
Cahiers

O

m FONTS WITH COMPLEX OPENTYPE TABLES
P Karel Píška

Cahiers GUTenberg, n 56 (2011), p. 309-332.

<http://cahiers.gutenberg.eu.org/fitem?id=CG_2011___56_309_0>

© Association GUTenberg, 2011, tous droits réservés.

L’accès aux articles des Cahiers GUTenberg
(http://cahiers.gutenberg.eu.org/),
implique l’accord avec les conditions générales
d’utilisation (http://cahiers.gutenberg.eu.org/legal.html).
Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

http://cahiers.gutenberg.eu.org/fitem?id=CG_2011___56_309_0
http://cahiers.gutenberg.eu.org/
http://cahiers.gutenberg.eu.org/legal.html

Fonts with Complex OpenType Tables
Fonty se složitými tabulkami ve formátu
OpenType

Karel Píška

Abstract: The paper presents development of complex OpenType fonts. The
sample fonts cover Czech and Georgian handwriting with numerous letter con-
nections.

At the beginning, general principles of “advanced typography” are shown –
complex metric data represented by OpenType tables (GSUB and GPOS) – and
compared them with the ligature and kerning tables in METAFONT.

Then the history of the OpenType font production is described – approaches,
tools and techniques. Crucial problems, critical barriers, attempts and ways how
to reach successful solutions, are discussed and several tools for font creating,
testing, debugging and conversions between various text and binary formats are
demonstrated. Among these tools are, for example, AFDKO, VOLT, FontForge,
TTX, Font-TTF. Their features, advantages, disadvantages, and also cases of
possible incompatibilities (or maybe errors) are illustrated.

Finally, using the OpenType fonts in the TEX world applications are pre-
sented: X ETEX and LuaTEX (ConTEXt MkIV), the programs allowing to read
and process OpenType fonts directly.

Key words: font, font production, Unicode, OpenType, GSUB, GPOS; AFDKO,
VOLT, FontForge, TTX, Font-TTF; TEX, METAFONT, TFM, X ETEX, ConTEXt,
LuaTEX.

Abstrakt: Článek popisuje vývoj složitých fontů ve formátu OpenType v letech
2009–2010. Ukázky zahrnují český a gruzínský rukopisný font s mnohočetnými
spojeními mezi sousedními písmeny.

Na začátku ukážeme obecné principy „pokročilé typografie“: složitá metrická
data reprezentovaná tabulkami GSUB a GPOS v OpenType, které porovnáme
s tabulkami ligatur a kerningů v METAFONTu.

Potom popíšeme historii tvorby OpenTypového fontu: postupy, nástroje
a techniky. Probereme klíčové problémy, závažné překážky, pokusy a způsoby
řešení k dosažení úspěšného výsledku. Předvedeme několik nástrojů pro tvorbu,
testování a ladění fontů a konverze mezi různými textovými a binárními formáty
jejich reprezentace. Jsou to např. AFDKO, VOLT, FontForge, TTX, Font-TTF.
Budeme ilustrovat jejich vlastnosti, výhody, nevýhody, také i případy možných
nekompatibilit (anebo možných chyb).

Nakonec předvedeme použití OpenTypových fontů v rámci TEXu: X ETEX
a LuaTEX (ConTEXt MkIV) jsou programy dovolující číst a zpracovávat fonty
OpenType přímo, tj. bez tradičních metrik TFM.

309doi: 10.5300/2011-2-4/309

Klíčová slova: font, tvorba fontů, Unicode, OpenType, GSUB, GPOS; AFDKO,
VOLT, FontForge, TTX, Font-TTF; TEX, METAFONT, TFM, X ETEX, ConTEXt,
LuaTEX.

1. Introduction

The presented fonts are successors of the METAFONT fonts designed in 1997–98
by Olšák [2] and Píška [3]. Last year (2009) it was not possible for me to create a
complete font with OpenType tables that would work properly. This year, finally
positive results have been reached. The current article can be considered as a
report summarizing my recent studies, experiments and experiences for dialogs
and future collaboration with involved people. My main direction prefers the usage
of fonts within TEX based software providing Unicode and OpenType support –
X ETEX [9] and ConTEXt/LuaTEX [11]. For OpenType the abbreviation “OT”
will also be used in the article.

2. Advanced typography

Under “advanced typography” not only so called OpenType font technologies
but also our good “old” TEX&METAFONT capability providing sophisticated
word-processing can be assumed.

2.1. TEX & METAFONT – clear and clean
In fact, advanced typography with METAFONT and TEX has been available for
TEX users for many years. METAFONT contains powerful tools like generalized
ligatures together with boundary characters [1]:

.mf: ligtable % produces % .tfm/.pl
a : b |=:| c ; % acb /LIG/ 1
a : b |=:|> c ; % acb /LIG/> 2
a : b |=:|>> c ; % acb /LIG/>> 3
a : b =:| c ; % cb LIG/ 4
a : b =:|> c ; % cb LIG/> 5
a : b |=: c ; % ac /LIG 6
a : b |=:> c ; % ac /LIG> 7
a : b =: c ; % c LIG 8

where
1. retains both a and b, inserts c between: acb

310

2. retains both a and b, inserts c between;
the processing continues after a: acb

3. retains both a and b, inserts c between;
the processing continues after c: acb

4. retains b, inserts c before b: cb
5. retains b, inserts c before b;

the processing continues after c: cb
6. retains a, inserts c after a: ac
7. retains a, inserts c after a;

the processing continues after a: ac
8. substitutes both a and b by c.

Boundary characters. The METAFONT and TEX concept of the “word bound-
ary” (the left and right boundary characters) allows “implicit” processing of the
beginning and the end of the word, i.e., a substitution or adjustment of the letters
in the “initial” and the “final” position of the word. In METAFONT sources the left
boundary characters is denoted by "||:", the right boundary character must be
introduced as the “real” character using the "boundarychar code";" assignment.

These facilities allow to apply substitution and positioning rules with some
restrictions: only the pair of two adjacent characters can be processed, it is
impossible to look ahead for longer sequence in a simple way; the maximum
of glyphs in one font is 256. However, definitions of ligatures and kernings in
METAFONT and then in TFM, and also the processing algorithm in TEX are clear
and clean. The actual position in the input stream and how to find the next rule
from TEX metrics tables that have to be applied are always known.

Abilities of METAFONT and TEX will be demonstrated by two short samples.
Primarily, by default, the Latin (Czech) letters are in the “medial” form, without
connecting strokes. Then the TEX&MF “machinery” joins the adjacent letters in
words and adjusts the letters in the initial and final positions. The letter ‘e’ is
preceded by one of the front-end strokes, ‘s’ and ‘t’ are joined by the corresponding
inter-letter connecting stroke, and, finally, the last letter in the word is closed
by the ending stroke. METAFONT defines several initial, medial and final strokes
(depending on concerned letters), for example:

% left deflected end of character
beginchar(3, 6u#, 7u#, 0);

draw (0,0){(3,2)}..{sklon2}(6,6);
endchar;
% shorter convex stroke for the pairs st,...
beginchar(6, 3u#, 7u#, 0);

draw (-4,0){right}..{sklon2}(3,6);
endchar;
% right end of character
beginchar(1, .7u#, 7u#, 0);

draw (0,6)..(.7,7);
endchar;

311

and the ligtable instructions

ligtable ||: "e" |=:|> 3; % ...
ligtable "s": "t" |=:| 6; % ...
boundarychar:=1;
ligtable "a": rightboundaries;
def rightboundaries =

1 |=:> 1,
%
enddef;

invoke inserting the requested strokes in the left boundary point (3), between ‘s’
and ‘t’ (6), and in the right boundary position (1).

e s t a
e s t a
es ta

METAFONT cannot process in a single and natural way any character se-
quences consisting of three or more characters, e.g. triplets like "UN-KAN-AN" and
"UN-KAN-EN" in Georgian handwriting.

