking the paragraph
into lines, and because complicating the paragraph builder is not a good idea,
we finally settled on improving the lines that result from the par builder. This
approach is rather close to what scribes do and the advanced Husayni font
provides features that support this.

In principle the current optimizer can replace character expansion but that
would slow down considerably. Also, for that we first have to clean up the
experimental Lua based par builder.

After several iterations the following approach was chosen.

122

205

123 123

123 123

Font Goodies 25

• We typeset the paragraph with an optimal feature set. In our case this is
husayni-default.

• Next we define two sets of additional features: one that we can apply to
shrink words, and one that does the opposite.

• When the line has a badness we don't like, we either stepwise shrink words
or stretch them, depending on how bad things are.

The set that takes care of shrinking is defined as:

\definefontfeature

[shrink]

[husayni-default]

[flts=yes,js17=yes,ss05=yes,ss11=yes,ss06=yes,ss09=yes]

Stretch has a few more variants:

\definefontfeature

[minimal_stretching]

[husayni-default]

[js11=yes,js03=yes]

\definefontfeature

[medium_stretching]

[husayni-default]

[js12=yes,js05=yes]

\definefontfeature

[maximal_stretching]

[husayni-default]

[js13=yes,js05=yes,js09=yes]

\definefontfeature

[wide_all]

[husayni-default]

[js11=yes,js12=yes,js13=yes,js05=yes,js09=yes]

Next we define a font solution:

\definefontsolution

[FancyHusayni]

[goodies=husayni,

less=shrink,

more={minimal_stretching,medium_stretching,maximal_stretching,wide_all}]

Because these featuresets relate quite close to the font design we don't use this

123

206

124 124

124 124

26 Font Goodies

way if defining but put the definitions in the goodies file:

.....
featuresets = { -- here we don't have references to featuresets

default = {
default,

},
minimal_stretching = {

default, js11 = yes, js03 = yes,
},
medium_stretching = {

default, js12=yes, js05=yes,
},
maximal_stretching= {

default, js13 = yes, js05 = yes, js09 = yes,
},
wide_all = {

default, js11 = yes, js12 = yes, js13 = yes, js05 = yes, js09 = yes,
},
shrink = {

default, flts = yes, js17 = yes, ss05 = yes, ss11 = yes, ss06 = yes, ss09 = yes,
},

},
solutions = { -- here we have references to featuresets, so we use strings!

experimental = {
less = { "shrink" },
more = { "minimal_stretching", "medium_stretching", "maximal_stretching", "wide_all" },

},
},
.....

Now the definition looks much simpler:

\definefontsolution

[FancyHusayni]

[goodies=husayni,

solution=experimental]

I want some funny text (complete with translation). Actually I want all examples
translated.

I the following example the yellow words are stretched and the green ones are
shrunken.6

\definedfont[husayni*husayni-default at 24pt]

\expanded{\setuplocalinterlinespace[line=\the\dimexpr2\lineheight]} % todo:
6

Make sure that the paragraph is finished (for instance using \par before resetting it.)

124

207

125 125

125 125

Font Goodies 27

factor ivm grid

\setfontsolution[FancyHusayni]% command will change

\enabletrackers[builders.paragraphs.solutions.splitters.colors]

\righttoleft \getbuffer[sample] \par

\disabletrackers[builders.paragraphs.solutions.splitters.colors]

\resetfontsolution

ىوت﮴ف﮲لامالعأٔت﮴اق﮴ب﮳طعب﮳سان﮲رون﮲وة﮴ي﮵الولاوة﮴وب﮳ن﮲لامادق﮴أٔب﮳ق﮴ئٔاق﮴حلاىرذ﮲ان﮲دعصدق﮴

ي﮵ف﮲ملق﮴لاوف﮲ي﮵سلاان﮲ي﮵ف﮲وىدعلان﮲اعطوىدن﮲لاث﮶وي﮵غ﮲ويغ﮲ولاث﮶وي﮵لن﮲حن﮲ف﮲ة﮴ي﮵ادهلاب﮳

ون﮲ي﮵ي﮵ب﮳ن﮲لاءاف﮲لخ﮲ون﮲ي﮵دلاءاف﮲لحان﮲طاب﮳سأٔولج﮳آٓلاي﮵ف﮲ض﮲وحلاودمحلاءاولولج﮳اعلا

حوروءاف﮲ولاهن﮲مان﮲دهعاملءاف﮲طصالاة﮴لحسب﮳لأٔمي﮵لكلاف﮲مركلاحي﮵ت﮴اف﮲موممأٔلاحي﮵ب﮳اصم

ئف﮲لاان﮲ت﮴عي﮵ش﮶وة﮴روكاب﮳لاان﮲ق﮴ئٔادحن﮲مق﮴اذ﮲ة﮴روق﮴اصلان﮲ان﮲ج﮳ي﮵ف﮲سدق﮴لا
ٔ

ة﮴ق﮴رف﮲لاوة﮴ي﮵ج﮳ان﮲لاة﮴

ن﮲اوي﮵حلاعي﮵ب﮳ان﮲ي﮵مهلرج﮳ف﮲ن﮲ي﮵سوان﮲وعواب﮳لأٔة﮴ملظ﮲ــــــلاىلعوان﮲وصواءدران﮲لاوراصوة﮴ي﮵كاز﮲لا

رردن﮲مة﮴ردب﮳ات﮴كلااذ﮲هون﮲ي﮵ن﮲سلان﮲من﮲ي﮵ساوطلاوهطومحلآٓمامت﮴لن﮲اري﮵ن﮲لاىظ﮲لدعب﮳

بن﮲مة﮴رطق﮴وة﮴محرلا ن﮲ي﮵سمخ﮲وعب﮳رأٔة﮴ن﮲سي﮵ف﮲ي﮵ركسعلاي﮵لعن﮲ب﮳ن﮲سحلاب﮳ت﮴كوة﮴مكحلارح﮳

ئامو
ٔ

ن﮲ي﮵ت﮴

This mechanism is somewhat experimental as is the (user) interface. It is also
rather slow compared to normal processing. There is room for improvement but
I will do that when other components are more stable so that simple variants
(that we can use here) can be derived.

When criterium 0 used above is changed into for instance 5 processing is faster.
When you enable a preroll processing is more time consuming. Examples of
settings are:

\setupfontsolutions[method={preroll,normal},criterium=2]

\setupfontsolutions[method={preroll,random},criterium=5]

\setupfontsolutions[method=reverse,criterium=8]

\setupfontsolutions[method=random,criterium=2]

Using a preroll is slower because it first tries all variants and then settles for
the best; otherwise we process the first till the last solution till the criterium

125

208

126 126

126 126

28 Font Goodies

is satisfied.

Todo: show normal, reverse and random.

Todo: bind setting to paragraph.

2.5 Protrusion and expansion
There are two entries in the goodies file that relate to advanced parbuilding:
protrusions and expansions.

protrusions = {

vectors = {

pure = {

[0x002C] = { 0, 1 }, -- comma

[0x002E] = { 0, 1 }, -- period

.....

}

}

}

These vectors are similar to the ones defined globally but the vectors defined
in a goodie file are taken instead when present.

126

209

127 127

127 127

Grouping 29

3 Grouping
3.1 Variants
After using TEX for a while you get accustomed to one of its interesting con-
cepts: grouping. Programming languages like Pascal and Modula have key-
words begin and end. So, one can say:

if test then begin

print_bold("test 1")

print_bold("test 2")

end

Other languages provide a syntax like:

if test {

print_bold("test 1")

print_bold("test 2")

}

So, in those languages the begin and end and/or the curly braces define a
‘group’ of statements. In TEX on the other hand we have:

test \begingroup \bf test \endgroup test

Here the second test comes out in a bold font and the switch to bold (basically
a different font is selected) is reverted after the group is closed. So, in TEX
grouping deals with scope and not with grouping things together.

In other languages it depends on the language of locally defined variables are
visible afterwards but in TEX they're really local unless a \global prefix (or one
of the shortcuts) is used.

In languages like Lua we have constructs like:

for i=1,100 do

local j = i + 20

...

end

Here j is visible after the loop ends unless prefixed by local. Yet another
example is MetaPost:

begingroup ;

127

210

128 128

128 128

30 Grouping

save n ; numeric n ; n := 10 ;

...

endgroup ;

Here all variables are global unless they are explicitly saved inside a group. This
makes perfect sense as the resulting graphic also has a global (accumulated)
property. In practice one will rarely needs grouping, contrary to TEX where
one really wants to keep changes local, if only because document content is so
unpredictable that one never knows when some change in state happens.

In principle it is possible to carry over information across a group boundary.
Consider this somewhat unrealistic example:

\begingroup

\leftskip 10pt

\begingroup

....

\advance\leftskip 10pt

....

\endgroup

\endgroup

How do we carry the advanced leftskip over the group boundary without using
a global assignment which could have more drastic side effects? Here is the
trick:

\begingroup

\leftskip 10pt

\begingroup

....

\advance\leftskip 10pt

....

\expandafter

\endgroup

\expandafter \leftskip \the\leftskip

\endgroup

This is typical the kind of code that gives new users the creeps but normally
they never have to do that kind of coding. Also, that kind of tricks assumes
that one knows how many groups are involved.

128

211

129 129

129 129

Grouping 31

3.2 Implication
What does this all have to do with LuaTEX and MkIV? The user interface of
ConTEXt provide lots of commands like:

\setupthis[style=bold]

\setupthat[color=green]

Most of them obey grouping. However, consider a situation where we use Lua
code to deal with some aspect of typesetting, for instance numbering lines or
adding ornamental elements to the text. In ConTEXt we flag such actions with
attributes and often the real action takes place a bit later, for instance when a
paragraph or page becomes available.

A comparable pure TEX example is the following:

{test test \bf test \leftskip10pt test}

Here the switch to bold happens as expected but no leftskip of 10pt is applied.
This is because the set value is already forgotten when the paragraph is actually
typeset. So in fact we'd need:

{test test \bf test \leftskip10pt test \par}

Now, say that we have:

{test test test \setupflag[option=1] \flagnexttext test}

We flag some text (using an attribute) and expect it to get a treatment where
option 1 is used. However, the real action might take place when TEX deals with
the paragraph or page and by that time the specific option is already forgotten
or it might have gotten another value. So, the rather natural TEX grouping does
not work out that well in a hybrid situation.

As the user interface assumes a consistent behaviour we cannot simply make
these settings global even if this makes much sense in practice. One solution
is to carry the information with the flagged text i.e. associate it somehow in the
attribute's value. Of course, as we never know in advance when this informa-
tion is used, this might result in quite some states being stored persistently.

A side effect of this ‘problem’ is that new commands might get suboptimal user
interfaces (especially inheritance or cloning of constructs) that are somewhat
driven by these ‘limitations’. Of course we may wonder if the end user will
notice this.

129

212

130 130

130 130

32 Grouping

To summarize this far, we have three sorts of grouping to deal with:

• TEX's normal grouping model limits its scope to the local situation and nor-
mally has only direct and local consequences. We cannot carry information
over groups.

• Some of TEX's properties are applied later, for instance when a paragraph
or page is typeset and in order to make ‘local’ changes effective, the user
needs to add explicit paragraph ending commands (like \par or \page).

• Features dealt with asynchronously by Lua are at that time unaware of
grouping and variables set that were active at the time the feature was trig-
gered so there we need to make sure that our settings travel with the feature.
There is not much that a user can do about it as this kind of management
has to be done by the feature itself.

It is the third case that we will give an example of in the next section. We leave
it up to the user if it gets noticed on the user interface.

3.3 An example
A group of commands that has been reimplemented using a hybrid solution is
underlining or more generic: bars. Just take a look at the following examples
and try to get an idea on how to deal with grouping. Keep in mind that:

• Colors are attributes and are resolved in the backend, so way after the para-
graph has been typesetting.

• Overstrike is also handled by an attribute and gets applied in the backend
as well, before colors are applied.

• Nested overstrikes might have different settings.
• An overstrike rule either inherits from the text or has its own color setting.

First an example where we inherit color from the text:

\definecolor[myblue][b=.75]

\definebar[myoverstrike][overstrike][color=]

Test \myoverstrike{%

Test \myoverstrike{\myblue

Test \myoverstrike{Test}

Test}

Test}

Test

130

213

131 131

131 131

Grouping 33

Test Test Test Test Test Test Test

Because color is also implemented using attributes and processed later on we
can access that information when we deal with the bar.

The following example has its own color setting:

\definecolor[myblue][b=.75]

\definecolor[myred] [r=.75]

\definebar[myoverstrike][overstrike][color=myred]

Test \myoverstrike{%

Test \myoverstrike{\myblue

Test \myoverstrike{Test}

Test}

Test}

Test

Test Test Test Test Test Test Test

See how can we color the levels differently:

\definecolor[myblue] [b=.75]

\definecolor[myred] [r=.75]

\definecolor[mygreen][g=.75]

\definebar[myoverstrike:1][overstrike][color=myblue]

\definebar[myoverstrike:2][overstrike][color=myred]

\definebar[myoverstrike:3][overstrike][color=mygreen]

Test \myoverstrike{%

Test \myoverstrike{%

Test \myoverstrike{Test}

Test}

Test}

Test

Test Test Test Test Test Test Test

Watch this:

\definecolor[myblue] [b=.75]

\definecolor[myred] [r=.75]

\definecolor[mygreen][g=.75]

131

214

132 132

132 132

34 Grouping

\definebar[myoverstrike][overstrike][max=1,dy=0,offset=.5]

\definebar[myoverstrike:1][myoverstrike][color=myblue]

\definebar[myoverstrike:2][myoverstrike][color=myred]

\definebar[myoverstrike:3][myoverstrike][color=mygreen]

Test \myoverstrike{%

Test \myoverstrike{%

Test \myoverstrike{Test}

Test}

Test}

Test

Test Test Test Test Test Test Test

It this the perfect user interface? Probably not, but at least it keeps the imple-
mentation quite simple.

The behaviour of the MkIV implementation is roughly the same as in MkII,
although now we specify the dimensions and placement in terms of the ratio
of the x-height of the current font.

Test \overstrike{Test \overstrike{Test \overstrike{Test} Test} Test} Test

\blank

Test \underbar {Test \underbar {Test \underbar {Test} Test} Test} Test

\blank

Test \overbar {Test \overbar {Test \overbar {Test} Test} Test} Test

\blank

Test \underbar {Test \overbar {Test \overstrike{Test} Test} Test} Test

\blank

Test Test Test Test Test Test Test

Test Test Test Test Test Test Test

Test Test Test Test Test Test Test

Test Test Test Test Test Test Test

As an extra this mechanism can also provide simple backgrounds. The normal
background mechanism uses MetaPost and the advantage is that we can use
arbitrary shapes but it also carries some limitations. When the development of
LuaTEX is a bit further along the road I will add the possibility to use MetaPost

132

215

133 133

133 133

Grouping 35

shapes in this mechanism.

Before we come to backgrounds, first take a look at these examples:

\startbar[underbar] \input zapf \stopbar \blank

\startbar[underbars] \input zapf \stopbar \blank

Coming back to the use of typefaces in electronic publishing: many of the new
typographers receive their knowledge and information about the rules of ty-
pography from books, from computer magazines or the instruction manuals
which they get with the purchase of a PC or software. There is not so much ba-
sic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by
their PC's tricks, and think that a widely--praised program, called up on the
screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new
typographers receive their knowledge and information about the rules of ty-
pography from books, from computer magazines or the instruction manuals
which they get with the purchase of a PC or software. There is not so much ba-
sic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by
their PC's tricks, and think that a widely--praised program, called up on the
screen, will make everything automatic from now on.

First notice that it is no problem to span multiple lines and that hyphenation
is not influenced at all. Second you can see that continuous rules are also
possible. From such a continuous rule to a background is a small step:

\definebar

[backbar]

[offset=1.5,rulethickness=2.8,color=blue,

continue=yes,order=background]

\definebar

[forebar]

[offset=1.5,rulethickness=2.8,color=blue,

continue=yes,order=foreground]

The following example code looks messy but this has to do with the fact that
we want properly spaced sample injection.

from here

\startcolor[white]%

133

216

134 134

134 134

36 Grouping

\startbar[backbar]%

\input zapf

\removeunwantedspaces

\stopbar

\stopcolor

\space till here

\blank

from here

\startbar[forebar]%

\input zapf

\removeunwantedspaces

\stopbar

\space till here

from here Coming back to the use of typefaces in electronic publishing: many
of the new typographers receive their knowledge and information about the
rules of typography from books, from computer magazines or the instruction
manuals which they get with the purchase of a PC or software. There is not
so much basic instruction, as of now, as there was in the old days, showing
the differences between good and bad typographic design. Many people are
just fascinated by their PC's tricks, and think that a widely--praised program,
called up on the screen, will make everything automatic from now on. till here

from here Coming back to the use of typefaces in electronic publishing: many
of the new typographers receive their knowledge and information about the
rules of typography from books, from computer magazines or the instruction
manuals which they get with the purchase of a PC or software. There is not
so much basic instruction, as of now, as there was in the old days, showing
the differences between good and bad typographic design. Many people are
just fascinated by their PC's tricks, and think that a widely--praised program,
called up on the screen, will make everything automatic from now on. till here

Watch how we can use the order to hide content. By default rules are drawn
on top of the text.

Nice effects can be accomplished with transparencies:

\definecolor [tblue] [b=.5,t=.25,a=1]

\setupbars [backbar] [color=tblue]

\setupbars [forebar] [color=tblue]

We use as example:

134

217

from here {\white \backbar{test test}
\backbar {nested nested} \backbar{also also}} till here

from here {\white \backbar{test test
\backbar {nested nested} also also}} till here

from here {\white \backbar{test test
\backbar {nested nested} also also}} till here

\setupbars[backbar][max=1]
\setupbars[forebar][max=1]

\definebar[overstrike] [method=0,dy= 0.4,offset= 0.5]
\definebar[underbar] [method=1,dy=-0.4,offset=-0.3]
\definebar[overbar] [method=1,dy= 0.4,offset= 1.8]

\definebar[overstrikes] [overstrike] [continue=yes]
\definebar[underbars] [underbar] [continue=yes]
\definebar[overbars] [overbar] [continue=yes]

\definecolor [tred] [r=.5,t=.25,a=1]
\definecolor [tgreen] [g=.5,t=.25,a=1]
\definecolor [tblue] [b=.5,t=.25,a=1]

218

\definebar [mathred] [backbar] [color=tred]
\definebar [mathgreen] [backbar] [color=tgreen]
\definebar [mathblue] [backbar] [color=tblue]

\startformula
\mathred{e} = \mathgreen{\white mc} ^ {\mathblue{\white e}}

\stopformula

{test test test \setupbars[color=red] \underbar{test} test}

\underbar

According to the wikipedia this is the longest English word:
pneumonoultramicroscopicsilicovolcanoconiosis~\shiftup {other long
words are pseudopseudohypoparathyroidism and
floccinaucinihilipilification}. Of course in languags like Dutch and
German we can make arbitrary long words by pasting words together.

219

137 137

137 137

Grouping 39

I wonder when users really start using such features.

3.5 Summary
Although under the hood the MkIV bar commands are quite different from
their MkII counterparts users probably won't notice much difference at first
sight. However, the new implementation does not interfere with the par builder
and other mechanisms. Plus, it configurable and it offers more functionality.
However, as it is processed rather delayed, side effects might occur that are not
foreseen.

So, if you ever notice such unexpected side effects, you know where it might
result from: what you asked for is processed much later and by then the cir-
cumstances might have changed. If you suspect that it relates to grouping
there is a simple remedy: define a new bar command in the document pream-
ble instead of changing properties mid-document. After all, you are supposed
to separate rendering and content in the first place.

137

220

138 138

138 138

40 The font name mess

4 The font name mess
4.1 Introduction
When TEX came around it shipped with its own fonts. At that moment the TEX
font universe was a small and well known territory. The ‘only’ hassle was that
one needed to make sure that the right kind of bitmap was available for the
printer.

When other languages than English came into the picture things became more
complex as now fonts instances in specific encodings showed up. After a couple
of years the by then standardised TEX distributions carried tens of thousands
of font files. The reason for this was simple: TEX fonts could only have 256
characters and therefore there were quite some encodings. Also, large cjk fonts
could easily have hundreds of metric files per font. Distributions also provide
metrics for commercial fonts although I could never use them and as a result
have many extra metric files in my personal trees (generated by TEXfont).7

At the input side many problems related to encodings were solved by Unicode.
So, when the more Unicode aware fonts showed up, it looked like things would
become easier. For instance, no longer were choices for encodings needed.
Instead one had to choose features and enable languages and scripts and so
the problem of the multitude of files was replaced by the necessity to know
what some font actually provides. But still, for the average user it can be seen
as an improvement.

A rather persistent problem remained, especially for those who want to use
different fonts and or need to install fonts on the system that come from else-
where (either free or commercial): the names used for fonts. You may argue
that modern TEX engines and macro packages can make things easier, espe-
cially as one can call up fonts by their names instead of their filenames, but
actually the problem has worsened. With traditional TEX you definitely get an
error when you mistype a filename or call for a font that is not on your system.
The more modern TEX's macro packages can provide fallback mechanisms and
you can end up with something you didn't ask for.

For years one of the good things of TEX was its stability. If we forget about
changes in content, macro packages and/or hyphenation patterns, documents
could render more or less the same for years. This is because fonts didn't
change. However, now that fonts are more complex, bugs gets fixed and thereby
results can differ. Or, if you use platform fonts, your updated operating system
might have new or even different variants. Or, if you access your fonts by

7
Distributions like TEXLive have between 50.000 and 100.000 files, but derivatives like the
ConTEXt minimals are much smaller.

138

221

139 139

139 139

The font name mess 41

fontname, a lookup can resolve differently.

The main reason for this is that fontnames as well as filenames of fonts are
highly inconsistent across vendors, within vendors and platforms. As we have
to deal with this matter, in MkIV we have several ways to address a font: by
filename, by fontname, and by specification. In the next sections I will describe
all three.

4.2 Method 1: file
The most robust way to specify what fonts is to be used is the filename. This
is done as follows:

\definefont[SomeFont][file:lmmono10-regular]

A filename lookup is case insensitive and the name you pass is exact. Of course
the file: prefix (as with any prefix) can be used in font synonyms as well. You
may add a suffix, so this is also valid:

\definefont[SomeFont][file:lmmono10-regular.otf]

By default ConTEXt will first look for an OpenType font so in both cases you
will get such a font. But how do you know what the filename is? You can for
instance check it out with:

mtxrun --script font --list --file --pattern="lm*mono"

This reports some information about the file, like the weight, style, width, font-
name, filename and optionally the subfont id and a mismatch between the
analysed weight and the one mentioned by the font.

latinmodernmonolight light normal normal lmmonolt10regular lmmonolt10-regular.otf
latinmodernmonoproplight light italic normal lmmonoproplt10oblique lmmonoproplt10-oblique.otf
latinmodernmono normal normal normal lmmono9regular lmmono9-regular.otf
latinmodernmonoprop normal italic normal lmmonoprop10oblique lmmonoprop10-oblique.otf
latinmodernmono normal italic normal lmmono10italic lmmono10-italic.otf
latinmodernmono normal normal normal lmmono8regular lmmono8-regular.otf
latinmodernmonolightcond light italic condensed lmmonoltcond10oblique lmmonoltcond10-oblique.otf
latinmodernmonolight light italic normal lmmonolt10oblique lmmonolt10-oblique.otf
latinmodernmonolightcond light normal condensed lmmonoltcond10regular lmmonoltcond10-regular.otf
latinmodernmonolight bold italic normal lmmonolt10boldoblique lmmonolt10-boldoblique.otf
latinmodernmonocaps normal italic normal lmmonocaps10oblique lmmonocaps10-oblique.otf
latinmodernmonoproplight bold italic normal lmmonoproplt10boldoblique lmmonoproplt10-boldoblique.otf
latinmodernmonolight bold normal normal lmmonolt10bold lmmonolt10-bold.otf
latinmodernmonoproplight bold normal normal lmmonoproplt10bold lmmonoproplt10-bold.otf

139

222

140 140

140 140

42 The font name mess

latinmodernmonoslanted normal normal normal lmmonoslant10regular lmmonoslant10-regular.otf
latinmodernmono normal normal normal lmmono12regular lmmono12-regular.otf
latinmodernmonocaps normal normal normal lmmonocaps10regular lmmonocaps10-regular.otf
latinmodernmonoprop normal normal normal lmmonoprop10regular lmmonoprop10-regular.otf
latinmodernmono normal normal normal lmmono10regular lmmono10-regular.otf
latinmodernmonoproplight light normal normal lmmonoproplt10regular lmmonoproplt10-regular.otf

4.3 Method 1: name
Instead of lookup by file, you can also use names. In the font database we store
references to the fontname and fullname as well as some composed names from
information that comes with the font. This permits rather liberal naming and
the main reason is that we can more easily look up fonts. In practice you will
use names that are as close to the filename as possible.

mtxrun --script font --list --name --pattern="lmmono*regular" --all

This gives on my machine:

lmmono10regular lmmono10regular lmmono10-regular.otf
lmmono12regular lmmono12regular lmmono12-regular.otf
lmmono8regular lmmono8regular lmmono8-regular.otf
lmmono9regular lmmono9regular lmmono9-regular.otf
lmmonocaps10regular lmmonocaps10regular lmmonocaps10-regular.otf
lmmonolt10regular lmmonolt10regular lmmonolt10-regular.otf
lmmonoltcond10regular lmmonoltcond10regular lmmonoltcond10-regular.otf
lmmonoprop10regular lmmonoprop10regular lmmonoprop10-regular.otf
lmmonoproplt10regular lmmonoproplt10regular lmmonoproplt10-regular.otf
lmmonoslant10regular lmmonoslant10regular lmmonoslant10-regular.otf

It does not show from this list but with name lookups first OpenType fonts are
checked and then Type1. In this case there are Type1 variants as well but they
are ignored. Fonts are registered under all names that make sense and can be
derived from its description. So:

mtxrun --script font --list --name --pattern="latinmodern*mono" --all

will give:

latinmodernmono lmmono9regular lmmono9-regular.otf
latinmodernmonocaps lmmonocaps10oblique lmmonocaps10-oblique.otf
latinmodernmonocapsitalic lmmonocaps10oblique lmmonocaps10-oblique.otf
latinmodernmonocapsnormal lmmonocaps10oblique lmmonocaps10-oblique.otf
latinmodernmonolight lmmonolt10regular lmmonolt10-regular.otf
latinmodernmonolightbold lmmonolt10boldoblique lmmonolt10-boldoblique.otf
latinmodernmonolightbolditalic lmmonolt10boldoblique lmmonolt10-boldoblique.otf
latinmodernmonolightcond lmmonoltcond10oblique lmmonoltcond10-oblique.otf

140

223

141 141

141 141

The font name mess 43

latinmodernmonolightconditalic lmmonoltcond10oblique lmmonoltcond10-oblique.otf
latinmodernmonolightcondlight lmmonoltcond10oblique lmmonoltcond10-oblique.otf
latinmodernmonolightitalic lmmonolt10oblique lmmonolt10-oblique.otf
latinmodernmonolightlight lmmonolt10regular lmmonolt10-regular.otf
latinmodernmononormal lmmono9regular lmmono9-regular.otf
latinmodernmonoprop lmmonoprop10oblique lmmonoprop10-oblique.otf
latinmodernmonopropitalic lmmonoprop10oblique lmmonoprop10-oblique.otf
latinmodernmonoproplight lmmonoproplt10oblique lmmonoproplt10-oblique.otf
latinmodernmonoproplightbold lmmonoproplt10boldoblique lmmonoproplt10-boldoblique.otf
latinmodernmonoproplightbolditalic lmmonoproplt10boldoblique lmmonoproplt10-boldoblique.otf
latinmodernmonoproplightitalic lmmonoproplt10oblique lmmonoproplt10-oblique.otf
latinmodernmonoproplightlight lmmonoproplt10oblique lmmonoproplt10-oblique.otf
latinmodernmonopropnormal lmmonoprop10oblique lmmonoprop10-oblique.otf
latinmodernmonoslanted lmmonoslant10regular lmmonoslant10-regular.otf
latinmodernmonoslantednormal lmmonoslant10regular lmmonoslant10-regular.otf

Watch the 9 point version in this list. It happens that there are 9, 10 and 12
point regular variants but all those extras come in 10 point only. So we get a
mix and if you want a specific design size you really have to be more specific.
Because one font can be registered with its fontname, fullname etc. it can show
up more than once in the list. You get what you ask for.

With this obscurity you might wonder why names make sense as lookups. One
advantage is that you can forget about special characters. Also, Latin Modern
with its design sizes is probably the worst case. So, although for most fonts a
name like the following will work, for Latin Modern it gives one of the design
sizes:

\definefont[SomeFont][name:latinmodernmonolightbolditalic]

But this is quite okay:

\definefont[SomeFont][name:lmmonolt10boldoblique]

So, in practice this method will work out as well as the file method but you can
best check if you get what you want.

4.4 Method 1: spec
We have now arrived at the third method, selecting by means of a specification.
This time we take the familyname as starting point (although we have some
fallback mechanisms):

\definefont[SomeSerif] [spec:times]

\definefont[SomeSerifBold] [spec:times-bold]

\definefont[SomeSerifItalic] [spec:times-italic]

141

224

142 142

142 142

44 The font name mess

\definefont[SomeSerifBoldItalic][spec:times-bold-italic]

The patterns are of the form:

spec:name-weight-style-width

spec:name-weight-style

spec:name-style

When only the name is used, it actually boils down to:

spec:name-normal-normal-normal

So, this is also valid:

spec:name-normal-italic-normal

spec:name-normal-normal-condensed

Again we can consult the database:

mtxrun --script font --list --spec lmmono-normal-italic

This prints the following list. The first column is the familyname, the fifth
column the fontname:

latinmodernmono normal italic normal lmmono10italic lmmono10-italic.otf
latinmodernmonoprop normal italic normal lmmonoprop10oblique lmmonoprop10-oblique.otf
lmmono10 normal italic normal lmmono10italic lmtti10.afm
lmmonoprop10 normal italic normal lmmonoprop10oblique lmvtto10.afm
lmmonocaps10 normal italic normal lmmonocaps10oblique lmtcso10.afm
latinmodernmonocaps normal italic normal lmmonocaps10oblique lmmonocaps10-oblique.otf

Watch the OpenType and Type1 mix. As we're just investigating here, the
lookup looks at the fontname and not at the familyname. At the TEX end you
use the familyname:

\definefont[SomeFont][spec:latinmodernmono-normal-italic-normal]

So, we have the following ways to access this font:

\definefont[SomeFont][file:lmmono10-italic]

\definefont[SomeFont][file:lmmono10-italic.otf]

\definefont[SomeFont][name:lmmono10italic]

\definefont[SomeFont][spec:latinmodernmono-normal-italic-normal]

142

225

143 143

143 143

The font name mess 45

As OpenType fonts are prefered over Type1 there is not much chance of a mixup.

As mentioned in the introduction, qualifications are somewhat inconsistent.
Among the weight we find: black, bol, bold, demi, demibold, extrabold, heavy,
light, medium, mediumbold, regular, semi, semibold, ultra, ultrabold and ul-
tralight. Styles are: ita, ital, italic, roman, regular, reverseoblique, oblique and
slanted. Examples of width are: book, cond, condensed, expanded, normal
and thin. Finally we have alternatives which can be anything.

When doing a lookup, some normalizations takes place, with the default always
being ‘normal’. But still the repertoire is large:

helveticaneue medium normal normal helveticaneuemedium HelveticaNeue.ttc index: 0
helveticaneue bold normal condensed helveticaneuecondensedbold HelveticaNeue.ttc index: 1
helveticaneue black normal condensed helveticaneuecondensedblack HelveticaNeue.ttc index: 2
helveticaneue ultralight italic thin helveticaneueultralightitalic HelveticaNeue.ttc index: 3
helveticaneue ultralight normal thin helveticaneueultralight HelveticaNeue.ttc index: 4
helveticaneue light italic normal helveticaneuelightitalic HelveticaNeue.ttc index: 5
helveticaneue light normal normal helveticaneuelight HelveticaNeue.ttc index: 6
helveticaneue bold italic normal helveticaneuebolditalic HelveticaNeue.ttc index: 7
helveticaneue normal italic normal helveticaneueitalic HelveticaNeue.ttc index: 8
helveticaneue bold normal normal helveticaneuebold HelveticaNeue.ttc index: 9
helveticaneue normal normal normal helveticaneue HelveticaNeue.ttc index: 10
helveticaneue normal normal condensed helveticaneuecondensed hlc_____.afm conflict: roman
helveticaneue bold normal condensed helveticaneueboldcond hlbc____.afm
helveticaneue black normal normal helveticaneueblackcond hlzc____.afm conflict: normal
helveticaneue black normal normal helveticaneueblack hlbl____.afm conflict: normal
helveticaneue normal normal normal helveticaneueroman lt_50259.afm conflict: regular

4.5 The font database
In MkIV we use a rather extensive font database which in addition to bare
information also contains a couple of hashes. When you use ConTEXt MkIV
and install a new font, you have to regenerate the file database. In a next TEX
run this will trigger a reload of the font database. Of course you can also force
a reload with:

mtxrun --script font --reload

As a summary we mention a few of the discussed calls of this script:

mtxrun --script font --list somename (== --pattern=*somename*)

mtxrun --script font --list --name somename
mtxrun --script font --list --name --pattern=*somename*

143

226

144 144

144 144

46 The font name mess

mtxrun --script font --list --spec somename
mtxrun --script font --list --spec somename-bold-italic
mtxrun --script font --list --spec --pattern=*somename*
mtxrun --script font --list --spec --filter="fontname=somename"
mtxrun --script font --list --spec --filter="familyname=somename,weight=bold,style=italic,width=condensed"

mtxrun --script font --list --file somename
mtxrun --script font --list --file --pattern=*somename*

The lists shown in before depend on what fonts are installed and their version.
They might not reflect reality at the time you read this.