Depending on the following character ("AN", "EN" or another) the original
(“isolated” by default) glyph "KAN" is, or is not, replaced by its modified form:
ligtable GR_KAN: GR_AN =:| GR_kan_;

and then it may be joined to the next character by the connecting stroke:
ligtable GR_kan_: GR_AN |=:| gr_en__an;უ ა უკე

უ ა უკე
უკა უკე

But no substitution and no kerning is defined for the pairs "UN-KAN" and
"KAN-EN". After processing of the pair consisting of the second and third charac-
ter and substituting of the second glyph there is no chance to return before the
first character it is not possible to adjust the kerning between the first and the
second, modified, glyph (left) – while "UN-KAN-EN" (right) needs no substitution

312

or positioning changes. Two triplets above should be processed differently. It may
probably be possible but the solution with METAFONT would not be trivial.

2.2. Advanced typography with OpenType
“Old TrueType fonts” can be “enriched” by adding “Advanced OpenType Typo-
graphic Tables” to produce fonts in OpenType format. Since the additional OT
tables are common, two different format versions: “new” TTF and OTF will not
be discussed.

Each feature is defined as a system of subsystems called lookups. Any lookup
is described as a subsystem consisted of substitution and positioning rules. De-
pending on script and language, a feature may be enabled or disabled. If the
feature is enabled and some lookup, contained in this feature, fulfill the given
conditions, then the execution of the corresponding operations should be invoked.
It is a signal and the real application must be executed by an application program
or operating system, e.g., by means of a special library. OpenType introduces
substitution (GSUB), positioning (GPOS), and several other tables.

These tables define the set of rules of several types specifying (from OpenType
specification [4, 5]):

Glyph substitution (GSUB) rules – Single, Multiple, Alternate, Ligature,
Contextuali, Chaining contextual, Extension, and Reverse Chaining Single Sub-
stitution;

Glyph positioning (GPOS) rules – Single adjustment, Pair adjustment, Cursive
attachment, Mark-to-Base attachment, Mark-to-Ligature attachment, Mark-to-
-Mark attachment, Contextual, Chaining contextual, and Extension positioning.

>From METAFONT entire letters with accents are inherited. Therefore, there
is no need to use marks and anchors and operations with them to assemble the
complete letters from components (accents, signs, marks, . . .) and the Mark
positioning rules are not used. On the other hand, the fonts contain hundreds
contextual substitution and positioning rules.

First, an OpenType font has to be created properly, using some suitable tools.
Secondly, the font must be in agreement with the corresponding software to
execute adequate operations according to the rules (instructions) defined in the
font.

3. Tools to produce OpenType fonts

3.1. Creating OpenType fonts
Let us assume that Unicode encoded outline fonts have already been encoded,
though without OpenType features. These have been generated earlier with Font-

313

Forge. The aim and task is to produce OpenType, i.e., to enrich the fonts with
OT tables.

The fonts used/presented in this paper cover Czech, Georgian and also Ar-
menian handwriting letter repertoire (taught in primary/elementary schools).
Opposite to Czech and Georgian writing, the Armenian letters are designed and
written in a simple way without no special joiners and there is no necessity to
build any OpenType support/facility for Armenian.

Sample of Armenian: ս ա տ ր ազատ ւ հավասար
There is, however, another problem – to distinguish the adjacent letters.
In the following paragraphs the construction of OT fonts using various tools,

namely VOLT, FontForge and AFDKO, are shown.
The specification of (binary) OT tables, data formats of the VOLT project

files, variants of feature files accepted by AFDKO, FontLab, FontForge may all
be different.

3.2. Managing OpenType with VOLT
VOLT (Visual OpenType Layout Tool) [6], free product developed by Microsoft
and running only under MS Windows, offers an interactive approach to fill
input areas with appropriate parameter values manually in the VOLT project
window. Another possibility is writing and modifying source textual files in the
VOLT project language. In the VOLT input area one can enter, or in a text
editor we have to define glyphs (their names, types and code numbers), glyph
groups (glyph sets or glyph lists), context conditions, substitution and positioning
rules, and finally, to complete the hierarchy of scripts, languages, features, and
lookups; those data can be saved and (re)read. Such method is reasonable and
purposeful/meaningful for fonts with several hundreds contextual substitution and
positional rules (our font contains about 350 glyphs, more than 600 substitutions
and about 50 positionings). Of course, interactive design and especially proofing
tools for testing tasks, have been used but the files defining OpenType data
have been completed in the VOLT project (VTP) source/exchange format from
some tables by scripting and editing texts. VOLT allows to read the font only
in TrueType format, imports the VOLT project file, compiles OT data and then
generates the font with binary OT tables. That is, VOLT adds OT tables and
proofs the features and lookups; it accepts only the fonts with OT tables produced
by VOLT, and deletes other OT tables. Moreover, (re)compilation must always
be run before testing in the proofing window, even for fonts generated by program
VOLT. These fonts embed additionally special tables ‘TSID’, ‘TSIP’, ‘TSIS’, and
‘TSIV’ for proofing.

A general structure of a lookup with substitutions in the VOLT project
language (in my symbolic notation) is:

314

DEF_LOOKUP lookup_name lookup_parameters
[IN_CONTEXT | EXCEPT_CONTEXT

[[LEFT | RIGHT] glyph_list]
...

END_CONTEXT
]
AS_SUBSTITUTION

SUB glyph_list WITH glyph_list END_SUB
[SUB glyph_list WITH glyph_list END_SUB]

...
END_SUBSTITUTION

It is a sequence of one or more substitution rules and has the common con-
textual condition. The context may be defined as a compound logical expression.
During the evaluation process the glyphs from the given glyph lists before (LEFT)
or after (RIGHT) are compared relative to the current glyph according to their
presence (IN_CONTEXT) or absence (EXCEPT_CONTEXT). Sequences of more LEFT
and/or RIGHT subconditions can constitute left and right chains, their lengths
depend of the numbers of the left and right conditions. In nested subexpressions,
IN/EXCEPT_CONTEXT might be repeated more times, all of them are subsequently
evaluated as a logical union.

The lookup_parameters contain the instructions for processing like PROCESS_-
BASE, PROCESS_MARKS, ALL, DIRECTION LTR or DIRECTION RTL, etc. In our case
– DIRECTION LTR (“left to right”) – ‘left’ always means ‘before’; similarly ‘right’
and ‘after’ have the same meaning.

Representation of the VOLT Project data allows insertions, and also different
rule types may be in one lookup because the VOLT compiler accepts such rules
and can compile them when converting the source data into binary OpenType
tables. A final binary font then includes more than 100 internal features, numbered
zz01,. . . , zz99,. . . It means, the higher level of the VOLT project language turns
into greater complexity of the compiled product.

The following text demonstrates several complete examples describing the
lookups in the VOLT project textual representation as they are present in my
source files of the VOLT based fonts.