4.6 Interfacing
Regular users never deal with the font database directly. However, if you write
font loading macros yourself, you can access the database from the TEX end.
First we show an example of an entry in the database, in this case TeXGyreTer-
mes Regular.

{

designsize = 100,

familyname = "texgyretermes",

filename = "texgyretermes-regular.otf",

fontname = "texgyretermesregular",

fontweight = "regular",

format = "otf",

fullname = "texgyretermesregular",

maxsize = 200,

minsize = 50,

rawname = "TeXGyreTermes-Regular",

style = "normal",

variant = "",

weight = "normal",

width = "normal",

}

Another example is Helvetica Neue Italic:

{

designsize = 0,

familyname = "helveticaneue",

filename = "HelveticaNeue.ttc",

fontname = "helveticaneueitalic",

fontweight = "book",

format = "ttc",

144

227

145 145

145 145

The font name mess 47

fullname = "helveticaneueitalic",

maxsize = 0,

minsize = 0,

rawname = "Helvetica Neue Italic",

style = "italic",

subfont = 8,

variant = "",

weight = "normal",

width = "normal",

}

As you can see, some fields can be meaningless, like the sizes. As using the
low level TEX interface assumes some knowledge, we stick here to an example:

\def\TestLookup#1%

{\dolookupfontbyspec{#1}

pattern: #1, found: \dolookupnoffound

\blank

\dorecurse {\dolookupnoffound} {%

\recurselevel:~\dolookupgetkeyofindex{fontname}{\recurselevel}%

\quad

}%

\blank}

\TestLookup{familyname=helveticaneue}

\TestLookup{familyname=helveticaneue,weight=bold}

\TestLookup{familyname=helveticaneue,weight=bold,style=italic}

You can use the following commands:

\dolookupfontbyspec {key=value list}

\dolookupnoffound

\dolookupgetkeyofindex {key}{index}

\dolookupgetkey {key}

First you do a lookup. After that there can be one or more matches and you
can access the fields of each match. What you do with the information is up
to yourself.

4.7 A few remarks
The fact that modern TEX engines can access system fonts is promoted as a
virtue. The previous sections demonstrated that in practice this does not really

145

228

146 146

146 146

48 The font name mess

free us from a name mess. Of course, when we use a really small TEX tree, and
system fonts only, there is not much that can go wrong, but when you have
extra fonts installed there can be clashes.

We're better off with filenames than we were in former times when operating
systems and media forced distributors to stick to 8 characters in filenames.
But that does not guarantee that today's shipments are more consistent. And
as there are still some limitations in the length of fontnames, obscure names
will be with us for a long time to come.

146

229

147 147

147 147

Deeply nested notes 49

5 Deeply nested notes
5.1 Introduction
One of the mechanisms that is not on a users retina when he or she starts using
TEX is ‘inserts’. An insert is material that is entered at one point but will appear
somewhere else in the output. Footnotes for instance can be implemented
using inserts. You create a reference symbol in the running text and put note
text at the bottom of the page or at the end of a chapter or document. But as
you don't want to do that moving around of notes yourself TEX provides macro
writers with the inserts mechanism that will do some of the housekeeping.
Inserts are quite clever in the sense that they are taken into account when TEX
splits off a page. A single insert can even be split over two or more pages.

Other examples of inserts are floats that move to the top or bottom of the
page depending on requirements and/or available space. Of course the macro
package is responsible for packaging such a float (for instance an image) but by
finally putting it in an insert TEX itself will attempt to deal with accumulated
floats and help you move kept over floats to following pages. When the page
is finally assembled (in the output routine) the inserts for that page become
available and can be put at the spot where they belong. In the process TEX has
made sure that we have the right amount of space available.

However, let's get back to notes. In ConTEXt we can have many variants of
them, each taken care of by its own class of inserts. This works quite well, as
long as a note is visible for TEX which means as much as: ends up in the main
page flow. Consider the following situation:

before \footnote{the note} after

When the text is typeset, a symbol is placed directly after before and the note
itself ends up at the bottom of the page. It also works when we wrap the text
in an horizontal box:

\hbox{before \footnote{the note} after}

But it fails as soon as we go further:

\hbox{\hbox{before \footnote{the note} after}}

Here we get the reference but no note. This also fails:

\vbox{before \footnote{the note} after}

147

230

148 148

148 148

50 Deeply nested notes

Can you imagine what happens if we do the following?

\starttabulate

\NC knuth \NC test \footnote{knuth} \input knuth \NC \NR

\NC tufte \NC test \footnote{tufte} \input tufte \NC \NR

\NC Ward \NC test \footnote{ward} \input ward \NC \NR

\stoptabulate

This mechanism uses alignments as well as quite some boxes. The paragraphs
are nicely split over pages but still appear as boxes to TEX which make in-
serts invisible. Only the three symbols would remain visible. But because in
ConTEXt we know when notes tend to disappear, we take some provisions, and
contrary to what you might expect the notes actually do show up. However,
they are flushed in such a way that they end up on the page where the table
ends. Normally this is no big deal as we will often use local notes that end up
at the end of the table instead of the bottom of the page, but still.

The mechanism to deal with notes in ConTEXt is somewhat complex at the
source code level. To mention a few properties we have to deal with:

• Notes are collected and can be accessed any time.
• Notes are flushed either directly or delayed.
• Notes can be placed anywhere, any time, perhaps in subsets.
• Notes can be associated to lines in paragraphs.
• Notes can be placed several times with different layouts.

So, we have some control over flushing and placement, but real synchronization
between for instance table entries having notes and the note content ending up
on the same page is impossible.

In the LuaTEX team we have been discussing more control over inserts and we
will definitely deal with that in upcoming releases as more control is needed for
complex multi-column document layouts. But as we have some other priorities
these extensions have to wait.

As a prelude to them I experimented a bit with making these deeply buried
inserts visible. Of course I use Lua for this as TEX itself does not provide the
kind of access we need for this kind of of manipulations.

5.2 Deep down inside
Say that we have the following boxed footnote. How does that end up in LuaTEX?

148

231

149 149

149 149

Deeply nested notes 51

\vbox{a\footnote{b}c}

Actually it depends on the macro package but the principles remain the same.
In LuaTEX 0.50 and the ConTEXt version used at the time of this writing we get
(nested) linked list that prints as follows:

<node 26 < 862 > nil : vlist 0>

<node 401 < 838 > 507 : hlist 1>

<node 30 < 611 > 580 : whatsit 6>

<node 611 < 580 > 493 : hlist 0>

<node 580 < 493 > 653 : glyph 256>

<node 493 < 653 > 797 : penalty 0>

<node 653 < 797 > 424 : kern 1>

<node 797 < 424 > 826 : hlist 2>

<node 445 < 563 > nil : hlist 2>

<node 420 < 817 > 821 : whatsit 35>

<node 817 < 821 > nil : glyph 256>

<node 507 < 826 > 1272 : kern 1>

<node 826 < 1272 > 1333 : glyph 256>

<node 1272 < 1333 > 830 : penalty 0>

<node 1333 < 830 > 888 : glue 15>

<node 830 < 888 > nil : glue 9>

<node 838 < 507 > nil : ins 131>

The numbers are internal references to the node memory pool. Each line rep-
resents a node:

<node prev_index < index > next_index : type subtype>

The whatsits carry directional information and the deeply nested hlist is the
note symbol. If we forget about whatsits, kerns and penalties, we can simplify
this listing to:

<node 26 < 862 > nil : vlist 0>

<node 401 < 838 > 507 : hlist 1>

<node 580 < 493 > 653 : glyph 256>

<node 797 < 424 > 826 : hlist 2>

<node 445 < 563 > nil : hlist 2>

<node 817 < 821 > nil : glyph 256>

<node 826 < 1272 > 1333 : glyph 256>

<node 838 < 507 > nil : ins 131>

So, we have a vlist (the \vbox), which has one line being a hlist. Inside we
have a glyph (the ‘a’) followed by the raised symbol (the ‘1’) and next comes the

149

232

150 150

150 150

52 Deeply nested notes

second glyph (the ‘b’). But watch how the insert ends up at the end of the line.
Although the insert will not show up in the document, it sits there waiting to
be used. So we have:

<node 26 < 862 > nil : vlist 0>

<node 401 < 838 > 507 : hlist 1>

<node 838 < 507 > nil : ins 131>

but we need:

<node 26 < 862 > nil : vlist 0>

<node 401 < 838 > 507 : hlist 1>

<node 838 < 507 > nil : ins 131>

Now, we could use the fact that inserts end up at the end of the line, but as
we need to recursively identify them anyway, we cannot actually use this fact
to optimize the code.

In case you wonder how multiple inserts look like, here is an example:

\vbox{a\footnote{b}\footnote{c}d}

This boils down to:

<node 26 < 1324 > nil : vlist 0>

<node 401 < 1348 > 507 : hlist 1>

<node 1348 < 507 > 457 : ins 131>

<node 507 < 457 > nil : ins 131>

In case you wonder what more can end up at the end, vertically adjusted ma-
terial (\vadjust) as well as marks (\mark) also gets that treatment.

\vbox{a\footnote{b}\vadjust{c}\footnote{d}e\mark{f}}

As you see, we start with the line itself, followed by a mixture of inserts and
vertical adjusted content (that will be placed before that line). This trace also
shows the list 2 levels deep.

<node 26 < 1324 > nil : vlist 0>

<node 401 < 1348 > 507 : hlist 1>

<node 1348 < 507 > 862 : ins 131>

<node 507 < 862 > 240 : hlist 1>

<node 862 < 240 > 2288 : ins 131>

<node 240 < 2288 > nil : mark 0>

150

233

151 151

151 151

Deeply nested notes 53

Currently vadjust nodes have the same subtype as an ordinary hlist but in
LuaTEX versions beyond 0.50 they will have a dedicated subtype.

We can summarize the pattern of one ‘line’ in a vertical list as:

[hlist][insert|mark|vadjust]*[penalty|glue]+

In case you wonder what happens with for instance specials, literals (and other
whatits): these end up in the hlist that holds the line. Only inserts, marks and
vadjusts migrate to the outer level, but as they stay inside the vlist, they are
not visible to the page builder unless we're dealing with the main vertical list.
Compare:

this is a regular paragraph possibly with inserts and they

will be visible as the lines are appended to the main

vertical list \par

with:

but \vbox {this is a nested paragraph where inserts will

stay with the box} and not migrate here \par

So much for the details; let's move on the how we can get around this phenom-
enon.

5.3 Some LuaTEX magic
The following code is just the first variant I made and ConTEXt ships with a more
extensive variant. Also, in ConTEXt this is part of a larger suite of manipulative
actions but it does not make much sense (at least not now) to discuss this
framework here.

We start with defining a couple of convenient shortcuts.

local hlist = node.id('hlist')

local vlist = node.id('vlist')

local ins = node.id('ins')

We can write a more compact solution but splitting up the functionality better
shows what we're doing. The main migration function hooks into the callback
build_page. Contrary to other callbacks that do phases in building lists and
pages this callback does not expect the head of a list as argument. Instead, we
operate directly on the additions to the main vertical list which is accessible as
tex.lists.contrib_head.

151

234

152 152

152 152

54 Deeply nested notes

local deal_with_inserts -- forward reference

local function migrate_inserts(where)

local current = tex.lists.contrib_head

while current do

local id = current.id

if id == vlist or id == hlist then

current = deal_with_inserts(current)

end

current = current.next

end

end

callback.register('buildpage_filter',migrate_inserts)

So, effectively we scan for vertical and horizontal lists and deal with embedded
inserts when we find them. In ConTEXt the migratory function is just one of
the functions that is applied to this filter.

We locate inserts and collect them in a list with first and last as head and
tail and do so recursively. When we have run into inserts we insert them after
the horizontal or vertical list that had embedded them.

local locate -- forward reference

deal_with_inserts = function(head)

local h, first, last = head.list, nil, nil

while h do

local id = h.id

if id == vlist or id == hlist then

h, first, last = locate(h,first,last)

end

h = h.next

end

if first then

local n = head.next

head.next = first

first.prev = head

if n then

last.next = n

n.prev = last

end

return last

152

235

153 153

153 153

Deeply nested notes 55

else

return head

end

end

The locate function removes inserts and adds them to a new list, that is passed
on down in recursive calls and eventually is returned back to the caller.

locate = function(head,first,last)

local current = head

while current do

local id = current.id

if id == vlist or id == hlist then

current.list, first, last = locate(current.list,first,last)

current = current.next

elseif id == ins then

local insert = current

head, current = node.remove(head,current)

insert.next = nil

if first then

insert.prev = last

last.next = insert

else

insert.prev = nil

first = insert

end

last = insert

else

current = current.next

end

end

return head, first, last

end

As we can encounter the content several times in a row, it makes sense to mark
already processed inserts. This can for instance be done by setting an attribute.
Of course one has to make sure that this attribute is not used elsewhere.

if not node.has_attribute(current,8061) then

node.set_attribute(current,8061,1)

current = deal_with_inserts(current)

end

153

236

154 154

154 154

56 Deeply nested notes

or integrated:

local has_attribute = node.has_attribute

local set_attribute = node.set_attribute

local function migrate_inserts(where)

local current = tex.lists.contrib_head

while current do

local id = current.id

if id == vlist or id == hlist then

if has_attribute(current,8061) then

-- maybe some tracing message

else

set_attribute(current,8061,1)

current = deal_with_inserts(current)

end

end

current = current.next

end

end

callback.register('buildpage_filter',migrate_inserts)

5.4 A few remarks
Surprisingly, the amount of code needed for insert migration is not that large.
This makes one wonder why TEX does not provide this feature itself as it could
have saved macro writers quite some time and headaches. Performance can
be a reason, unpredictable usage and side effects might be another. Only one
person knows the answer.

In ConTEXt this mechanism is built in and it can be enabled by saying:

\automigrateinserts

\automigratemarks

As you can see here, we can also migrate marks. Future versions of ConTEXt
will do this automatically and also provide some control over what classes of
inserts are moved around. We will probably overhaul the note handling mecha-
nism a few more times anyway as LuaTEX evolves and the demands from critical
editions that use many kind of notes raise.

154

237

155 155

155 155

Deeply nested notes 57

5.5 Summary of code
The following code should work in plain TEX:

\directlua 0 {

local hlist = node.id('hlist')

local vlist = node.id('vlist')

local ins = node.id('ins')

local has_attribute = node.has_attribute

local set_attribute = node.set_attribute

local status = 8061

local function locate(head,first,last)

local current = head

while current do

local id = current.id

if id == vlist or id == hlist then

current.list, first, last = locate(current.list,first,last)

current = current.next

elseif id == ins then

local insert = current

head, current = node.remove(head,current)

insert.next = nil

if first then

insert.prev, last.next = last, insert

else

insert.prev, first = nil, insert

end

last = insert

else

current = current.next

end

end

return head, first, last

end

local function migrate_inserts(where)

local current = tex.lists.contrib_head

while current do

local id = current.id

if id == vlist or id == hlist and

not has_attribute(current,status) then

set_attribute(current,status,1)

155

238

156 156

156 156

58 Deeply nested notes

local h, first, last = current.list, nil, nil

while h do

local id = h.id

if id == vlist or id == hlist then

h, first, last = locate(h,first,last)

end

h = h.next

end

if first then

local n = current.next

if n then

last.next, n.prev = n, last

end

current.next, first.prev = first, current

current = last

end

end

current = current.next

end

end

callback.register('buildpage_filter', migrate_inserts)

}

Alternatively you can put the code in a file and load that with:

\directlua {require "luatex-inserts.lua"}

A simple plain test is:

\vbox{a\footnote{1}{1}b}

\hbox{a\footnote{2}{2}b}

The first footnote only shows up when we have hooked our migrator into the
callback. A not that bad result for 60 lines of Lua code.

156

239

157 157

157 157

Backend code 59

6 Backend code
6.1 Introduction
In ConTEXt we've always separated the backend code in so called driver files.
This means that in the code related to typesetting only calls to the api take
place, and no backend specific code is to be used. That way we can support
backend like dvipsone (and dviwindo), dvips, acrobat, pdftex and dvipdfmx with
one interface. A simular model is used in MkIV although at the moment we
only have one backend: pdf.8

Some ConTEXt users like to add their own pdf specific code to their styles or
modules. However, such extensions can interfere with existing code, especially
when resources are involved. This has to be done via the official helper macros.

In the next sections an overview will be given of the current approach. There are
still quite some rough edges but these will be polished as soon as the backend
code is more isolated in LuaTEX itself.

6.2 Structure
A pdf file is tree of indirect objects. Each object has a number and the file
contains a table (or more tables) that relates these numbers to positions in a
file (or position in a compressed object stream). That way a file can be viewed
without reading all data: a viewer only loads what is needed.

1 0 obj <<

/Name (test) /Address 2 0 R

>>

2 0 obj [

(Main Street) (24) (postal code) (MyPlace)

]

For the sake of the discussion we consider strings like (test) also to be objects.
In the next table we list what we can encounter in a pdf file. There can be
indirect objects in which case a reference is used (2 0 R) and direct ones.

type form meaning

constant /... A symbol (prescribed string).
string (...) A sequence of characters in pdfdoc encoding
unicode <...> A sequence of characters in utf16 encoding

8
At this moment we only support the native pdf backend but future versions might support xml
(html) output as well.

157

240

158 158

158 158

60 Backend code

number 3.1415 A number constant.
boolean true/false A boolean constant.
reference N 0 R A reference to an object
dictionary << ... >> A collection of key value pairs where the value itself

is an (indirect) object.
array [...] A list of objects or references to objects.
stream A sequence of bytes either or not packaged with a

dictionary that contains descriptive data.
xform A special kind of object containing an reusable blob

of data, for example an image.

While writing additional backend code, we mostly create dictionaries.

<< /Name (test) /Address 2 0 R >>

In this case the indirect object can look like:

[(Main Street) (24) (postal code) (MyPlace)]

It all starts in the document's root object. From there we access the page tree
and resources. Each page carries its own resource information which makes
random access easier. A page has a page stream and there we find the to be
rendered content as a mixture of (Unicode) strings and special drawing and
rendering operators. Here we will not discuss them as they are mostly gener-
ated by the engine itself or dedicated subsystems like the MetaPost converter.
There we use literal or \latelua whatsits to inject code into the current stream.

In the ConTEXt MkII backend drivers code you will see objects in their ver-
bose form. The content is passed on using special primitives, like \pdfobj,
\pdfannot, \pdfcatalog, etc. In MkIV no such primitives are used. In fact,
some of them are overloaded to do nothing at all. In the Lua backend code you
will find function calls like:

local d = lpdf.dictionary {

Name = lpdf.string("test"),

Address = lpdf.array {

"Main Street", "24", "postal code", "MyPlace",

}

}

Equaly valid is:

local d = lpdf.dictionary()

d.Name = "test"

158

241

159 159

159 159

Backend code 61

Eventually the object will end up in the file using calls like:

local r = pdf.immediateobj(tostring(d))

or using the wrapper (which permits tracing):

local r = lpdf.flushobject(d)

The object content will be serialized according to the formal specification so
the proper << >> etc. are added. If you want the content instead you can use
a function call:

local dict = d()

An example of using references is:

local a = lpdf.array {

"Main Street", "24", "postal code", "MyPlace",

}

local d = lpdf.dictionary {

Name = lpdf.string("test"),

Address = lpdf.reference(a),

}

local r = lpdf.flushobject(d)

We have the following creators. Their arguments are optional.

function optional parameter

lpdf.stream indexed table of operators
lpdf.dictionary hash wit key/values
lpdf.array indexed table of objects
lpdf.unicode string
lpdf.string string
lpdf.number number
lpdf.constant string
lpdf.null

lpdf.boolean boolean
lpdf.true

lpdf.false

lpdf.reference string
lpdf.verbose indexed table of strings

Flushing objects is done with:

159

242

160 160

160 160

62 Backend code

lpdf.flushobject(obj)

Reserving object is or course possible and done with:

local r = lpdf.reserveobject()

Such an object is flushed with:

lpdf.flushobject(r,obj)

We also support named objects:

lpdf.reserveobject("myobject")

lpdf.flushobject("myobject",obj)

6.3 Resources
While LuaTEX itself will embed all resources related to regular typesetting, MkIV
has to take care of embedding those related to special tricks, like annotations,
spot colors, layers, shades, transparencies, metadata, etc. If you ever took
a look in the MkII spec-* files you might have gotten the impression that it
quickly becomes messy. The code there is actually rather old and evolved in
sync with the pdf format as well as pdfTEX and dvipdfmx maturing to their
current state. As a result we have a dedicated object referencing model that
sometimes results in multiple passed due to forward references. We could have
gotten away from that with the latest versions of pdfTEX as it provides means
to reserve object numbers but it makes not much sense to do that now that
MkII is frozen.

Because third party modules (like tikz) also can add resources like in MkII using
an api that makes sure that no interference takes place. Think of macros like:

\pdfbackendsetcatalog {key}{string}

\pdfbackendsetinfo {key}{string}

\pdfbackendsetname {key}{string}

\pdfbackendsetpageattribute {key}{string}

\pdfbackendsetpagesattribute{key}{string}

\pdfbackendsetpageresource {key}{string}

\pdfbackendsetextgstate {key}{pdfdata}

\pdfbackendsetcolorspace {key}{pdfdata}

\pdfbackendsetpattern {key}{pdfdata}

160

243

161 161

161 161

Backend code 63

\pdfbackendsetshade {key}{pdfdata}

One is free to use the Lua interface instead, as there one has more possibilities.
The names are similar, like:

lpdf.addtoinfo(key,anything_valid_pdf)

At the time of this writing (LuaTEX .50) there are still places where TEX and
Lua code is interwoven in a non optimal way, but that will change in the future
as the backend is completely separated and we can do more TEX trickery at the
Lua end.

Also, currently we expose more of the backend code that we like and future
versions will have a more restricted access. The following function will stay
public:

lpdf.addtopageresources (key,value)

lpdf.addtopageattributes (key,value)

lpdf.addtopagesattributes(key,value)

lpdf.adddocumentextgstate(key,value)

lpdf.adddocumentcolorspac(key,value)

lpdf.adddocumentpattern (key,value)

lpdf.adddocumentshade (key,value)

lpdf.addtocatalog (key,value)

lpdf.addtoinfo (key,value)

lpdf.addtonames (key,value)

There a bit of tracing built in and we will add some more in due time:

\enabletrackers

[backend.finalizers,

backend.resources,

backend.objects,

backend.detail]

As with all trackers you can also pass them on the command line, for example:

context --trackers=backend.* yourfile

The reference related backend mechanisms have their own trackers.

161

244

162 162

162 162

64 Backend code

6.4 Transformations
There is at the time of this writing still some backend related code at the TEX
end that needs a cleanup. Most noticeable is the code that deals with transfor-
mations (like scaling). At some moment in pdfTEX a primitive was introduced
but it was not completely covering the transform matrix so we never used it. In
LuaTEX we will come up with a better mechanism. Till that moment we stick
to the MkII method.

6.5 Annotations
The Lua based backend of MkIV is not so much less code, but definitely cleaner.
The reason why there is quite some code is because in ConTEXt we also handle
annotations and destinations in Lua. In other words: TEX is not bothered by
the backend any more. We could make that split without too much impact
as we never depended on pdfTEX hyperlink related features and used generic
annotations instead. It's for that reason that ConTEXt has always been able to
nest hyperlinks and have annotations with a chain of actions.

Another reason for doing it all at the Lua end is that as in MkII we have to
deal with the rather hybrid cross reference mechanisms which uses a sort of
language and parsing this is also easier at the Lua end. Think of:

\definereference[somesound][StartSound(attention)]

\at {just some page} [someplace,somesound,StartMovie(somemovie)]

We parse the specification expanding shortcuts when needed, create an action
chain, make sure that the movie related resources are taken care of (normally
the movie itself will be a figure), and turn the three words into hyperlinks. As
this all happens in Lua we have less TEX code. Contrary to what you might
expect, the Lua code is not that much faster as the MkII TEX code is rather
optimized.

Special features like JavaScript as well as widgets (and forms) are also reimple-
mented. Support for JavaScript is not that complex at all, but as in ConTEXt
we can organize scripts in collections and have automatic inclusion of used
functions, still some code is needed. As we now do this in Lua we use less TEX
memory. Reimplementing widgets took a bit more work as I used the oppor-
tunity to remove hacks for older viewers. As support for widgets is somewhat
instable in viewers quite some testing was needed, especially because we keep
supporting cloned and copied fields (resulting in widget trees).

An interesting complication with widgets is that each instance can have a lot

162

245

163 163

163 163

Backend code 65

of properties and as we want to be able to use thousands of them in one doc-
ument, each with different properties, we have efficient storage in MkII and
want to do the same in Lua. Most code at the TEX end is related to passing all
those options.

You could use the Lua functions that relate to annotations etc. but normally
you will use the regular ConTEXt user interface. For practical reasons, the
backend code is grouped in several tables:

The backends table has subtables for each backend and currently there is only
one: pdf. Each backend provides tables itself. In the codeinjections name-
space we collect functions that don't interfere with the typesetting or typeset
result, like inserting resources of all kind (movies, attachment, etc.), widget
related functionality, and in fact everything that does not fit into the other cat-
egories. In nodeinjections we organize functions that inject literal pdf code
in the nodelist which then ends up in the pdf stream: color, layers, etc. The
registrations table is reserved for functions related to resources that result
from node injections: spot colors, transparencies, etc. Once the backend code
is finished we might come up with another organization. No matter what we
end up with, the way the backends table is supposed to be organized deter-
mines the api and those who have seen the MkII backend code will recognize
some of it.

6.6 Metadata
We always had the opportunity to set the information fields in a pdf but stan-
dardization forces us to add these large verbose metadata blobs. As this blob
is codes in xml we use the built in xml parser to fill a template. Thanks to
extensive testing and research by Peter Rolf we now have a rather compleet
support for pdf/x related demands. This will definitely evolve with the advance
of the pdf specification. You can replace the information with your own but we
a suggest that you stay away from this metadata mess as far as possible.

6.7 Helpers
If you look into the lpdf-*.lua files you will find more functions. Some are
public helpers, like:

lpdf.toeight(str) returns (string)

lpdf.cleaned(str) returns escaped string

lpdf.tosixteen(str) returns <utf16 sequence>

An example of another public function is:

163

246

164 164

164 164

66 Backend code

lpdf.sharedobj(content)

This one flushes the object and returns the object number. Already defined
objects are reused. In addition to this code driven optimization, some other
optimization and reuse takes place but all that happens without user inter-
vention.

164

247

165 165

165 165

Callbacks 67

7 Callbacks
7.1 Introduction
Callbacks are the means to extend the basic TEX engine's functionality in
LuaTEX and ConTEXt MkIV uses them extensively. Although the interface is
still in development we see users popping in their own functionality and al-
though there is nothing wrong with that, it can open a can of worms.

It is for this reason that from now on we protect the MkIV callbacks from being
overloaded. For those who still want to add their own code some hooks are
provided. Here we will address some of these issues.

7.2 Actions
There are already quite some callbacks and we use most of them. In the follow-
ing list the callbacks tagged with enabled are used and frozen, the ones tagged
disabled are blocked and never used, while the ones tagged undefined are yet
unused.

buildpage_filter enabled vertical spacing etc (mvl)
char_exists undefined

define_font enabled definition of fonts (tfmtable preparation)
find_data_file enabled find file using resolver
find_enc_file enabled find file using resolver
find_font_file enabled find file using resolver
find_format_file enabled find file using resolver
find_image_file enabled find file using resolver
find_map_file enabled find file using resolver
find_opentype_file enabled find file using resolver
find_output_file enabled find file using resolver
find_pk_file enabled find file using resolver
find_read_file enabled find file using resolver
find_sfd_file enabled find file using resolver
find_truetype_file enabled find file using resolver
find_type1_file enabled find file using resolver
find_vf_file enabled find file using resolver
find_write_file enabled find file using resolver
finish_pdffile enabled

hpack_filter enabled all kind of horizontal manipulations
hyphenate disabled normal hyphenation routine, called else-

where
kerning disabled normal kerning routine, called elsewhere

165

248

166 166

166 166

68 Callbacks

ligaturing disabled normal ligaturing routine, called else-
where

linebreak_filter enabled breaking paragraps into lines
mlist_to_hlist enabled preprocessing math list
open_read_file enabled open file for reading
post_linebreak_filter enabled all kind of horizontal manipulations (af-

ter par break)
pre_dump enabled lua related finalizers called before we

dump the format
pre_linebreak_filter enabled all kind of horizontal manipulations (be-

fore par break)
pre_output_filter undefined

process_input_buffer disabled actions performed when reading data
process_output_buffer disabled actions performed when writing data
read_data_file enabled read file at once
read_enc_file enabled read file at once
read_font_file enabled read file at once
read_map_file enabled read file at once
read_opentype_file undefined read file at once
read_pk_file enabled read file at once
read_sfd_file enabled read file at once
read_truetype_file undefined read file at once
read_type1_file undefined read file at once
read_vf_file enabled read file at once
show_error_hook enabled

start_page_number enabled actions performed at the beginning of a
shipout

start_run enabled actions performed at the beginning of a
run

stop_page_number enabled actions performed at the end of a shipout
stop_run enabled actions performed at the end of a run
token_filter undefined

vpack_filter enabled vertical spacing etc

You can be rather sure that we will eventually use all callbacks one way or the
other. Also, some callbacks are only set when certain functionality is enabled.

It may sound somewhat harsh but if users kick in their own code, we cannot
guarantee other ConTEXt behaviour and support becomes a pain. If you really
need to use a callback yourself, you should use one of the hooks and make
sure that you return the right values.

The exact working of of the callback handler is not something we need to bother
users with so we stick to a simple description. The next list is not definitive and

166

249

167 167

167 167

Callbacks 69

evolves. For instance we might at some point decide to add more granularity.

We only open up some of the node list related callbacks. All callbacks related
to file handling, font definition and housekeeping are frozen. Most if the mech-
anisms that use these callbacks have hooks anyway.

Of course you can overload the built in functionality as this is currently not
protected, but we might do that as well once MkIV is stable enough. After all,
at the time of this writing overloading can be handy when testing.

This leaves the node list manipulators. The are grouped as follows:

category callback usage

processors pre_linebreak_filter called just before the paragraph is
broken into lines

hpack_filter called just before a horizontal box is
constructed

finalizers post_linebreak_filter called just after the paragraph has
been broken into lines

shipouts no callback yet applied to the box (or xform) that is to
be shipped out

mvlbuilders buildpage_filter called after some material has been
added to the main vertical list

vboxbuilders vpack_filter called when some material is added
to a vertical box

math mlist_to_hlist called just after the math list is cre-
ated, before it is turned into an hori-
zontal list

Each category has several subcategories but for users only two make sense:
before and after. Say that you want to hook some tracing into the mvlbuilder.
This is how it's done:

function third.mymodule.myfunction(where)

nodes.show_simple_list(tex.lists.contrib_head)

end

nodes.tasks.appendaction("processors", "before", "third.mymodule.myfunction")

As you can see, in this case the function gets no head passed (at least not
currently). This example also assumes that you know how to access the right
items. The arguments and return values are given below.9

9
This interface might change a bit in future versions of ConTEXt. Therefore we will not discuss

167

250

168 168

168 168

70 Callbacks

category arguments return value

processors head, ... head, done

finalizers head, ... head, done

shipouts head head, done

mvlbuilders done

vboxbuilders head, ... head, done

math head, ... head, done

7.3 Tasks
In the previous section we already saw that the actions are in fact tasks and
that we can append (and therefore also prepend) to a list of tasks. The before

and after task lists are valid hooks for users contrary to the other tasks that
can make up an action. However, the task builder is generic enough for users
to be used for individual tasks that are plugged into the user hooks.