3.2.1. Glyphs, scripts, languages and features
But at first other elements of the VTP will be mentioned. All glyphs must be
listed in the glyph definition section, each glyph command must have in the
DEF_GLYPH its unique name, its ordinal number (index) in the font ID, its TYPE
(BASE, MARK, COMPONENT, LIGATURE), the UNICODE number must be present for
the Unicode coded glyphs and are missing for the glyphs from Private Use Area
(PUA).

315

Glyphs can be grouped/collected in named groups to address the groups
(glyph lists) in rules simply and shortly. DEF_GROUP commands may consist of
glyph sequences GLYPH glyph_name, glyph ranges, and also other glyph groups,
defined elsewhere but without ambiguity.
DEF_GROUP "czever"
ENUM RANGE "a" TO "z" GROUP "accver"
END_ENUM

END_GROUP

The names of glyphs and groups must be quoted, e.g., GLYPH "hyphen" or
GROUP "czever".

3.2.2. Single substitution
Switching the corresponding feature we can invoke the substitution of the letters
by their short variants.
DEF_LOOKUP "GeorAlt" PROCESS_BASE ALL DIRECTION LTR
AS_SUBSTITUTION
SUB GLYPH "uni10D3" WITH GLYPH "GR_varD" END_SUB
SUB GLYPH "uni10DA" WITH GLYPH "GR_varL" END_SUB
SUB GLYPH "uni10DD" WITH GLYPH "GR_varO" END_SUB
SUB GLYPH "uni10E0" WITH GLYPH "GR_varR" END_SUB

END_SUBSTITUTION

დ
ლ
ო
რ

b n (bn)
o m (om)
v y (vy)

s m sm
s t s t
s v s v
s y s y
s z s z
a z az
ზ ზ ზ

ა ზ აზ აზ
ნ ზ ნზ ნზ
შ ზ შზ შზ
მ ზ მზ მზ
ზ ზ ზ

a c d g o q n
a c d g o q n
ბ ბ

3.2.3. Ligature substitution
Typical ligatures can be defined by unconditional substitutions.
DEF_LOOKUP "liga" PROCESS_BASE ALL DIRECTION LTR
AS_SUBSTITUTION
SUB GLYPH "comma" GLYPH "comma" WITH GLYPH "quotedblbase" END_SUB
SUB GLYPH "quoteleft" GLYPH "quoteleft" WITH GLYPH "quotedblleft" END_SUB
SUB GLYPH "hyphen" GLYPH "hyphen" GLYPH "hyphen" WITH GLYPH "dash" END_SUB
SUB GLYPH "hyphen" GLYPH "hyphen" WITH GLYPH "minus" END_SUB

END_SUBSTITUTION

3.2.4. Contextual substitution
Before the letters defined by the right context the letters listed later will be
changed to their narrower variants (the unadjusted versions in parenthesis).
DEF_LOOKUP "CZEbmnvwy" PROCESS_BASE ALL DIRECTION LTR
IN_CONTEXT
RIGHT ENUM GLYPH "m" GLYPH "n" GLYPH "ncaron" GLYPH "v" GLYPH "w"
GLYPH "y" GLYPH "yacute" END_ENUM

END_CONTEXT
AS_SUBSTITUTION
SUB GLYPH "b" WITH GLYPH "bnarrow" END_SUB
SUB GLYPH "o" WITH GLYPH "onarrow" END_SUB
SUB GLYPH "oacute" WITH GLYPH "oacutenarrow" END_SUB
SUB GLYPH "v" WITH GLYPH "vnarrow" END_SUB
SUB GLYPH "w" WITH GLYPH "wnarrow" END_SUB

END_SUBSTITUTION

დ
ლ
ო
რ

b n (bn)
o m (om)
v y (vy)

s m sm
s t s t
s v s v
s y s y
s z s z
a z az
ზ ზ ზ

ა ზ აზ აზ
ნ ზ ნზ ნზ
შ ზ შზ შზ
მ ზ მზ მზ
ზ ზ ზ

a c d g o q n
a c d g o q n
ბ ბ

316

Following some letters (the left context) the letters “s” and “š” are substituted
by their ‘depth’ forms.
DEF_LOOKUP "CZEgjqy" PROCESS_BASE ALL DIRECTION LTR
IN_CONTEXT
LEFT ENUM GLYPH "g" GLYPH "G" GLYPH "j" GLYPH "J" GLYPH "q" GLYPH "Q"
GLYPH "y" GLYPH "yacute" GLYPH "Y" GLYPH "Yacute" END_ENUM

END_CONTEXT
AS_SUBSTITUTION
SUB GLYPH "s" WITH GLYPH "sdepth" END_SUB
SUB GLYPH "scaron" WITH GLYPH "scarondepth" END_SUB

END_SUBSTITUTION

3.2.5. Contextual insertion
Between the selected glyphs and their right successors the joining stroke will be
inserted.
DEF_LOOKUP "CZEjoins_s" PROCESS_BASE ALL DIRECTION LTR
IN_CONTEXT
RIGHT ENUM GLYPH "m" GLYPH "n" GLYPH "ncaron" GLYPH "t" GLYPH "tcaron"
GLYPH "v" GLYPH "w" GLYPH "y" GLYPH "yacute" GLYPH "z" GLYPH "zcaron" END_ENUM

END_CONTEXT
AS_SUBSTITUTION
SUB GLYPH "s" WITH GLYPH "s" GLYPH "joins" END_SUB
SUB GLYPH "scaron" WITH GLYPH "scaron" GLYPH "joins" END_SUB
SUB GLYPH "sleft" WITH GLYPH "sleft" GLYPH "joins" END_SUB
SUB GLYPH "scaronleft" WITH GLYPH "scaronleft" GLYPH "joins" END_SUB
SUB GLYPH "sdepth" WITH GLYPH "sdepth" GLYPH "joins" END_SUB
SUB GLYPH "scarondepth" WITH GLYPH "scarondepth" GLYPH "joins" END_SUB

END_SUBSTITUTION

3.2.6. Kerning positioning
This lookup operating on glyph pairs defines the kern advances between several
FIRST and one SECOND glyph (uni10D6). There are no explicit shifts for the first
glyphs, otherwise the second glyph is moved by two values, DX and ADV, for
left and ride sides, respectively. In other words, the value DX defines position of
the second glyph to the first glyph, whereas the value ADV adjusts the position
of the third glyph which follows the pair.

DEF_LOOKUP "GEOzen" PROCESS_BASE ALL DIRECTION LTR
AS_POSITION
ADJUST_PAIR
FIRST ENUM GLYPH "uni10D3" GLYPH "GR_varD" GLYPH "GR__don" GLYPH "uni10D4"
GLYPH "uni10D5" GLYPH "uni10D6" GLYPH "uni10D7" GLYPH "uni10D8"
GLYPH "uni10D9" GLYPH "uni10DA" GLYPH "GR_varL" GLYPH "GR__las"
GLYPH "uni10DD" GLYPH "GR_varO" GLYPH "uni10DF" GLYPH "GR__jan"
GLYPH "uni10E1" GLYPH "GR__san" GLYPH "uni10E7" GLYPH "uni10E2"
GLYPH "uni10E3" GLYPH "uni10E4" GLYPH "uni10E6"
GLYPH "GR__ghan" GLYPH "uni10EA" GLYPH "uni10EF" END_ENUM

317

FIRST ENUM GLYPH "uni10D0" GLYPH "uni10D1" GLYPH "GR__ban"
GLYPH "uni10ED" GLYPH "uni10EE" END_ENUM