Of course at some point, too many nested tasks bring a performance penalty
with them. At the end of a run MkIV reports some statistics and timings and
these can give you an idea how much time is spent in Lua. Of course this is a
rough estimate only.

The following tables list all the registered tasks for the processors actions:

category function

before unset

normalizers fonts.collections.process

fonts.checkers.missing

characters typesetters.directions.handler

typesetters.cases.handler

typesetters.breakpoints.handler

scripts.preprocess

words builders.kernel.hyphenation

languages.words.check

fonts builders.paragraphs.solutions.splitters.split

nodes.handlers.characters

nodes.injections.handler

nodes.handlers.protectglyphs

builders.kernel.ligaturing

builders.kernel.kerning

nodes.handlers.stripping

the few more optional arguments that are possible.

168

251

169 169

169 169

Callbacks 71

fonts.goodies.colorschemes.coloring

lists typesetters.spacings.handler

typesetters.kerns.handler

typesetters.digits.handler

after unset

Some of these do have subtasks and some of these even more, so you can
imagine that quite some action is going on there.

The finalizer tasks are:

category function

before unset

normalizers unset

fonts builders.paragraphs.solutions.splitters.optimize

lists nodes.handlers.graphicvadjust

after unset

Shipouts concern:

category function

before unset

normalizers nodes.handlers.cleanuppage

nodes.references.handler

nodes.destinations.handler

nodes.rules.handler

nodes.shifts.handler

structures.tags.handler

nodes.handlers.accessibility

nodes.handlers.backgrounds

finishers attributes.colors.handler

attributes.transparencies.handler

attributes.colorintents.handler

attributes.effects.handler

attributes.viewerlayers.handler

after unset

There are not that many mvlbuilder task currently:

category function

169

252

170 170

170 170

72 Callbacks

before unset

normalizers streams.collect

nodes.handlers.migrate

builders.vspacing.pagehandler

after unset

The vboxbuilder perform similar tasks:

category function

before unset

normalizers builders.vspacing.vboxhandler

after unset

Finally, we have tasks related to the math list:

category function

before unset

normalizers noads.handlers.relocate

noads.handlers.resize

noads.handlers.respace

noads.handlers.check

noads.handlers.tags

builders builders.kernel.mlist_to_hlist

after unset

As MkIV is developed in sync with LuaTEX and code changes from experimental
to more final and reverse, you should not be too surprised if the registered
function names change.

You can create your own task list with:

nodes.tasks.new("mytasks",{ "one", "two" })

After that you can register functions. You can append as well as prepend them
either or not at a specific position.

nodes.tasks.appendaction ("mytask","one","bla.alpha")

nodes.tasks.appendaction ("mytask","one","bla.beta")

nodes.tasks.prependaction("mytask","two","bla.gamma")

nodes.tasks.prependaction("mytask","two","bla.delta")

170

253

171 171

171 171

Callbacks 73

nodes.tasks.appendaction ("mytask","one","bla.whatever","bla.alpha")

Functions can also be removed:

nodes.tasks.removeaction("mytask","one","bla.whatever")

As removal is somewhat drastic, it is also possible to enable and disable func-
tions. From the fact that with these two functions you don't specify a category
(like one or two) you can conclude that the function names need to be unique
within the task list or else all with the same name within this task will be
disabled.

nodes.tasks.enableaction ("mytask","bla.whatever")

nodes.tasks.disableaction("mytask","bla.whatever")

The same can be done with a complete category:

nodes.tasks.enablegroup ("mytask","one")

nodes.tasks.disablegroup("mytask","one")

There is one function left:

nodes.tasks.actions("mytask",2)

This function returns a function that when called will perform the tasks. In
this case the function takes two extra arguments in addition to head.10

Tasks themselves are implemented on top of sequences but we won't discuss
them here.

7.4 Paragraph and page builders
Building paragraphs and pages is implemented differently and has no user
hooks. There is a mechanism for plugins but the interface is quite experimen-
tal.

10
Specifying this number permits for some optimization but is not really needed

171

254

172 172

172 172

74 Bibliographies

8 Bibliographies
8.1 Introduction
Already early in the history of ConTEXt Taco Hoekwater wrote a module that
dealt with bibTEX databases in a ConTEXt like way. Personally I never had to
use a bibliography so I'm far from aan expert in this area. However, going from
some text database format to something typeset is generic enough for me to be
involved.

The involvement started when MkIV showed up. Because quite some core
mechanisms have been reimplemented, also some that the module used, a
dedicated MkIV variant had to be made. This was not that hard to do as it
mostly meant stripping code and replacing the specific reference mechanism
by one using lists. That way we got a few bonus features but in general we can
say that the module is downward compatible.

Already a while ago Taco and I discussed supporting bibliographies that use
xml as format and although we have not settled on some standard it makes
sense to explore the possibilities. The advantage of using xml is that we can
use the built in subsystem for filtering and manipulating entries.

This chapter is dedicated to Thomas Schmitz who not only use bibTEX but also
has used MkIV xml right from the start and provides valuable feedback on both
subsystems.

Keep in mind that eventually we will provide a high level interface so that users
won't notice much of a difference unless they want to go beyond what they use
now.

8.2 Sessions
As usual in ConTEXt, we organize the featureset in such a way that we can
group them and use several such sets in one documents without interference.
It all starts by defining a session:

\definebibtexsession [somebibtex]

Next we register a couple of databases (from the beebe collection on TEXlive:

\registerbibtexfile [somebibtex] [tugboat.bib]

\registerbibtexfile [somebibtex] [komoedie.bib]

The files are loaded immediately and you can check this by looking at the log

172

255

173 173

173 173

Bibliographies 75

where we get a report like:

mkiv lua stats : bibtex load time - 0.125 seconds (1524045 bytes, 2745 definitions, 7 shortcuts)

In a bibtex database there can be symbols (shortcuts to strings). Although
these are expanded, it has no consequence for memory usage as Lua hashes
its strings.

When we're done registering we need to prepare the session:11

\preparebibtexsession [somebibtex] % [convert]

Say that we want to typeset a table with the publications of where we only list
the the author and title. As we use the xml interface we do so using setups:

\startxmlsetups bibtex:one

\starttabulate[|Bl|p|]

\NC tag \NC \xmlatt{#1}{tag} \NC\NR

\NC author\NC \xmlfilter{#1}{/field[@name='author']/context()} \NC\NR

\NC title \NC \xmlfilter{#1}{/field[@name='title']/context()} \NC\NR

\stoptabulate

\stopxmlsetups

We will now apply this setup to the loaded tree:

\startxmlsetups bibtex:bibtex

\xmlfilter{#1}{

/entry[@category='article']

/field[@name='author' and (find(text(),'Hans Hagen')

or find(text(),'Taco Hoekwater'))]

/../command(bibtex:one)

}

\stopxmlsetups

We now apply this setup to the session:

\applytobibtexsession[somebibtex][bibtex]

tag hoekwater:tb19-3-256
author Taco Hoekwater
title Generating Type 1 fonts from MF sources

11
The convert option will be discussed later.

173

256

174 174

174 174

76 Bibliographies

tag hagen:tb25-1-108
author Hans Hagen
title The TEX Live 2004 collection

tag hagen:tb19-3-304
author Hans Hagen
title The Calculator Demo, Integrating TEX, MP, JavaScript and PDF

tag hagen:tb19-3-311
author Hans Hagen
title Visual Debugging in TEX, Part 1: The Story

tag hagen:tb23-1-49
author Hans Hagen
title ConTEXt, XML and TEX: State of the art?

tag hagen:tb26-2-152
author Hans Hagen
title LuaTEX: Howling to the moon

tag hoekwater:tb25-1-105
author Taco Hoekwater
title MetaPost developments

tag hagen:tb25-1-48
author Hans Hagen
title The state of ConTEXt

tag hagen:tb22-3-136
author Hans Hagen
title Using TEX for high end typesetting

tag hagen:tb22-3-118
author Hans Hagen
title Where will the odyssey bring us?

tag hagen:tb22-1-58
author Hans Hagen
title The status quo of the nts project

tag berdnikov:tb21-2-129
author Alexander Berdnikov and Hans Hagen and Taco Hoekwater and Bo-

gusław Jackowski
title Even more MetaFun with MP: A request for permission

174

257

175 175

175 175

Bibliographies 77

tag hagen:tb19-3-317
author Hans Hagen
title Visual Debugging in TEX, Part 2: The Macros

tag hagen:tb22-3-160
author Hans Hagen
title Using TEX to enhance your presentations

If this is the first time you see MkIV's xmlin action you might be confused by
what happens here. When we apply the bibtex setup (the second argument),
we expand a predefined setup that looks as follows:

\startxmlsetups bibtex

\xmlregistereddocumentsetups{#1}{}

\xmlsetsetup{#1}{bibtex|entry|field}{bibtex:*}

\xmlmain{#1}

\stopxmlsetups

Here #1 represents the root node of current database. Three elements are
mappedt to their own name, prefixed by bibtex:. In the previous examples we
defined the bibtex:bibtex one, which will be applied to the root.

Here are a few more predefined setups:

\startxmlsetups bibtex:format

\par

\edef\currentbibxmlnode{#1}

\xmlcommand{#1}{.}{bibtex:\currentbibtexformat:\xmlatt{#1}{category}}

\par

\stopxmlsetups

\startxmlsetups bibtex:list

\xmlfilter{#1}{/bibtex/entry/command(bibtex:format)}

\stopxmlsetups

\startxmlsetups bibtex:bibtex

\xmlfilter{#1}{/entry/command(bibtex:format)}

\stopxmlsetups

The first one apply a setup to the current node (indicated by the period).

bibtex:apa:article

Such setups are defined elsewhere and you can imagine that they look more

175

258

176 176

176 176

78 Bibliographies

complex than what we've seen sofar. But you seldom have to deal with that.

The second and third setups applie the format to an entry. However, there is a
subtle difference. The second one is called as follows:

\applytobibtexsession[somebibtex][bibtex:list]

As bibtex:list is a stand-alone setup, it will get the document root passed,
and therefore we need to explicitly add that root, although the following two
calls give the same results (watch the forward slashes):

\xmlfilter{#1}{/bibtex/entry/command(bibtex:format)}

\xmlfilter{#1}{entry/command(bibtex:format)}

The bibtex:bibtex setup however, is using an indirect approach and only
comes into action via the already mentioned bibtex setup. In that setup the
\xmlmain command will expand the root element and when it sees the bibtex
element, it will call the associated bibtex:bibtex setup. So here we need to
call the bibtex setup.

\applytobibtexsession[somebibtex][bibtex]

Let's summarize what is needed to typeset a whole database:

\definebibtexsession [somebibtex]

\registerbibtexfile [somebibtex] [tugboat.bib]

\preparebibtexsession [somebibtex] [convert,strip]

\applytobibtexsession [somebibtex] [bibtex:list]

Here we use the predefined bibtex:list filter. Of course you need to define
commands that are uses in the database.

8.3 The batabase
The xml database is quite simple and has the form (we omitted some fields):

<bibtex>

<entry tag="hagen:tb19-3-311" category="article">

<field name="number">3</field>

<field name="bibdate">Fri Jul 13 10:24:20 MDT 2007</field>

<field name="author">Hans Hagen</field>

<field name="journal">TUGboat</field>

<field name="title">{Visual Debugging in \TeX, Part 1: The Story}</field>

<field name="ISSN">0896-3207</field>

176

259

172 172

172 172

74 Bibliographies

8 Bibliographies
8.1 Introduction
Already early in the history of ConTEXt Taco Hoekwater wrote a module that
dealt with bibTEX databases in a ConTEXt like way. Personally I never had to
use a bibliography so I'm far from aan expert in this area. However, going from
some text database format to something typeset is generic enough for me to be
involved.

The involvement started when MkIV showed up. Because quite some core
mechanisms have been reimplemented, also some that the module used, a
dedicated MkIV variant had to be made. This was not that hard to do as it
mostly meant stripping code and replacing the specific reference mechanism
by one using lists. That way we got a few bonus features but in general we can
say that the module is downward compatible.

Already a while ago Taco and I discussed supporting bibliographies that use
xml as format and although we have not settled on some standard it makes
sense to explore the possibilities. The advantage of using xml is that we can
use the built in subsystem for filtering and manipulating entries.

This chapter is dedicated to Thomas Schmitz who not only use bibTEX but also
has used MkIV xml right from the start and provides valuable feedback on both
subsystems.

Keep in mind that eventually we will provide a high level interface so that users
won't notice much of a difference unless they want to go beyond what they use
now.

8.2 Sessions
As usual in ConTEXt, we organize the featureset in such a way that we can
group them and use several such sets in one documents without interference.
It all starts by defining a session:

\definebibtexsession [somebibtex]

Next we register a couple of databases (from the beebe collection on TEXlive:

\registerbibtexfile [somebibtex] [tugboat.bib]

\registerbibtexfile [somebibtex] [komoedie.bib]

The files are loaded immediately and you can check this by looking at the log

172

177 177

177 177

Bibliographies 79

<field name="year">1998</field>

<field name="pages">311--317</field>

<field name="volume">19</field>

</entry>

</bibtex>

It is good to keep in mind that we lowercase the name and category attributes.

By default there are no setups for the one character elements but if you need
then you have to use the bibtex namespace, e.g.:

\startxmlsetups bibtex:field

\xmlflushcontext{#1}

\stopxmlsetups

8.4 Sorting
maybe also per session

We can sort entries. For that we need to define a sort setup. First we create a
sort vector based on some fields. The first argument (bibtex) is the sort vector.

\startxmlsetups bibtex:entry:getkeys

\xmladdsortentry{bibtex}{#1}

{\xmlfilter{#1}{/field[@name='author']/text()}}

\xmladdsortentry{bibtex}{#1}

{\xmlfilter{#1}{/field[@name='year']/text()}}

\xmladdsortentry{bibtex}{#1}

{\xmlatt{#1}{tag}}

\stopxmlsetups

In the next setup we see this sorter being initialized. After that we filter some
entries and add them to the to list of keys. Then we sort that list and flush it
afterwards.

\startxmlsetups bibtex:entry:getkeys

\xmladdsortentry{bibtex}{#1}

{\xmlfilter{#1}{/field[@name='author']/text()}}

\xmladdsortentry{bibtex}{#1}

{\xmlfilter{#1}{/field[@name='year']/text()}}

\xmladdsortentry{bibtex}{#1}

{\xmlatt{#1}{tag}}

\stopxmlsetups

177

260

178 178

178 178

80 Bibliographies

The flusher simply shows some fields. You can do anything you want here with
the content.

\startxmlsetups bibtex:entry:flush

\xmlfilter{#1}{/field[@name='author']/context()} / %

\xmlfilter{#1}{/field[@name='year']/context()} / %

\xmlatt{#1}{tag}\par

\stopxmlsetups

The setup that brings this all together is applied to the whole tree with the
following command.

\xmlsetup{bibtex:somebibtex}{xml:bibtex:sorter}

The result is:

Don Knuth / 1984 / knuth:tb5-1-67
Donald E. Knuth / 1984 / knuth:tb5-1-4
Donald E. Knuth / 1984 / knuth:tb5-2-105
Donald E. Knuth / 1985 / knuth:tb6-1-36
Donald E. Knuth / 1986 / knuth:tb7-2-101
Donald E. Knuth / 1987 / knuth:tb8-2-135
Donald E. Knuth / 1987 / knuth:tb8-3-309
Donald E. Knuth / 1988 / knuth:tb9-2-152
Donald E. Knuth / 1989 / knuth:tb10-3-325
Donald E. Knuth / 1989 / knuth:tb10-4-529
Donald E. Knuth / 1990 / knuth:tb11-4-489
Donald E. Knuth / 1993 / knuth:tb14-4-387
Donald E. Knuth / 1996 / knuth:tb17-1-29
Donald Knuth and Pierre MacKay / 1987 / knuth:tb8-1-14
Donald Knuth / 1981 / knuth:tb2-3-5
Donald Knuth / 1982 / knuth:tb3-1-10
Donald Knuth / 1983 / knuth:tb4-2-64
Donald Knuth / 1986 / knuth:tb7-2-95
Donald Knuth / 1987 / knuth:tb8-1-6
Donald Knuth / 1987 / knuth:tb8-1-73
Donald Knuth / 1987 / knuth:tb8-2-210
Donald Knuth / 1987 / knuth:tb8-2-217
Donald Knuth / 1989 / knuth:tb10-1-8
Donald Knuth / 1989 / knuth:tb10-1-31
Donald Knuth / 1990 / knuth:tb11-1-13
Donald Knuth / 1990 / knuth:tb11-2-165
Donald Knuth / 1990 / knuth:tb11-4-497
Donald Knuth / 1990 / knuth:tb11-4-499

178

261

179 179

179 179

Bibliographies 81

Donald Knuth / 1991 / knuth:tb12-2-313

You can call up the list of keys with

\xmlshowsorter{bibtex}

In our case this gives:

n id entry 1 entry 2 entry 3

1 324 Donald Knuth 1991 knuth:tb12-2-313

2 1397 Donald Knuth 1983 knuth:tb4-2-64

3 4173 Donald Knuth 1981 knuth:tb2-3-5

4 5247 Donald Knuth 1987 knuth:tb8-1-6

5 5943 Donald Knuth and 1987 knuth:tb8-1-14

Pierre MacKay

6 7773 Donald Knuth 1989 knuth:tb10-1-8

7 10665 Donald Knuth 1990 knuth:tb11-1-13

8 10871 Donald Knuth 1986 knuth:tb7-2-95

9 11248 Donald E. Knuth 1990 knuth:tb11-4-489

10 12236 Donald Knuth 1990 knuth:tb11-4-497

11 12535 Donald E. Knuth 1984 knuth:tb5-2-105

12 12665 Donald E. Knuth 1993 knuth:tb14-4-387

13 12925 Donald E. Knuth 1988 knuth:tb9-2-152

14 14902 Donald E. Knuth 1987 knuth:tb8-2-135

15 15161 Donald Knuth 1987 knuth:tb8-2-217

16 21952 Donald Knuth 1990 knuth:tb11-4-499

17 23934 Donald Knuth 1987 knuth:tb8-2-210

18 24128 Donald Knuth 1987 knuth:tb8-1-73

19 26859 Donald E. Knuth 1989 knuth:tb10-4-529

20 28026 Donald Knuth 1989 knuth:tb10-1-31

21 28091 Donald E. Knuth 1996 knuth:tb17-1-29

22 28572 Donald E. Knuth 1986 knuth:tb7-2-101

23 28624 Donald E. Knuth 1984 knuth:tb5-1-4

24 31473 Donald E. Knuth 1985 knuth:tb6-1-36

25 34586 Donald E. Knuth 1987 knuth:tb8-3-309

26 34911 Don Knuth 1984 knuth:tb5-1-67

27 34950 Donald Knuth 1990 knuth:tb11-2-165

28 34976 Donald Knuth 1982 knuth:tb3-1-10

29 35196 Donald E. Knuth 1989 knuth:tb10-3-325

8.5 Encodings
It is a sure bet that many existing databases will use the traditional TEX accent

179

262

180 180

180 180

82 Bibliographies

building commands. As in MkIV we live in an Unicode universe, such com-
mands are translated into utf sequences when the database is loaded. When
we pass the convert options to the preparation command, the entries will be
cleaned up and accent commands will be replaced by proper utf sequences.
This helps the sorter.

8.6 Messed up entries
As the bibTEX fields contains TEX code we need to process the content as TEX.
This is why in the previous examples we applied the context() finalizer. The
fact that we have TEX code means that such databases are rather bound to
some macro package. For our purpose we had to define a few macros:

\startsetups bibtex-commands

\def\MF {MF}

\def\MP {MP}

\def\TUB {TUGboat}

\def\Mc {Mac}

\def\sltt{\tt}

\let\acro\firstofoneargument

\stopsetups

You can best do this grouped is that there is no interference with existing code.
You can collect definitions in a setup or buffer and flush that one inside the
group.

However, we also provide another method. A second argument to the prepara-
tion command gives options. Examples of options are convert, which converts
entries to proper utf, and strip which converts commands and strips redun-
dant braces.

\preparebibtexsession [somebibtex] [convert,strip]

All commands are mapped onto \bibtexcommand which defaults to using pre-
defined local commands. You predefine such a local command with:

\defbibtexcommand\MF {MF}

\defbibtexcommand\MP {MP}

\defbibtexcommand\TUB {TUGboat}

\defbibtexcommand\Mc {Mac}

\defbibtexcommand\sltt {\tt}

\defbibtexcommand\acro#1{#1}

If you use a database like tugboat.bib you will need quite some more defini-

180

263

181 181

181 181

Bibliographies 83

tions. Unknown commands are reported on the console. When a command is
available in ConTEXt it will be used unless a specific one is defined.

Here's a setup that shows what goes on inside:

\startxmlsetups bibtex:show

\xmlshow{#1}

\stopxmlsetups

\applytobibtexsession[somebibtex][bibtex:show]

8.7 Traditional usage
In this section we will describe how you can use this approach as a drop in for
the traditional, pure TEX based one.

181

264

182 182

182 182

84 Building paragraphs

9 Building paragraphs
9.1 Introduction
You enter the den of the Lion when you start messing around with the par-
builder. Actually, as TEX does a pretty good job on breaking paragrphs into
lines I never really looked in the code that does it all. However, the Oriental
TEX project kind of forced it upon me. In the chapter about font goodies an
optimizer is described that works per line. This method is somewhat simular
to expansion level one support in the sense that it acts independent of the par
builder: the split off (best) lines are postprocessed. Where expansion involves
horizontal scaling, the goodies approach does with (Arabic) words what the
original HZ approach does with glyphs.

It would be quite some challenge (at least for me) to come up with solutions
that looks at the whole paragraph and as the per-line approach works quite
well, there is no real need for an alternative. However, in September 2008,
when we were exploring solutions for Arabic par building, Taco converted the
parbuilder into Lua code and stripped away all code related to hyphenation,
protrusion, expansion, last line fitting, and some more. As we had enough on
our plate at that time, we never came to really testing it. There was even less
reason to explore this route because in the Oriental TEX project we decided to
follow the “use advanced OpenType features” route which in turn lead to the
‘replace words in lines by narrower of wider variants’ appeoach.

However, as the code was laying around and as we want to explore futher I
decided to pick up the parbuilder thread. In this chapter some experiences wil
be discussed. The following story is as much Taco's as mine.

9.2 Cleaning up
In retrospect, we should not have been too surprised that the first approxi-
mation was broken in many places, and for good reason. The first version of
the code was a conversion of the C code that in turn was a conversion from
the original interwoven Pascal code. That first conversion still looked quite C--
ish and carried interesting bit and pieces of C--macros, C--like pointer tests,
interesting magic constants and more.

When I took the code and Lua-fied it nearly every line was changed and it took
Taco and me a bit of reverse engineering to sort out all problems (thank you
Skype). Why was it not an easy task? There are good reasons for this.

• The parbuilder (and related hpacking) code is derived from traditional TEX
and has bits of pdfTEX, Aleph (Omega), and of course LuaTEX.

182

265

183 183

183 183

Building paragraphs 85

• The advocated approach to extending TEX has been to use change files which
means that a coder does not see the whole picture.

• Originally the code is programmed in the literate way which means that
the resulting functions are build stepwise. However, the final functions can
(and have) become quite large. Because LuaTEX uses the woven (merged)
code indeed we have large functions. Of course this relates to the fact that
succesive TEX engines have added functionality. Eventually the source will
be webbed again, but in a more sequential way.

• This is normally no big deal, but the Aleph (Omega) code has added a level
of complexity due to directional processing and additional begin and end
related boxes.

• Also the 𝜀-TEX extension that deals with last line fitting is interwoven and
uses goto's for the control flow. Fortunately the extensions are driven by
parameters which makes the related code sections easy to recognize.

• The pdfTEX protrusion extension adds code to glyph handling and discre-
tionary handling. The expansion feature does that too and in addition also
messes around with kerns. Extra parameters are introduced (and adapted)
that influence the decisions for breaking lines. There is also code originat-
ing in pdfTEX which deals with poor mans grid snapping although that is
quite isolated and not interwoven.

• Because it uses a slightly different way to deal with hyphenation, LuaTEX
itself also adds some code.

• Tracing is sort of interwoven in the code. As it uses goto's to share code
instead of functions, one needs to keep a good eye on what gets skipped or
not.

I'm pretty sure that the code that we started with looks quite different from
the original TEX code if it had been trasnslated into C. Actually in modern TEX
compiling involves a translation into C first but the intermediate form is not
meant for human eyes. As the LuaTEX project started from that merged code,
Taco and Hartmut already spend quite some time on making it more readable.
Of course the original comments are still there.

Cleaning up such code takes a while. Because both languages are similar but
also quite different it took some time to get compatible output. Because the C
code uses macros, careful checking was needed. Of course Lua's table model
and local variables brought some work as well. And still the code looks a bit
C--ish. We could not divert too much from the original model simply because

183

266

184 184

184 184

86 Building paragraphs

it's well documented.

When moving around code redundant tests and orphan code has been re-
moved. Future versions (or variants) might as well look much different as
I want more hooks, clearly split stages, and convert some linked list based
mechanism to Lua tables. On the other hand, as already much code has been
written for ConTEXt MkIV, making it all reasonable fast was no big deal.

9.3 Expansion
The original C--code related to protrusion and expansion is not that efficient
as many (redundant) function calls take place in the linebreaker and packer.
As most work related to fonts is done in the backend, we can simply stick to
width calculations here. Also, it is no problem at all that we use floating point
calculations (as Lua has only floats). The final result will look okay as the
original hpack routine will nicely compensate for rounding errors as it will nor-
mally distribute the content well enough. We are currently compatible with the
regular par builder and protrusion code, but expansion gives different results
(actually not worse).

The Lua hpacker follows a different approach. And let's admit it: most TEXies
won't see the difference anyway. As long as we're cross platform compatible it's
fine.

It is a well known fact that character expansion slows down the parbuilder.
There are good reasons for this in the pdfTEX approach. Each glyph and in-
tercharacter kern is checked a few times for stretch or shrink using a function
call. Also each font reference is checked. This is a side effect of the way pdfTEX
backend works as there each variant has its own font. However, in LuaTEX, we
scale inline and therefore don't really need the fonts. Even better, we can get
rid of all that testing and only need to pass the eventual expansion_ratio so
that the backend can do the right scaling. We will prototype this in the Lua
version12 and we feel confident about this approach it will be backported into
the C code base. So eventually the C might become a bit more readable and
efficient.

Intercharacter kerning is dealt with somewhat strange. When a kern of subtype
zero is seen, and when it's neighbours are glyphs from the same font, the kern
gets replaced by a scaled one looked up in the font's kerning table. In the
parbuilder no real replacement takes place but as each line ends up in the
hpack routine (where all work is simply duplicated and done again) it really

12
For this Hartmuts has adapted the backend code has to honour this field in the glyph and
kern nodes.

184

267

185 185

185 185

Building paragraphs 87

gets replaced there. When discussing the current aproach we decided that
manipulating intercharacter kerns while leaving regular spacing untouched is
not really a good idea so there will be an extra level of configuration added to
LuaTEX:13

0 no character and kern expansion
1 character and kern expansion applied to complete lines
2 character and kern expansion as part of the par builder
3 only character expansion as part of the par builder (new)

You might wonder what happens when you unbox such a list: the original font
references have been replaced as are the kerns. However, when repackaged
again, the kerns are replaced again. In traditional TEX, indeed rekerning might
happen when a paragraph is repackaged (as different hyphenation points might
be chosen and ligature rebuilding etc. has taken place) but in LuaTEX we have
clearly separated stages. An interesting side effect of the conversion is if that
we really have to wonder what certain code does and if it's still needed.

9.4 Performance
We had already noticed that the Lua variant was not that slow so after the first
cleanup it was time to do some tests. We used our regular tufte.tex test file.
This happens to be a worst case example because each broken line ends with
a comma or hyphen and these will hang into the margin when protruding is
enabled. So the solution space is rather large (an example will be shown later).

Here are some timings of the March 26, 2010 version. The test is typeset in a
box so no shipout takes place. We're talking of 1000 typeset paragraphs. The
times are in seconds an between parentheses the speed relative to the regular
parbuilder is mentioned.

native lua lua + hpack
normal 1.6 8.4 (5.3) 9.8 (6.1)
protruding 1.7 14.2 (8.4) 15.6 (9.2)
expansion 2.3 11.4 (5.0) 13.3 (5.8)
both 2.9 19.1 (6.6) 21.5 (7.4)

For a regular paragraph the Lua variant (currently) is 5 times slower and about
6 times when we use the Lua hpacker, which is not that bad given that it's in-
terpreted code and that each access to a field in a node involves a function
call. Actually, we can make a dedicated hpacker as soem code can be omitted,

13
As I more and more run into books typeset (not by TEX) with a combination of character expan-
sion and additional intercharacter kerning I've been seriously thinking of removing support for
expansion from ConTEXt MkIV. Not all is progress especially if it can be abused.

185

268

186 186

186 186

88 Building paragraphs

The reason why the protruding is relative slow is that we have quite some pro-
truding characters in the test text (many commas and potential hyphens) and
therefore we have quite some lookups and calculations. In the C variant much
of that is inlined by macros.

Will things get faster? I'm sure that I can boost the protrusion code and proba-
bly the rest as well but it will always be slower than the built in function. This
is no problem as we will only use the Lua variant for experiments and special
purposes. For that reason more MkIV like tracing will be added (some is al-
ready present) and more hooks will be provides once that the builder is more
compartimized. Also, future versions of LuaTEX will pass around paragrapgh
related parameters differently so that will have impact on the code as well.

9.5 Usage
The basic parbuilder is enabled and disabled as follows:14

\definefontfeature[example][default][protrusion=pure]

\definedfont[Serif*example]

\setupalign[hanging]

\startparbuilder[basic]

\startcolor[blue]

\input tufte

\stopcolor

\stopparbuilder

This results in:

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cate-
gorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discrim-
inate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect,
filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, out-
line, summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from the
chaff and separate the sheep from the goats.

There are a few tracing options in the parbuilders namespace but these are
not stable yet.

14
I'm not sure yet if the parbuilder has to do automatic grouping.

186

269

187 187

187 187

Building paragraphs 89

9.6 Conclusion
The module started working quiet well around the time that Peter Gabriels
“Scratch My Back” ended up in my Squeezecenter: modern classical interpre-
tations of some of his favourite songs. I must admit that I scratched the back
of my head a couple of times when looking at the code below. It made me
realize that a new implementation of a known problem indeed can come out
quite different but at the same time has much in common. As with music it's
a matter of taste which variant a user likes most.

At the time of this writing there is still work to do. For instance the large
functions need to be broken into smaller steps. And of course more testing is
needed.

187

270

188 188

188 188

90 Tagged PDF

10 Tagged PDF
10.1 Introduction
Occasionally users asked me if ConTEXt can produce tagged pdf and the answer
to that has been: I'll implement it when I need it. However, users tell me that
publishers more and more demand tagged pdf files, although one might wonder
what for, maybe except for accessibility. Another reason for not having spent
too much time on it before is that the specification was not that inviting.

Anyhow, when I saw Ross Moore15 presenting tagged math at TUG 2010, I
decided to look up the spec once more and see if I could get into the mood
to implement tagging. Before I started it was already clear that there were a
couple of boundary conditions:

• Tagging should not put a burden on the user but users should be able to
tag themselves.

• Tagging should not slow down a run too much; this is no big deal as one
can postpone tagging till the last run.

• Tagging should in no way interfere with typesetting, so no funny nodes
should be injected.

• Tagging should not make the code look worse, neither the document source,
not the low level ConTEXt code.

And of course implementing it should not take more than a few days work,
certainly not in an exceptional hot summer.

You can ‘google’ for one of Ross's documents (like DML_002-2009-1_12.pdf) to
see how a document source looks at his end using a special version of pdfTEX.
However, the version on my machine didn't support the shown primitives, so
I could not see what was happing under the hood. Unfortunately it is quite
hard to find a proper tagged document so we have only the reference manual
as starting point. As the pdfTEX approach didn't look that pleasing anyway, I
just started from scratch.

Tags can help Acrobat Reader when reading out the text loud. But you can-
not browse the structure in this free program and as not all users have the
professional version of Acrobat, the fact that a document has structure can go
unnoticed. Add to that the fact that the overhead in terms of bytes is quite
large as many more objects are generated, and you will understand why this
feature is not enabled by default.

15
He is often exploring the boundaries of pdf, Unicode and evolving techniques related to math
publishing so you'd best not miss his presentations when you are around.