FIRST ENUM GLYPH "uni10DC" GLYPH "uni10DE" END_ENUM
FIRST ENUM GLYPH "uni10E8" GLYPH "uni10E9" GLYPH "GR__chin" END_ENUM
FIRST ENUM GLYPH "uni10DB" GLYPH "uni10E5" GLYPH "uni10EB" END_ENUM
FIRST ENUM GLYPH "GR_varR" GLYPH "GR__rae" END_ENUM
SECOND GLYPH "uni10D6"
1 1 BY POS END_POS POS ADV -170 DX -170 END_POS
2 1 BY POS END_POS POS ADV -120 DX -120 END_POS
3 1 BY POS END_POS POS ADV -70 DX -70 END_POS
4 1 BY POS END_POS POS ADV -50 DX -50 END_POS
5 1 BY POS END_POS POS ADV -40 DX -40 END_POS
6 1 BY POS END_POS POS ADV -80 DX -80 END_POS

END_ADJUST
END_POSITION

დ
ლ
ო
რ

b n (bn)
o m (om)
v y (vy)

s m sm
s t s t
s v s v
s y s y
s z s z
a z az
ზ ზ ზ

ა ზ აზ აზ
ნ ზ ნზ ნზ
შ ზ შზ შზ
მ ზ მზ მზ
ზ ზ ზ

a c d g o q n
a c d g o q n
ბ ბ3.2.7. Left boundary positioning

If the selected letters are preceded by some non-letter character (its absence in
the set "czebeg"marks the word beginning) they will be adjusted

DEF_LOOKUP "CZEbegpos" PROCESS_BASE ALL DIRECTION LTR
EXCEPT_CONTEXT LEFT GROUP "czebeg" END_CONTEXT
AS_POSITION
ADJUST_SINGLE
GLYPH "a" BY POS ADV 80 DX 80 END_POS
GLYPH "aacute" BY POS ADV 80 DX 80 END_POS
GLYPH "c" BY POS ADV 80 DX 80 END_POS
GLYPH "ccaron" BY POS ADV 80 DX 80 END_POS
GLYPH "d" BY POS ADV 80 DX 80 END_POS
GLYPH "dcaron" BY POS ADV 80 DX 80 END_POS
GLYPH "g" BY POS ADV 80 DX 80 END_POS
GLYPH "o" BY POS ADV 80 DX 80 END_POS
GLYPH "oacute" BY POS ADV 80 DX 80 END_POS
GLYPH "q" BY POS ADV 80 DX 80 END_POS

END_ADJUST
END_POSITION

დ
ლ
ო
რ

b n (bn)
o m (om)
v y (vy)

s m sm
s t s t
s v s v
s y s y
s z s z
a z az
ზ ზ ზ

ა ზ აზ აზ
ნ ზ ნზ ნზ
შ ზ შზ შზ
მ ზ მზ მზ
ზ ზ ზ

a c d g o q n
a c d g o q n
ბ ბThe letters [a, á, c, č, d, ď, g, o, ó, q] in
the medial positions follow the fore-
going letters immediately. However,
they have some left ‘overshots’ and
have to be adjusted if they are in
the initial position – when no let-
ter is before them. The condition
"EXCEPT_CONTEXT LEFT" is just ful-
filled for non-letter glyphs.

3.3. Creating OpenType with FontForge
This subsection illustrates producing OpenType fonts using the files in “OpenType
feature files” (FEA) [7], defined by Adobe, and generating the fonts by Font-
Forge [8]. Because all attempts to convert metric data from METAFONT/TFM or
VOLT project data failed, the procedure had to be started from scratch again.

Lookups with substitution and positioning rules into textual “feature lan-
guage” file were rewritten, again “manually” which that the procedure started

318

with some simple tables with the glyph names and an information about their
transformations derived from METAFONT sources; then the files were produced
by scripting and modified them with text editors to obtain the required format.

The syntax and lookup structure between VTP and feature file specification
differs:

lookup lookup_name {
[sub glyph by glyph ;] #1

...
[sub glyph_list by glyph ;] #2

...
[sub glyph by glyph_list ;] #3

...
[sub glyph ’ glyph_list by glyph ;] #4

...
[sub glyph_list glyph ’ by glyph ;] #5

...
[sub glyph_list by glyph_list ;] #6

.....
} lookup_name ;

In FEA the context is connected with each single rule. In the “feature language”
the insertion is not supported, i.e., the character cannot appear at the same time
on the left and right side of a substitution rule (opposite to the VOLT project).
The rules like
sub glypha ’ glyph_list by glypha glyph ;
sub glypha ’ glyph_list by glyph glypha ;

are invalid and unsupported. Another restriction is that one low level lookup
must contain a sequence of only one type of substitution rules (only one from
type #1 or #2 . . . #6, but those rules may be repeated many times). Violating the
constrains results in compilation fatal errors. Generally, the sequence between
"sub" and "by" may consist of more glyphs to substitute (with apostrophes) and
more context elements (without apostrophes) constituting a longer chain and
forming a compound conditional expression.

Because of different syntax and structure the commands had to be rebuilt
completely. Therefore taking the rule set from the VOLT project each insertion
rule had to be divided into two rules and also split some lookups into separate
parts. It is necessary to append (in contradiction with the VOLT project) to the
font explicitly many new additional intermediate glyphs, the number of glyphs
increases from about 350 to 670, and the number of substitution rules increases
from about 600 to 850.

319

VOLT accepts
SUB GLYPH "B"
WITH GLYPH "B" GLYPH "joinc" END_SUB

But in FEA
sub B’ @CZEjoinc by B joinc;

is the fatal error.
Extra glyphs glyph.ini (absent in METAFONT font and VOLT) for all letters

[A.ini - Z.ini, a.ini - z.ini] and also for all accented letters had to be
added to the font. And every insertion rule must be divided in two rules using
glyph.ini as the intermediate characters.
sub B’ @CZEjoin by B.ini;
sub B.ini by B joinc;

Moreover, the two rules above cannot be grouped in one lookup because of
their different types. Similarly, we had to add the glyphs glyph.fin to solve both
left and right boundary processing tasks. The initial and final glyph variants will
be located in PUA.

3.3.1. Single substitution
lookup GeorAlt {
sub uni10D3 by GR_varD;
sub uni10DA by GR_varL;
sub uni10DD by GR_varO;
sub uni10E0 by GR_varR;

} GeorAlt;

3.3.2. Ligature substitution
lookup CZEliga {
sub comma comma by quotedblbase;
sub quoteleft quoteleft by quotedblleft;
sub hyphen hyphen hyphen by dash;
sub hyphen hyphen by minus;

} CZEliga;

3.3.3. Contextual substitution
@CZEbmnvwy = [m n ncaron v w y yacute];

lookup CZEbmnvwy {
sub b’ @CZEbmnvwy by bnarrow;
sub o’ @CZEbmnvwy by onarrow;
sub oacute’ @CZEbmnvwy by oacutenarrow;
sub v’ @CZEbmnvwy by vnarrow;
sub w’ @CZEbmnvwy by wnarrow;

} CZEbmnvwy;

320

The glyphs to substitute are marked by apostrophes, other glyphs between
"sub" and "by" denote the (right) context and the current glyphs will be substi-
tuted by the glyphs after "by".