188

271

189 189

189 189

Tagged PDF 91

10.2 Implementation
So, what does tagging boil down to? We can best look at how tagged information
is shown in Acrobat. Figure 10.1 shows the content tree that has been added
(automatically) to a document while figure 10.2 shows a different view.

Figure 10.2 Acrobat showing the tag order.

In order to get that far, we have to do the following:

• Carry information with (typeset) text.
• Analyse this information when shipping out pages.
• Add a structure tree to the page.
• Add relevant information to the document.

That first activity is rather independent of the other three and we can use
that information for other purposes as well, like identifying where we are in
the document. We carry the information around using attributes. The last
three activities took a bit of experimenting mostly using the “Example of Logical
Structure” from the pdf standard 32000-1:2008.

189

272

190 190

190 190

92 Tagged PDF

Figure 10.1 A tag list in Acrobat.

190

273

191 191

191 191

Tagged PDF 93

This resulted in tagging framework that uses explicit tags. In that the user is
responsible for the tagging:

\setupstructure[state=start,method=none]

\starttext

\startelement[document]

\startelement[chapter]

\startelement[p] \input davis \stopelement \par

\stopelement

\startelement[chapter]

\startelement[p] \input zapf \stopelement \par

\startelement[whatever]

\startelement[p] \input tufte \stopelement \par

\startelement[p] \input knuth \stopelement \par

\stopelement

\stopelement

\startelement[chapter]

oeps

\startelement[p] \input ward \stopelement \par

\stopelement

\stopelement

\stoptext

However, this is not much fun so we also provide an automated variant. In the
previous example we explicitly turned of automated tagging by setting method

to none. By default it has the value auto.

\setupstructure[state=start] % method=auto is default

\definedescription[whatever]

\starttext

\startfrontmatter

\startchapter[title=One]

\startparagraph \input tufte \stopparagraph

\startitemize

191

274

192 192

192 192

94 Tagged PDF

\startitem first \stopitem

\startitem second \stopitem

\stopitemize

\startparagraph \input ward \stopparagraph

\startwhatever {Herman Zapf} \input zapf \stopwhatever

\stopchapter

\stopfrontmatter

\startbodymatter

..................

If you use commands like \chapter you will not get the desired results. Of
course these can be supported but there is no real reason for it, as in MkIV we
advise to use the start-stop variant.

It will be clear that this kind of automated tagging brings with it a couple of
extra commands deep down in ConTEXt and there (of course) we use symbolic
names for tags, so that one can overload the built in mapping.

\setuptaglabeltext[en][document=text]

As with other features inspired by viewer functionality, the implementation of
tagging is independent of the backend. For instance, we can tag a document
and access tagging information at the TEX end. The backend drivers code
maps tags to relevant pdf constructs. First of all, we just map the tags used
at the ConTEXt end onto themselves. But, as validators expect certain names,
we use the pdf rolemap feature to map them to (less interesting) names. The
next list shows the currently used internal names with the pdf ones between
parentheses.

construct (Span) delimited (Quote) delimitedblock (BlockQuote) description (Div)
descriptioncontent (Div) descriptionsymbol (Span) descriptiontag (Div) division
(Div) document (Div) float (Div) floatcaption (Caption) floatcontent (P) floattag
(Span) floattext (Span) formula (Div) formulacontent (P) formulaset (Div) for-
mulatag (Span) image (P) item (Li) itemcontent (LBody) itemgroup (L) itemtag
(Lbl) link (Link) list (TOC) listcontent (P) listdata (P) listitem (TOCI) listpage
(Reference) listtag (Lbl) margintext (Span) margintextblock (Span) math (Div)
merror (Span) mfrac (Span) mi (Span) mn (Span) mo (Span) mover (Span) mp-
graphic (P) mroot (Span) mrow (Span) ms (Span) msqrt (Span) msub (Span)
msubsup (Span) msup (Span) mtext (Span) munder (Span) munderover (Span)
paragraph (P) register (Div) registerentries (Div) registerentry (Span) register-
page (Span) registerpages (Span) registersection (Div) registersee (Span) regis-

192

275

193 193

193 193

Tagged PDF 95

tertag (Span) section (Sect) sectioncontent (Div) sectionnumber (H) sectiontitle
(H) subformula (Div) subsentence (Span) table (Table) tablecell (TD) tablerow
(TR) tabulate (Table) tabulatecell (TD) tabulaterow (TR) verbatim (Code) verba-
timblock (Code) verbatimline (Code)

So, the internal ones show up in the tag trees as shown in the examples but
applications might use the rolemap which normally has less detail.

Because we keep track of where we are, we can also use that information for
making decisions.

\doifinelementelse{structure:section} {yes} {no}

\doifinelementelse{structure:chapter} {yes} {no}

\doifinelementelse{division:*-structure:chapter} {yes} {no}

\doifinelementelse{division:*-structure:*} {yes} {no}

You can use the * as wildcard. The elements are separated by a -. If you don't
know what tags are used, you can always enable the tag related tracker:

\enabletrackers[structure.tags]

This tracker reports the identified element chains to the console and log.

10.3 Special care
Of course there are a few complications. First of all the tagging model sort of
contradicts the concept of a nicely typeset document where structure and out-
come are not always related. Most TEX users are aware of the fact that TEX does
not have spaces and does a great job on kerning and hyphenation. The tagging
machinery on the other hand uses a rather dumb model of strings separated by
spaces.16 But anyhow we could trick TEX into providing the right information
to the backend so that words get nicely separated. The non-optimized function
that does this looks as follows:

function injectspaces(head)

local p

for n in node.traverse(head) do

local id = n.id

if id == node.id("glue") then

if p and p.id == node.id("glyph") then

local g = node.copy(p)

local s = node.copy(n.spec)

16
The search engine on the other hand is rather clever on recognizing words.

193

276

194 194

194 194

96 Tagged PDF

g.char, n.spec = 32, s

p.next, g.prev = g, p

g.next, n.prev = n, g

s.width = s.width - g.width

end

elseif id == node.id("hlist") or id == node.id("vlist") then

injectspaces(n.list,attribute)

end

p = n

end

end

Here we squeeze in a space (given that it is in the font which it normally is
when you use ConTEXt) and compensate the glue. Given that your page sits in
box 255, you can do this just before shipping the page out:

injectspaces(tex.box[255].list)

Then there are the so called suspects: things on the page that are not related
to structure at all. One is supposed to tag these specially so that the built-in
reading equipment is not confused. So far we could get around them simply
because they don't get tagged at all and therefore are not seen anyway. This
might as well be enough of a precaution.

Of course we need to deal with mathematics. Fortunately the presentation
MathML model is rather close to TEX and so we can map onto that. After all we
don't need to care too much about back-mapping here. The currently present
code is rather experimental and might get extended or thrown out in favour of
inline mathml. Figure 10.3 demonstrates that a first approach does not even
look that bad. In future versions we might deal with table like math constructs,
like matrices.

This is a typical case where more energy has to be spent on driving the voice
of Acrobat but I will do that when we find a good reason.

As mentioned, it will take a while before all relevant constructs in ConTEXt
support tagging, but support is already quite complete. Some screen dumps
are included as example at the end.

10.4 Conclusion
Surprisingly implementing all this didn't take that much work. Of course de-
tailed automated structure support from the complete ConTEXt kernel will take

194

277

195 195

195 195

Tagged PDF 97

Figure 10.3 Experimental math tagging.

some time to get completed, but that will be done on demand and when we run
into missing bits and pieces. It's still not decided to what extend alternate
representations and alternate texts will be supported. Experiments with the
reading loud machinery are not satisfying yet but maybe it just can't get any
better. It would be nice if we could get some tags being announced without
overloading the content, that is: without using ugly hacks.

And of course, code like this is never really finished if only because pdf evolves.
Also, it is yet another nice test case and torture test for LuaTEX and it helps us
to surface buglets and oversights.

10.5 Some more examples
In ConTEXt we have user definable verbatim environments. As with other user
definable environments we show the specific instance as comment next to the
structure component. See figure 10.4. Some examples of tables are shown in
figure 10.5. Future versions will have a bit more structure. Tables of contents
(see figure 10.6) and registers (see figure 10.7) are also tagged. One might
wonder what the use is of this. In Figure 10.8 we see some examples of floats.
External images as well as METAPOST graphics are tagged as such. This exam-
ple also shows an example of a user environment, in this case:

195

278

196 196

196 196

98 Tagged PDF

\definestartstop[notabene][style=\bf]

In a similar fashion footnotes end up in the structure tree, but in the typeset
document they move around (normally forward when there is no room).

Figure 10.4 Verbatim, including dedicated instances.

196

279

197 197

197 197

Tagged PDF 99

Figure 10.5 Natural tables as well as
the tabulate mechanism is supported.

197

198 198

198 198

100 Tagged PDF

Figure 10.6 Tables of content with specific entries tagged.

198

280

199 199

199 199

Tagged PDF 101

Figure 10.7 A detailed
view of registered is provided.

199

200 200

200 200

102 Tagged PDF

Figure 10.8 Floats tags end up in text stream. Watch the user defined construct.

200

281

201 201

201 201

Tagged PDF 103

Figure 10.9 Footnotes are shown at the place in the input (flow).

201

282

202 202

202 202

104 Including pages

11 Including pages
11.1 Introduction
It is tempting to add more and more features to the backend code of the engine
but it is not really needed. Of course there are features that can best be sup-
ported natively, like including images. In order to include pdf images in LuaTEX
the backend uses a library (xpdf or poppler) that can load an page from a file
and embed that page into the final pdf, including all relevant (indirect) objects
needed for rendering. In LuaTEX an experimental interface to this library is
included, tagged as epdf. In this chapter I will spend a few words on my first
attempt to use this new library.

11.2 The library
The interface is rather low level. I got the following example from Hartmut (who
is responsible for the LuaTEX backend code and this library).

local doc = epdf.open("luatexref-t.pdf")

local cat = doc:getCatalog()

local pag = cat:getPage(3)

local box = pag:getMediaBox()

local w = pag:getMediaWidth()

local h = pag:getMediaHeight()

local n = cat:getNumPages()

local m = cat:readMetadata()

print("nofpages: ", n)

print("metadata: ", m)

print("pagesize: ", w .. " * " .. h)

print("mediabox: ", box.x1, box.x2, box.y1, box.y2)

As you see, there are accessors for each interesting property of the file. Of
course such an interface needs to be extended when the pdf standard evolves.
However, once we have access to the so called catalog, we can use regular
accessors to the dictionaries, arrays and other data structures. So, in fact we
don't need a full interface and can draw the line somewhere.

There are a couple of things that you normally does not want to deal with. A
pdf file is in fact just a collections of objects that form a tree and each object
can be reached by an index using a table that links the index to a position in
the file. You don't want to be bothered with that kind of housekeeping indeed.
Some data in the file, like page objects and annotations are organized in a

202

283

203 203

203 203

Including pages 105

tree form that one does not want to access in that form, so again we have
something that benefits from an interface. But the majority of the objects are
simple dictionaries and arrays. Streams (these hold the document content,
image data, etc.) are normally not of much interest, but the library provides
an interface as you can bet on needing it someday. The library also provides
ways to extend the loaded pdf file. I will not discuss that here.

Because in ConTEXt we already have the lpdf library for creating pdf structures,
it makes sense to define a similar interface for accessing pdf. For that I wrote
a wrapper that will be extended in due time (read: depending on needs). The
previous code now looks as follows:

local doc = epdf.open("luatexref-t.pdf")

local cat = doc.Catalog

local pag = cat.Pages[3]

local box = pag.MediaBox

local llx, lly, urx, ury = box[1], box[2] box[3], box[4]

local w = urx - llx -- or: box.width

local h = ury - lly -- or: box.height

local n = cat.Pages.size

local m = cat.Metadata.stream

print("nofpages: ", n)

print("metadata: ", m)

print("pagesize: ", w .. " * " .. h)

print("mediabox: ", llx, lly, urx, ury)

If we write code this way we are less dependent on the exact api, especially
because the epdf library uses methods to access the data and we cannot easily
overload method names in there. When you look at the box, you will see that
the natural way to access entries is using a number. As a bonus we also provide
the width and height entries.

11.3 Merging links
It has always been on my agenda to add the possibility to carry the (link) anno-
tations with an included page from a document. This is not that much needed
in regular document, but it can be handy when you use ConTEXt to assemble
documents. In any case, such a merge has to happen in such a way that it
does not interfere with other links in the parent document. Supporting this
in the engine is no option as each macro package follows its own approach to
referencing and interactivity. Also, demands might differ and one would end

203

284

204 204

204 204

106 Including pages

up with a lot of (error prone) configurability. Of course we want scaled pages
to behave well too.

Implementing the merge took about a day and most of that time was spent on
experimenting with the epdf library and making the first version of the wrapper.
I definitely had expected to waste more time on it. So, this is yet another
example of extensions that are quite doable in the Lua-TEX mix. Of course it
helps that the ConTEXt graphic inclusion code provides enough information
to integrate such a feature. The merge is controlled by the interaction key, as
shown here:

\externalfigure[somefile.pdf][page=1,scale=700,interaction=yes]

\externalfigure[somefile.pdf][page=2,scale=600,interaction=yes]

\externalfigure[somefile.pdf][page=3,scale=500,interaction=yes]

You can finetune the merge by providing a list of options to the interaction
key but that's still somewhat experimental. As a start the following links are
supported.

• internal references by name (often structure related)
• internal references by page (like on tables of contents)
• external references by file (optionally by name and page)
• references to uri's (normally used for webpages)

When users like this functionality (or when I really need it myself) more types of
annotations can be added although support for JavaScript and widgets doesn't
make much sense. On the other hand, support for destinations is currently
somewhat simplified but at some point we will support the relevant zoom op-
tions.

The implementation is not that complex:

• check if the included page has annotations
• loop over the list of annotations and determine if an annotation is supported

(currently links)
• analyze the annotation and overlay a button using the destination that be-

longs to the annotation

Now, the reason why we can keep the implementation so simple is that we just
map onto existing ConTEXt functionality. And, as we have a rather integrated
support for interactive actions, only a few basic commands are involved. Al-
though we could do that all in Lua, we delegate this to TEX. We create a layer
that we put on top of the image. Links are put onto this layer using the equiv-
alent of:

204

285

205 205

205 205

Including pages 107

\setlayer

[epdflinks]

[x=...,y=...,preset=leftbottom]

{\button

[width=...,height=...,offset=overlay,frame=off]

{}% no content

[...]}}

The \button command is one of those interaction related commands that ac-
cepts any action related directive. In this first implementation we see the fol-
lowing destinations show up:

somelocation

url(http://www.pragma-ade.com)

file(somefile)

somefile::somelocation

somefile::page(10)

References to pages become named destinations and are later resolved to page
destinations again, depending on the configuration of the main document. The
links within an included file get their own namespace so (hopefully) they will
not clash with other links.

We could use lower level code which is faster but we're not talking of time
critical code here. At some point I might optimize the code a bit but for the
moment this variant gives us some tracing options for free. Now, the nice
thing about using this approach is that the already existing cross referencing
mechanisms deal with the details. Each included page gets a unique reference
so references to not included pages are ignored simply because they cannot be
resolved. We can even consider overloading certain types of links or ignoring
named destinations that match a specific pattern. Nothing is hard coded in
the engine so we have complete freedom of doing that.

11.4 Merging layers
When including graphics from other applications it might be that they have
their content organized in layers (that then can be turned on or off). So it
will be no surprise that on the agenda is merging layer information: first a
straightforward inclusion of optional content dictionaries, but it might make
sense to parse the content stream and replace references to layers by those
that are relevant in the main document. Especially when graphics come from
different sources and layer names are inconsistent some manipulation might
be needed so maybe we need more detailed control. Implementing this is is no

205

206 206

206 206

108 Including pages

big deal and mostly a matter of figuring out a clean and simple user interface.

206

286

207 207

207 207

Exporting XML 109

12 Exporting XML
12.1 Introduction
Every now and then on the the mailing list users ask if ConTEXt can produce
html instead of for instance pdf, and the answer has always been unsatisfying.
In this chapter I will present the MkIV way of doing this.

12.2 The clumsy way
My favourite answer to the question about how to produce html (or more general
xml as it can be transformed) has always been: “I'd just typeset it!”. Take:

\def\MyChapterCommand#1#2{<h1>#2</h1>}

\setuphead[chapter][command=\MyChapterCommand]

Here \chapter{Hello World} will produce:

<h1>Hello World</h1>

Now imagine that you hook such commands into all relevant environment and
that you use a style with no header and footer lines. You use a large page (A2)
and a small monospaced font (4pt) so that page breaks will not interfere too
much. If you want columns, fine, just hook in some code that typesets the
final columns as tables. In the end you will have an ugly looking pdf file but
by feeding it into pdftotext you will get a nicely formatted html file.