The next example shows the left context.
@CZEgjqy = [g G j J q Q y yacute Y Yacute];
lookup CZEgjqy {
sub @CZEgjqy s’ by sdepth;
sub @CZEgjqy scaron’ by scarondepth;

} CZEgjqy;

3.3.4. Contextual insertion
In FEA it must redefined as two separate substitutions using intermediate glyphs,
their names are ended by “.s”.
lookup CZEjoins_ss {
sub s’ @CZEjoins by s.s;
sub scaron’ @CZEjoins by scaron.s;
sub sleft’ @CZEjoins by sleft.s;
sub scaronleft’ @CZEjoins by scaronleft.s;
sub sdepth’ @CZEjoins by sdepth.s;
sub scarondepth’ @CZEjoins by scarondepth.s;

} CZEjoins_ss;
lookup CZEjoins_s {
sub s.s by s joins;
sub scaron.s by scaron joins;
sub sleft.s by sleft joins;
sub scaronleft.s by scaronleft joins;
sub sdepth.s by sdepth joins;
sub scarondepth.s by scarondepth joins;

} CZEjoins_s;

3.3.5. Kerning positioning
These rules define the adjustments for the glyph pairs. In a more general case
the glyphs can be changed by glyph groups.
lookup PositGeor {
@GEOzen = [uni10D6];
@GEOzen1 = [uni10D3 GR_varD GR__don uni10D4
uni10D5 uni10D6 uni10D7 uni10D8
uni10D9 uni10DA GR_varL GR__las
uni10DD GR_varO uni10DF GR__jan
uni10E1 GR__san uni10E7 uni10E2
uni10E3 uni10E4 uni10E6 GR__ghan
uni10EA uni10EF];

@GEOzen2 = [uni10D0 uni10D1 GR__ban uni10ED uni10EE];
@GEOzen3 = [uni10DC uni10DE];
@GEOzen4 = [uni10E8 uni10E9 GR__chin];
@GEOzen5 = [uni10DB uni10E5 uni10EB];
@GEOzen6 = [GR_varR GR__rae];
pos @GEOzen1 @GEOzen -170;

321

pos @GEOzen2 @GEOzen -120;
pos @GEOzen3 @GEOzen -70;
pos @GEOzen4 @GEOzen -50;
pos @GEOzen5 @GEOzen -40;
pos @GEOzen6 @GEOzen -80;

} PositGeor;

3.3.6. Left boundary positioning
The glyphs listed in @CZEleftboundary and @GEOleftboundary will be adjusted
by 80 (70) units when the foregoing glyphs are not the letter that could be the
first one in the word – "ignore" reverses the condition.
lookup CZEbegpos {
ignore pos @czebeg @CZEleftboundary’;
pos @CZEleftboundary’ < 80 0 80 0> ;

} CZEbegpos;

lookup LeftPositGeor {
@GEOleftboundary = [uni10D1];
@geolet = [uni10D0 - uni10F0
GR_varD GR_varL GR_varO GR_varR];
ignore pos @geolet @GEOleftboundary’;
pos @GEOleftboundary’ < 70 0 70 0>;

} LeftPositGeor;

3.3.7. Several comparative examples
The following examples illustrate several selected cases of rules in their META-
FONT, VOLT and FEA implementations. After splitting a FEA rule in two steps
we must usually put them in separate lookups depending of the type of the rules.

šť Pá Bo js bn

p š ť P á B o j s b n
c š ť P á B o j n
s š ť P á B o j s b n

1 2 3 4 5
1.–3. Various letter pairs are joined by different connecting strokes.
4. The letters “s”/“š” have the modified forms after some letters (g, j, q, y).
5. The letters b, o, v, w are written narrower before m, n, v, y.

322

პ აზ იპ მი ის უს ვკი
პ აზ იპ ი ი ვ ი ვ ი
1 2 3 4 5 6 7

1. No connection between letters – no rules defined and applied.
2. Both letters without changes with adjusted kerning.

MF ligtable GR_AN: GR_ZEN kern kzz#+.2u#;
VTP FIRST ...

FIRST ENUM GLYPH "uni10D0" ... END_ENUM
...
SECOND GLYPH "uni10D6"
...
2 1 BY POS END_POS POS ADV -120 DX -120 END_POS

FEA @GEOzen = [uni10D6];
@GEOzen2 = [uni10D0 ...];
...
pos @GEOzen2 @GEOzen -120;

3. Letters connected but not modified.
MF ligtable GR_IN: GR_PAR |=:| gr_in__an;

The connecting stroke inserted after "uni10D8" before "uni10DE".
VTP IN_CONTEXT RIGHT GLYPH "uni10DE" END_CONTEXT

SUB GLYPH "uni10D8" WITH GLYPH "uni10D8" GLYPH "gr_in__an" END_SUB

The new glyph "uni10D8_in__an" must be added and execution in two
steps split in two different lookups (the rule types are not the same).
FEA sub uni10D8’ uni10DE by uni10D8_in__an;

sub uni10D8_in__an by uni10D8 gr_in__an;

4. Only the first letter changed and connected.
MF ligtable GR_MAN: GR_IN =:| GR_man_;
VTP IN_CONTEXT RIGHT GLYPH "uni10D8" END_CONTEXT

SUB GLYPH "uni10DB" WITH GLYPH "GR_man_" GLYPH "gr_man__in" END_SUB

In FEA, changing the first glyph and inserting a junction after must be
divided in two steps.
FEA sub uni10DB’ uni10D8 by GR_man_man__in;

sub GR_man_man__in by GR_man_ gr_man__in;

5. Only the second letter changed and connected.
MF ligtable GR_IN: GR_SAN |=:| gr_in__san;
VTP IN_CONTEXT RIGHT ENUM GLYPH "uni10E1" GLYPH "GR_san_" END_ENUM END_CONTEXT

SUB GLYPH "uni10D8" WITH GLYPH "uni10D8" GLYPH "gr_in__san" END_SUB
..........

323

IN_CONTEXT LEFT GLYPH "gr_in__san" END_CONTEXT
SUB GLYPH "uni10E1" WITH GLYPH "GR__san" END_SUB

FEA sub uni10D8’ uni10E1 by uni10D8_in__san;
sub uni10D8_in__san by uni10D8 gr_in__san;
sub gr_in__san uni10E1’ by GR__san;

6. Both letters changed and connected.
MF ligtable GR_UN: GR_SAN =:| GR_un_;

ligtable GR_un_: GR_SAN |=:|> gr_en__san
VTP IN_CONTEXT RIGHT ENUM GLYPH "uni10E1" GLYPH "GR_san_"

END_ENUM END_CONTEXT
SUB GLYPH "uni10E3" WITH GLYPH "GR_un_" GLYPH "gr_en__san" END_SUB
..........
IN_CONTEXT LEFT GLYPH "gr_en__san" END_CONTEXT
SUB GLYPH "uni10E1" WITH GLYPH "GR__san" END_SUB
SUB GLYPH "GR_san_" WITH GLYPH "GR__san_" END_SUB

FEA sub uni10E3’ uni10E1 by GR_un_en__san;
sub GR_un_en__san by GR_un_ gr_en__san;
sub gr_en__san uni10E1’ by GR__san;
sub gr_en__san GR_san_’ by GR__san_;

7. The medial letter changed and kerned.
MF ligtable GR_KAN: GR_IN =:| GR_kan_;

Here is a weak point in METAFONT: After processing the second and third
character there is no simple means how to return before the first letter and
correct kerning (7 right).
VTP IN_CONTEXT RIGHT GLYPH "uni10D8" END_CONTEXT

...
SUB GLYPH "uni10D9" WITH GLYPH "GR_kan_" GLYPH "gr_en__in" END_SUB
....
FIRST ENUM ... GLYPH "uni10D5" ...
SECOND GLYPH "GR_kan_"
...
1 1 BY POS END_POS POS ADV -80 DX -80 END_POS

FEA sub uni10D9’ uni10D8 by GR_kan_en__in;
...
sub GR_kan_en__in by GR_kan_ gr_en__in;
...
@GEOkan_ = [GR_kan_];
@GEOkanA_ = [... uni10D5 ...
...
pos @GEOkanA_ @GEOkan_ -80;

3.3.8. Lookup order in FEA
According the specification of the feature files [5] the lookup order is determined
by the order of their definitions in the file. Their calling order, for example, in a
feature block is irrelevant. The order has to be changed by a manual swapping
or permutation of the whole text blocks using any text editor. To avoid any
misunderstanding it was decided to arrange the order of my lookup definitions:

lookup SubstGeorSingleA {
......

324

} SubstGeorSingleA;
lookup SubstGeorInsertA {...} ...
lookup SubstGeorSingleB {...} ...
lookup SubstGeorSingleC {...} ...
lookup SubstGeorInsertC {...} ...
lookup SubstGeorConnC {...} ...
lookup SubstGeorDoubleC {...} ...
and the order of their invocation
feature ss12 { # "Stylistic Set 12"
lookup SubstGeorSingleA; # stage 1: subst one
lookup SubstGeorInsertA; # insert - step 2
lookup SubstGeorSingleB; # stage 2: subst one
lookup SubstGeorSingleC; # stage 3: subst one
lookup SubstGeorInsertC; # insert - step 2
lookup SubstGeorConnC; # subst two - step 1
lookup SubstGeorDoubleC; # subst two - step 2

} ss12;
in exactly the same way and thus to “synchronize” both lookup sequences. Having
the lookup definitions in one order there is no chance to change this order by
trying to call them in any other order.

Resuming my experiences – several conditions must be fulfilled: lookups of
different types must be divided in the differently named lookup blocks; the lookups
of the same type may be joined together into the common lookup block; and, of
course, all the lookups must be arranged in the appropriate order. Putting all the
lookups within the font into a single one-level block would be impractical, if not
impossible, although it has not been verified.

3.4. Tests of generated fonts
The OpenType tables have been defined, the corresponding VOLT project file
created and the VOLT based font by VOLT generated. Also the feature file has
been created and the FEA based font generated.

After successful tests of the VOLT based font by VOLT Proofing tool and
testing both VOLT and FEA fonts using testing window in FontForge the fonts
with OT tables are obtained and ready to be check and tested with X ETEX and
ConTEXt and the results could be presented.

The VOLT based font gives the expected results with X ETEX (xelatex):

ე ემ ა ნი ა
ე ემ ა ნი ა

იშ ემ ა ნი ა
ე ემ ა ნი ა
იშ ემ ა ნი ა
ე ემ ა ნი ა

The VOLT font with context prints very similar output:

1

����ე ����ემ�����ა� ნი���ა�

ა��ე ც��ე���� ბ��� ნი�შნ���

ი�� ც��ე���� ბ��� ნი�შნ���

����ე ����ემ�����ა� ნი���ა�

იშ ����ემ�����ა� ნი���ა�

����ე ����ემ�����ა� ნი���ა�

Also the FEA based font seems to be correct with xelatex:

325

ე ემ ა ნი ა
ე ემ ა ნი ა

იშ ემ ა ნი ა
ე ემ ა ნი ა
იშ ემ ა ნი ა
ე ემ ა ნი ა

But the FEA font generated by FontForge and processed with context pro-
duces evidently wrong output with many incorrect substitutions:

1

����ე ����ემ�����ა� ნი���ა�

ა��ე ც��ე���� ბ��� ნი�შნ���

ი�� ც��ე���� ბ��� ნი�შნ���

����ე ����ემ�����ა� ნი���ა�

იშ ����ემ�����ა� ნი���ა�

����ე ����ემ�����ა� ნი���ა�

It looks like a total nonsense, and may signal a possible incompatibility
between FontForge, LuaTEX and the author’s fonts but it could not be said where
exactly the bug was.

Let‘s try the next program package producing OpenType – AFDKO.

3.5. AFDKO
AFDKO (Adobe Font Development Kit for OpenType) is a free program package
for OpenType font management. One of the programs, makeotf, is able to output
only OTF with CFF tables but this fact is not important for us because we
are interested mainly in OT features, and description of glyph outlines plays
secondary role.

First thing we have met is a small syntactic difference between feature files
read by FontForge and by makeotf (AFDKO).

FontForge fails on
@GDEF_Ligature = [quotedblleft quotedblbase
minus dash];

#@GDEF_Mark = [];
@GDEF_Component = [quoteleft comma hyphen];
table GDEF {

GlyphClassDef @GDEF_Base,
@GDEF_Ligature, , @GDEF_Component;

} GDEF;

because it does not allow commas in GDEF; while AFDKO corrupts on
@GDEF_Ligature = [quotedblleft quotedblbase
minus dash];

@GDEF_Mark = [];
@GDEF_Component = [quoteleft comma hyphen];
table GDEF {

GlyphClassDef @GDEF_Base
@GDEF_Ligature @GDEF_Mark @GDEF_Component;

} GDEF;

because it must have the commas in GDEF, and @GDEF_Mark = []; is invalid.
All other definitions (features, lookups, sub and pos rules) are absolutely iden-

tical. Some warnings are reported during generating OTF by makeotf ; however,

326

the reason for the failure could not be found. Generally, the source inputs for
FontForge and AFDKO are nearly identical, in contrast to the entirely different
VOLT project regarding syntax and structure.

Reading the appropriate input feature file by AFDKO we should satisfactorily
generate the OTF file. The first extensive tests with ConTEXt look like a great
success:

1

����ე ����ემ�����ა� ნი���ა�

ა��ე ც��ე���� ბ��� ნი�შნ���

ი�� ც��ე���� ბ��� ნი�შნ���

����ე ����ემ�����ა� ნი���ა�

იშ ����ემ�����ა� ნი���ა�

����ე ����ემ�����ა� ნი���ა�

All tested substitutions seems to be correct also in X ETEX. No mistake has
been found in the GSUB table:

ე ემ ა ნი ა
ე ემ ა ნი ა

იშ ემ ა ნი ა
ე ემ ა ნი ა
იშ ემ ა ნი ა
ე ემ ა ნი აHowever, not all positioning rules work properly.

The GPOS table produced by AFDKO is not correct (not compatible with
X ETEX) although with FontForge we did not observe such problem.

3.5.1. Final mix
The last attempt mixes (using TTX) the font generated by AFDKO’s makeotf
connected together with the GPOS table created by FontForge, where both GSUB
and GPOS have been derived from the common source feature file.

X ETEX:

ე ემ ა ნი ა
ე ემ ა ნი ა

იშ ემ ა ნი ა
ე ემ ა ნი ა
იშ ემ ა ნი ა
ე ემ ა ნი ა

ConTEXt:

1

����ე ����ემ�����ა� ნი���ა�

ა��ე ც��ე���� ბ��� ნი�შნ���

ი�� ც��ე���� ბ��� ნი�შნ���

����ე ����ემ�����ა� ნი���ა�

იშ ����ემ�����ა� ნი���ა�

����ე ����ემ�����ა� ნი���ა�
Only now no mistakes are seen.