For some languages of course encoding issues would show up and there can
be all kind of interferences, so eventually the amount of code dealing with it
would have accumulated. This is why we don't follow that route.

An alternative is to use tex4ht which does an impressive job for LATEX, and sup-
ports ConTEXt to some extend as well. As far as I know it overloads some code
deep down in the kernel which is something ‘not done’ in the ConTEXt universe
if only because we cannot keep control over side effects. It also complicates
maintainance of both systems.

In MkIV however, we do have the ability to export the document to a verbose
structured so let's have a look at that.

12.3 Structure
The ability to export to some more verbose format depends on the availability
of structural information. As we already tag elements for the sake of tagged

207

287

208 208

208 208

110 Exporting XML

pdf, it was tempting to see how well we could use those tags for exporting to
xml. In principle it is possible to use Acrobat Professional to export the content
using tags but you can imagine that we get a better quality if we stay within
the scope of the producing machinery.

\setupbackend[export=yes]

This is all you need unless you want to fine tune the resulting xml file. If you
are familiar with tagged pdf support in ConTEXt, you will recognize the result.
When you process the following file:

\setupbackend[export=yes]

\starttext

\startchapter[title=Test]

A paragraph.\par Another paragraph.

\stopchapter

\stoptext

You will get a file with the suffix export that looks as follows:17

<?xml standalone='yes' encoding='utf-8' ?>

<!-- input filename : exported-001 -->

<!-- processing date : 09/08/10 01:00:22 -->

<!-- context version : 2010.09.05 16:30 -->

<!-- exporter version : 0.10 -->

<document language='en'>

<section detail='chapter'>

<sectionnumber>1</sectionnumber>

<sectiontitle>Test</sectiontitle>

<sectioncontent>

A paragraph.

<break/>

Another paragraph.

</sectioncontent>

</section>

</document>

17
We will omit the topmost lines in following examples.

208

288

209 209

209 209

Exporting XML 111

It's no big deal to postprocess such a file. In that case one can for instance
ignore the chapter number or combine the number and the title. Of course
rendering information is lost here. However, sometime it makes sense to export
some more details. Take the following table:

\starttext

\bTABLE

\bTR \bTD test 1.1 \eTD \bTD[ny=2] test 1.2 \eTD \eTR

\bTR \bTD test 2.1 \eTD \eTR

\bTR \bTD test 3.1 \eTD \bTD test 3.2 \eTD \eTR

\bTR \bTD test 4.1 \eTD \bTD \eTD \eTR

\bTR \bTD[nx=2,align=flushright] test 5.1 \eTD \eTR

\eTABLE

\stoptext

Here we need to preserve the span related information as well as cell specific
alignments as for tables this is an essential part of the structure.

<document language='en'>

<table>

<tablerow>

<tablecell align='flushleft'>test 1.1 </tablecell>

<tablecell align='flushleft' rows='2'>test 1.2 </tablecell>

</tablerow>

<tablerow>

<tablecell align='flushleft'>test 2.1 </tablecell>

</tablerow>

<tablerow>

<tablecell align='flushleft'>test 3.1 </tablecell>

<tablecell align='flushleft'>test 3.2 </tablecell>

</tablerow>

<tablerow>

<tablecell align='flushleft'>test 4.1 </tablecell>

<tablecell></tablecell>

</tablerow>

<tablerow>

<tablecell align='flushright' columns='2'>test 5.1 </tablecell>

</tablerow>

</table>

</document>

The tabulate mechanism is quite handy for regular text especially when the

209

289

210 210

210 210

112 Exporting XML

content of cells has to be split over pages. As each line in paragraph in a
tabulate becomes a cell, we need to reconstruct the paragraphs.

\starttext

\starttabulate[|l|p|r|]

\NC zero \NC line one \par line two \par line three \NC 0 \NC \NR

% \NC one \NC \input zapf \par \input zapf \NC 1 \NC \NR

\NC two \NC before \type {connect} \par after \NC 2 \NC \NR

\NC three \NC before \type {connect} after \NC 3 \NC \NR

\NC four \NC before \break inbetween \par after \NC 4 \NC \NR

\stoptabulate

\stoptext

This becomes:

<document language='en'>

<tabulate>

<tabulaterow>

<tabulatecell align='flushleft'>zero</tabulatecell>

<tabulatecell>line one

<break/>

line two

<break/>

line three</tabulatecell>

<tabulatecell align='flushright'>0</tabulatecell>

</tabulaterow>

<tabulaterow>

<tabulatecell align='flushleft'>two</tabulatecell>

<tabulatecell>before <verbatim>connect</verbatim>

<break/>

after</tabulatecell>

<tabulatecell align='flushright'>2</tabulatecell>

</tabulaterow>

<tabulaterow>

<tabulatecell align='flushleft'>three</tabulatecell>

<tabulatecell>before <verbatim>connect</verbatim> after</tabulatecell>

<tabulatecell align='flushright'>3</tabulatecell>

</tabulaterow>

<tabulaterow>

<tabulatecell align='flushleft'>four</tabulatecell>

<tabulatecell>before inbetween

<break/>

210

290

211 211

211 211

Exporting XML 113

after</tabulatecell>

<tabulatecell align='flushright'>4</tabulatecell>

</tabulaterow>

</tabulate>

</document>

The <break/> elements are injected automatically between paragraphs. We
could tag each paragraph individually but that does not work that well when
we have for instance a quotation that spans multiple paragraphs (and maybe
starts in the middle of one). An empty element is not sensitive for this and is
still a signal that vertical spacing is supposed to be applied.

12.4 The implementation
We implement tagging using attributes. The advantage of this is that it does not
interfere with typesetting, but a disadvantage is that not all parent elements
are visible. When we encounter some content, we're in the innermost element
so if we want to do something special, we need to deduce the structure from
the current child. This is no big deal as we have that information available at
each child.

The first implementation just flushed the xml on the fly (i.e. when traversing
the node list) but when I figured out that collapsing was needed for special
cases like tabulated paragraphs this approach was no longer valid. So, after
some experiments I decided to build a complete structure tree in memory18.
This permits us to handle situations like the following:

\starttext

\startitemize[n]

\startitem one \stopitem

\startitem two \stopitem

\stopitemize

\startitemize[packed,a]

\startitem \quote{one} \stopitem

\startitem \quote{two} \stopitem

\stopitemize

\stoptext

Here we get:

18
We will see if this tree will be used for other purposes in the future.

211

291

212 212

212 212

114 Exporting XML

<document language='en'>

<itemgroup detail='itemize' symbol='n'>

<item>

<itemtag>1.</itemtag>

<itemcontent>one</itemcontent>

</item>

<item>

<itemtag>2.</itemtag>

<itemcontent>two</itemcontent>

</item>

</itemgroup>

<itemgroup detail='itemize' packed='yes' symbol='a'>

<item>

<itemtag>a.</itemtag>

<itemcontent><delimited detail='quote'>‘one’</delimited></itemcontent>

</item>

<item>

<itemtag>b.</itemtag>

<itemcontent><delimited detail='quote'>‘two’</delimited></itemcontent>

</item>

</itemgroup>

</document>

The symbol and packed attributes are first seen at the itemcontent level (the
innermost element) so when we flush the itemgroup element's attributes we
need to look at the child elements (content) that actually carries the attribute.19

I already mentioned collapsing. As paragraphs in a tabulate get split in cells,
we encounter a mixture that cannot be flushed sequentially. However, as each
cell is tagged unique we can append the lines within a cell. Also, as each
paragraph gets a unique number, we can add breaks before a new paragraph
starts. Collapsing and adding breakpoints is done at the end, and not per page,
as paragraphs can cross pages. Again, thanks to the fact that we have a tree,
we can investigate content and do this kind of manipulations.

Moving data like footnotes are somewhat special. When notes are put on the
page (contrary to for instance end notes) the so called ‘insert’ mechanism is
used where their content is kept with the line where it is defined. As a result
we see them end up instream which is not that bad a coincidence. However,
as in MkIV notes are built on top of (enumerated) descriptions, we need to
distinguish them somehow so that we can cross reference them in the export.

19
Only glyph nodes are investigated for structure.

212

292

213 213

213 213

Exporting XML 115

\starttext

\startchapter[title=Notes]

test \footnote[a]{note a}

test \footnote[b]{note b}

\stopchapter

\stoptext

Currently this will end up as follows:

<document language='en'>

<section detail='chapter'>

<sectionnumber>1</sectionnumber>

<sectiontitle>Notes</sectiontitle>

<sectioncontent>

test<descriptionsymbol detail='footnote' insert='1'>1</descriptionsymbol>

test<descriptionsymbol detail='footnote' insert='2'>2</descriptionsymbol>

<description detail='footnote'>

<descriptiontag insert='1'>1 </descriptiontag>

<descriptioncontent>note a</descriptioncontent>

</description>

<description detail='footnote'>

<descriptiontag insert='2'>2 </descriptiontag>

<descriptioncontent>note b</descriptioncontent>

</description>

</sectioncontent>

</section>

</document>

Graphics are also tagged and the image element reflects the included image.

\starttext

\placefigure

[here] [fig:cow]

{It looks like a cow.}

{\externalfigure[cow.pdf]}

\stoptext

213

293

214 214

214 214

116 Exporting XML

If the image sits on another path then that path shows up in an attribute and
when a page other than 1 is taken from the (pdf) image, it gets mentioned as
well.

<document language='en'>

<float detail='figure' reference='fig:cow'>

<floatcontent><image name='cow.pdf'></image></floatcontent>

<floatcaption>

<floattag>Figure 1</floattag>

<floattext>It looks like a cow.</floattext>

</floatcaption>

</float>

</document>

Cross references are another relevant aspect of an export. In due time we will
export them all. It's not so much complicated because all information is there
but we need to hook some code into the right spot and making examples for
those cases takes a while as well.

\setupinteraction[state=start]

\starttext

\startchapter[title=One,reference=alpha]

In \in{chapter}[beta] ...

\stopchapter

\startchapter[title=Two,reference=beta]

In \in{chapter}[alpha] ...

\stopchapter

\stoptext

We export references in the the ConTEXt specific way, so no interpretation takes
place.

<document language='en'>

<section detail='chapter' reference='alpha'>

<sectionnumber>1</sectionnumber>

<sectiontitle>One</sectiontitle>

<sectioncontent>

In <link reference='beta' location='aut:2'>chapter 2</link> ...

</sectioncontent>

</section>

214

294

215 215

215 215

Exporting XML 117

<section detail='chapter' reference='beta'>

<sectionnumber>2</sectionnumber>

<sectiontitle>Two</sectiontitle>

<sectioncontent>

In <link reference='alpha' location='aut:1'>chapter 1</link> ...

</sectioncontent>

</section>

</document>

As ConTEXt has an integrated referencing system that deals with internal as
well as external references, url's, special interactive actions like controlling
wigets and navigations, etc. and we export the raw reference specification as
well as additional attributes that provide some detail.

\setupinteraction[state=start]

\useurl [pragma] [www.pragma-ade.com]

\starttext

\startparagraph

You can visit \goto{pragma}[url(www.pragma-ade.com)].

\stopparagraph

\startparagraph

You can visit \goto{pragma}[url(pragma)].

\stopparagraph

\stoptext

Of course, when postprocessing the exported data, you need to take these vari-
ants into account.

<document language='en'>

<paragraph>You can visit <link reference='url(www.pragma-ade.com)' url='www.pragma-ade.com'>pragma</link>.</paragraph>

<paragraph>You can visit <link reference='url(pragma)' url='www.pragma-ade.com'>pragma</link>.</paragraph>

</document>

12.5 Math
Of course there are limitations. For instance TEXies doing math might wonder
if we can export formulas. To some extend the export works quite well.

215

295

216 216

216 216

118 Exporting XML

\starttext

Is it $ e = mc^2 $ maybe:

\startformula

m = \frac{\sqrt{e}}{c}

\stopformula

\stoptext

This results in the usual rather verbose presentation MathML:

<document language='en'>

Is it

<math>

<mrow>

<mi></mi>

<mo>=</mo>

<mi></mi>

<msup>

<mi></mi>

<mn>2</mn>

</msup>

</mrow>

</math>

maybe:

<formula>

<formulacontent>

<math>

<mrow>

<mi> </mi>

<mo>=</mo>

<mrow>

<mfrac>

<mrow>

<mrow>

<mo>√ </mo>

<mroot>

<mi></mi>

</mroot>

</mrow>

</mrow>

<mrow>

216

296

217 217

217 217

Exporting XML 119

<mi> </mi>

</mrow>

</mfrac>

</mrow>

</mrow>

</math>

</formulacontent>

</formula>

</document>

More complex math (like matrices) will be dealt with in due time as for this and
Aditya and I have to take tagging into account when we revision the relevant
code as part of the MkIV cleanup and extensions. It's not that complex but it
makes no sense to come up with intermediate solutions.

Display verbatim is also supported. In this case we tag individual lines.

\starttext

\starttyping

line one

line two

\stoptyping

\stoptext

The export is not that spectacular:

<document language='en'>

<verbatimblock detail='typing'>

<verbatimline>

line one

</verbatimline>

<verbatimline>

line two

</verbatimline>

</verbatimblock>

</document>

A rather special case are marginal notes. We do tag them because they often
contain usefull information.

\starttext

217

297

218 218

218 218

120 Exporting XML

\startparagraph

test \inleft{left 1} test

\stopparagraph

\margintitle{left 2}

\startparagraph

test test

\stopparagraph

\startparagraph

\inrightmargin{\slanted{right 1}}test

\stopparagraph

\stoptext

The output is currently as follows:

<document language='en'>

<paragraph><margintextblock detail='left'>left 1</margintextblock> test

test</paragraph>

<paragraph>test test</paragraph>

<paragraph><margintext detail='inrightmargin'> right 1</margintext> test</paragraph>

</document>

However, this might change in future versions.

12.6 Formatting
The output is somewhat formatted. The extra run time needed for this (actu-
ally, quite some of the code is related to this) is compensated by the fact that
inspecting the result becomes more convenient. Each environment has one
of the properties inline, mixed, and display. A display environment gets new-
lines around it and an inline environment none at all. The mixed variant does
something in between. In the following example we tag some user elements,
but you can as well influence the built in ones.

\setelementnature[display][display]

\setelementnature[inline] [inline]

\setelementnature[mixed] [mixed]

\starttext

218

298

</paragraph></document>

219 219

219 219

Exporting XML 121

\startelement[display]

\startelement[inline]

test

\startelement[display]

test

\stopelement

test

\stopelement

\stopelement

\stoptext

This results in:

<document language='en'>

<display>

<inline>test <display> test test</display></inline>

</display>

</document>

Keep in mind that elements have no influence on the typeset result apart from
introducing spaces when used used this way (this is not different from other
TEX commands). In due time the formatting might improve a bit but at least
we have less change ending up with those megabyte long one--liners that some
applications produce.

12.7 A word of advise
In (for instance) html class attributes are used to control rendering driven by
stylesheets. In ConTEXt you can often define derived environments and their
names will show up in the detail attribute. So, if you want control at that level
in the export, you'd better use the structure related options built in ConTEXt,
for instance:

\definehead[specialsection][section]

\starttext

\startsection[title=Normal section]

normal

\stopsection

219

299

220 220

220 220

122 Exporting XML

\startspecialsection[title=Special section]

special

\stopspecialsection

\stoptext

This gives two different sections:

<document language='en'>

<section detail='section'>

<sectionnumber>1</sectionnumber>

<sectiontitle>Normal section</sectiontitle>

<sectioncontent>

normal

</sectioncontent>

</section>

<section detail='specialsection'>

<sectionnumber>2</sectionnumber>

<sectiontitle>Special section</sectiontitle>

<sectioncontent>

special

</sectioncontent>

</section>

</document>

12.8 Conclusion
It is an open question if such an export is useful. Personally I never needed a
feature like this and there are several reasons for this. First of all, most of my
work involves going from (often complex) xml to pdf and if you has xml as input,
you can also produce html from it. For documents that relate to ConTEXt I
don't need it either because manuals are somewhat special in the sense that
they often depend on showing something that ends up on paper (or its screen
counterpart) anyway. Loosing the makeup also renders the content somewhat
obsolete. But this feature is still a nice proof of concept anyway.

220

300