3.6. A short intermediate summary
There are several different source (textual) representations of OpenType tables.

1. VOLT project (hwu.vtp) – the correct font, (hwuv.ttf) only TTF flavoured
can be produced.

2. First feature file (hwuf.fea) – FontForge produces OpenType with error-
neously ordered lookups.

3. Second feature file (hwuff.fea) – FontForge produces OpenType working
with X ETEX, errors with ConTEXt (GSUB looks correct).

327

4. Third feature file (hwufa.fea) – makeotf (from AFDKO) generates the
font (only CFF flavoured) with wrong GSUB; GPOS looks correct.

The 5th OT font (hwufo.otf), combined together with TTX from the product
of AFDKO (GSUB) and GPOS generated by FontForge, works properly with
X ETEX, only small errors are observed in ConTEXt.

The “boundary processing” does not work in the line breaking points, including
the points of word hyphenation. The following examples demonstrate the problem
– in X ETEX (left) and in ConTEXt (right):

po dlouhá léta
a mnohá ta-
letí

1
po dlouhá léta
a mnohá ta-
letí

where the initial (isolated) ‘a’ is not adjusted; ‘a’ in “sta-” does not have the
“final stroke”; and the next ‘l’ is without the “initial stroke”.

3.7. Other programs
Alongside with the software tools generating OpenType fonts several other pro-
grams have been employed or tried, mostly for the purpose to find errors, verify,
compare, convert font data or acquire any relevant information about fonts and
their OpenType features. Unfortunately, many of them could not respond to
requested questions and do not give any important information.

Predominantly, work has been done on Linux systems, while MS Windows has
been used rarely: AFDKO (makeotf) and VOLT only to generate VOLT based
and FEA based fonts, and VOLT for proofing as well.

3.7.1. Visual proofing tools and displaying binary data in readable form
MS VOLT “Proofing Tool” is very sophisticated and powerful facility. It allows
to test the result of complete processing of a given glyph sequence (the glyphs
must be denoted by their names according the VOLT project and separated by
commas), to check all features separately or step by step detailed behaviour of
each lookup, and even to trace the changes glyph by glyph in the string.

FontForge can create and modify PostScript, TrueType, OpenType, SVG, and
other fonts; in addition, it comprises other suitable instruments. The “Kerning
Metrics Window” allows to check kernings and other features. The results of
application of actually selected (activated) features for entered Unicode glyph
string can be examined.

328

In ConTEXt the \showotfcomposition command provides similar tracing
during lookup processing, prints all intermediate results and informs about the
features and lookups that have been just applied, step by step until the final
result. The “only” a crucial problem is that it is not clear why the activated
lookup has not been applied or why is the behaviour of ConTEXt and X ETEX
different when processing my font.

The internal FontForge format (SFD) has a readable ASCII representation.
The "Print" command provides displaying and printing font tables and sample
multiscriptal and multilingual texts. Another program from the FontForge package,
showttf, displays a font file tables, and mensis allows you to examine and modify
some of the tables in a TrueType or OpenType font. But usually an overview of
tables and subtables can say nothing about the exact font behaviour and about
interaction or interference of features and lookups.

TrueType and OpenType fonts can be converted by the program ttx to/from
a human-readable XML-based format (TTX). This textual data may be modified
using any plain text editor. It was difficult to orientate oneself and it was possible
to make only minor changes.

3.7.2. Validation
“MS Validator” has been tried only once when the present author’s font did not
work properly. A very long output file with complete list of tables, items, features,
lookups, etc. in my font was obtained but the only information was that the font
is without errors and, of course, nothing about behaviour of the font and the
feature execution order.

3.7.3. Comparison
To compare TTX files is possible, but it is purposeful only if changes are small.
Also FontForge’s "Font compare", and its command version sfddiff afford low
benefit if there are significant differences between fonts, e.g., a comparison of a
VOLT based font and its FEA version produces vast amount of data, greater
than in both fonts, because their internal structures are dissimilar and totally
unmatched.

3.7.4. Conversions
The programs from the Font::TTF package allow to process TrueType/OpenType
fonts: ttf2volt creates VOLT project or VOLT based font from existing Open-
Type font file, while volt2ttf compiles VOLT source into OT tables in the
font.

It was not successful: volt2ttf ends with “Can’t use an undefined value as
an ARRAY reference at /usr/local/bin/volt2ttf line 574” and for the result of
ttf2volt (the conversion was executed without errors, only some warnings were
reported) VOLT always colapses showing an uninformative message “Compilation
failed”.

329

A a G g Ó ó
Á á H h P p Ú ú
B b I i Q q Ů ů
C c Í í R r V v
Č č J j Ř ř W w
D d K k S X x
Ď ď L l Š Y y
E e M m T t Ý ý
É é N n Ť ť Z z
Ě ě Ň ň U u Ž ž
F f O o

ა ვ ჟ ფ ჩ
ბ ზ მ ქ ც ხ
გ თ ნ ს ღ ძ ჯ
ი ტ ყ წ ჰ

ე კ პ უ შ ჭ
დ ლ ო რ

Czech alphabet. Georgian alphabet (in the last line:
long and short letter variants of d, l, o, r).

With FontForge we can generate a font in other font format; the features of
an opened font can be saved into a feature file that can be reread later. However,
these files are very similar to input FEA written manually, and – for VOLT based
files – are too complicated, less transparent, probably incorrect and unusable.

Therefore such facilities have been found to be rather purely theoretical.

4. Be positive

Two types of font can be produced:
1. TTF flavoured – with VOLT generated from VTP,
2. OTF (CCF/PS) flavoured – with common effort of AFDKO, FontForge and

TTX generated from FEA.
The fonts work properly (i.e. corresponding to actually defined substitution a

position rules) under X ETEX (xelatex) and under LuaTEX/context – only with
some small errors. One could be satisfied despite of many deadlocks during font
development and the fact that the font collection has not been finished completely.

The original METAFONT Czech font slabikar was created by Olšák [2].
Czech language uses Latin script with extensions, however, local traditions may

330

be different from other Latin-scripted languages. The letters in words are always
all connected together.

Both Czech and Armenian handwriting are usually slanted and use uppercase
and lowercase letters. Modern Georgian script does not distinguish capital and
small letters and handwriting is traditionally upright (at least, in the form taught
in schools). Not all adjacent letters in words are joined together.

Besides the ’liga’ feature the feature names were chosen from the user
“stylistic sets”:
’ss01’ for single substitutions to replace letter variants;
’ss02’ – Czech substitutions;
’ss03’ – Czech positioning rules;
’ss12’ – Georgian substitutions;
’ss13’ – Georgian positionings, e.g. kernings.

For the Czech part to set on all features is obligatory. For Georgian it is
possible to select more combinations, only the kerning adjustment is requested in
all cases to avoid gaps and letter overlaps.

X ETEX/X ELATEX can define the font features (for testing purposed our fonts
in many version are not “installed” but they are located in the current directory),
for example Georgian without substitutions and without letter connections:
\font\hwugn="[./hwufo.otf]:+liga,

+ss13" at 28pt

V š ichni lidé s e rodí s vobodní a s obě r ní
co do důs tojnos ti a práv. J ou nadáni
rozumem a s věd mím a mají s polu jednat
v duchu bratrs tví.

Բոլոր մարդիկ ծնվւմ են ազատ ւ հավասար իրենց
արժանապատկւթյամբ ւ իրավւնքներով:Նրանք ւնեն
բանականւթյւն ւ խիղճ միմյանց պետք է եղբայրաբար
վերաբերվեն:
ყველა ადამიანი იბადება თავისუფალი და თანისწორი
თავისი ღირსებითა და უფლებებით. მათ მინიჭებული
აქვთ გონება და სინდისი და ერთმანეთის მიმართ უნდა
იქცეოდნენ ძმობის სულისკვეთებით.

ყვე ა ა ამიანი იბა ება თავისუფა ი ა თანისწ ი თავისი
ღი სებითა ა უფ ებებით. მათ მინიჭებუ ი აქვთ გ ნება
ა სინ ისი ა ე თმანეთის მიმა თ უნ ა იქცე ნენ ძმ ბის
სუ ისკვეთებით.

ყვ ა ა ა ი ი ი ა ა თა ი უ ა ი ა თ ი ი თა ი ი
ღი ითა ა უ ით. მათ ინიჭ ი აქვთ გ ნ ა
ა სინ ი ი ა თმ ეთი იმ თ ნ ა იქცე ნ ნ ძ ბი
ი კვეთ ით.

Georgian with all defined substitutions and letter connections:
\font\hwugs="[./hwufo.otf]:+liga,

+ss01,+ss12,+ss13" at 28pt

V š ichni lidé s e rodí s vobodní a s obě r ní
co do důs tojnos ti a práv. J ou nadáni
rozumem a s věd mím a mají s polu jednat
v duchu bratrs tví.

Բոլոր մարդիկ ծնվւմ են ազատ ւ հավասար իրենց
արժանապատկւթյամբ ւ իրավւնքներով:Նրանք ւնեն
բանականւթյւն ւ խիղճ միմյանց պետք է եղբայրաբար
վերաբերվեն:
ყველა ადამიანი იბადება თავისუფალი და თანისწორი
თავისი ღირსებითა და უფლებებით. მათ მინიჭებული
აქვთ გონება და სინდისი და ერთმანეთის მიმართ უნდა
იქცეოდნენ ძმობის სულისკვეთებით.

ყვე ა ა ამიანი იბა ება თავისუფა ი ა თანისწ ი თავისი
ღი სებითა ა უფ ებებით. მათ მინიჭებუ ი აქვთ გ ნება
ა სინ ისი ა ე თმანეთის მიმა თ უნ ა იქცე ნენ ძმ ბის
სუ ისკვეთებით.

ყვ ა ა ა ი ი ი ა ა თა ი უ ა ი ა თ ი ი თა ი ი
ღი ითა ა უ ით. მათ ინიჭ ი აქვთ გ ნ ა
ა სინ ი ი ა თმ ეთი იმ თ ნ ა იქცე ნ ნ ძ ბი
ი კვეთ ით.

ConTEXt uses other commands to flip/flop the features:
\definefontfeature[cz][script=DFLT,lang=dflt,
mode=node,liga=yes,ss02=yes,ss03=yes]

\font\hwuc = hwufo*cz at 26pt

V š ichni lidé s e rodí s vobodní a s obě r ní
co do důs tojnos ti a práv. J ou nadáni
rozumem a s věd mím a mají s polu jednat
v duchu bratrs tví.

Բոլոր մարդիկ ծնվւմ են ազատ ւ հավասար իրենց
արժանապատկւթյամբ ւ իրավւնքներով:Նրանք ւնեն
բանականւթյւն ւ խիղճ միմյանց պետք է եղբայրաբար
վերաբերվեն:
ყველა ადამიანი იბადება თავისუფალი და თანისწორი
თავისი ღირსებითა და უფლებებით. მათ მინიჭებული
აქვთ გონება და სინდისი და ერთმანეთის მიმართ უნდა
იქცეოდნენ ძმობის სულისკვეთებით.

ყვე ა ა ამიანი იბა ება თავისუფა ი ა თანისწ ი თავისი
ღი სებითა ა უფ ებებით. მათ მინიჭებუ ი აქვთ გ ნება
ა სინ ისი ა ე თმანეთის მიმა თ უნ ა იქცე ნენ ძმ ბის
სუ ისკვეთებით.

ყვ ა ა ა ი ი ი ა ა თა ი უ ა ი ა თ ი ი თა ი ი
ღი ითა ა უ ით. მათ ინიჭ ი აქვთ გ ნ ა
ა სინ ი ი ა თმ ეთი იმ თ ნ ა იქცე ნ ნ ძ ბი
ი კვეთ ით.

331

5. Conclusion

It has been possible to generate the fonts with OpenType tables producing the
expected results, especially with X ETEX and ConTEXt. There are several different
representations of OpenType data: the OpenType specification itself, VOLT
project source format, feature language and its interpretations in AFDKO and
FontForge. Subsequently, the internal binary files produced by various programs
should be and (really) are (very often very) different and then also any effective
comparison is impossible. Unfortunately, the program tools like AFDKO, Font-
Forge, FontUntils and other have problems either with uniformity and reliability or
with compatibility with the TEX based text processors like X ETEX or ConTEXt.
However, some errors in fonts cannot be excluded even when correct results are
produced.

Acknowledgements
I would like to thank all authors of OpenType software, Adam Twardoch for consultations about
OT, Hans Hagen and Taco Hoekwater for information about ConTEXt and its font support.

References
[1] Donald E. Knuth. The METAFONTbook, Volume C of Computers and Typesetting,

Addison–Wesley, p. 317, 1986.
[2] Petr Olšák. Psané písmo ze slabikáře. Zpravodaj CSTUG 4(7), pp. 191–197, 1997; petr.

olsak.net/ftp/olsak/slabikar; bulletin.cstug.cz/pdf/bul974.pdf; Jiří Žáček, Helena
Zmatlíková. Slabikář, Alter, 1996, 2006 (in Czech).

[3] Karel Píška. Georgian scripts. TUGboat, 19(3), 1998; http://www.tug.org/TUGboat/
Articles/tb19-3/tb60pisk.pdf.

[4] Adobe: OpenType. http://www.adobe.com/type/opentype/; Microsoft Typography: What
is OpenType? http://www.microsoft.com/typography/WhatIsOpenType.mspx.

[5] Microsoft: OpenType specification. http://www.microsoft.com/typography/otspec/.
[6] Microsoft: Visual OpenType Layout Tool (VOLT). http://www.microsoft.com/

typography/VOLT.mspx.
[7] Adobe: OpenType Feature File Specification. http://www.adobe.com/devnet/

opentype/afdko/topic_feature_file_syntax.html; http://partners.adobe.com/
public/developer/opentype/afdko/topic_feature_file_syntax.html.

[8] George Williams. Font creation with FontForge. EuroTEX 2003 Proceedings, TUGboat,
24(3):531–544, 2003; http://fontforge.sourceforge.net.

[9] Jonathan Kew. The X ETEX typesetting system. http://scripts.sil.org/XeTeX; http:
//www.ctan.org/tex-archive/info/xetexref/XeTeX-reference.pdf.

[10] Martin Hosken. Font-TTF, FontsUtils. http://search.cpan.org/~mhosken/; http://
scripts.sil.org/FontUtils.

[11] ConTEXt and LuaTEX. http://wiki.contextgarden.net.

Institute of Physics, Academy of Sciences
Prague, Czech Republic

piska (at) fzu (dot) cz

332

