
Cahiers

O

m MOBILE TEX: PORTING TEX TO THE IPAD
P Arthur Reutenauer

Cahiers GUTenberg, n 56 (2011), p. 84-90.

<http://cahiers.gutenberg.eu.org/fitem?id=CG_2011___56_84_0>

© Association GUTenberg, 2011, tous droits réservés.

L’accès aux articles des Cahiers GUTenberg
(http://cahiers.gutenberg.eu.org/),
implique l’accord avec les conditions générales
d’utilisation (http://cahiers.gutenberg.eu.org/legal.html).
Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

http://cahiers.gutenberg.eu.org/fitem?id=CG_2011___56_84_0
http://cahiers.gutenberg.eu.org/
http://cahiers.gutenberg.eu.org/legal.html


Mobile TEX: Porting TEX to the iPad
TEX mobilně: migrace TEXu na iPad

Arthur Reutenauer

Abstract: The paper presents the achievement of Richard Koch, amongst
others author of TEXShop and MacTEX developer, who has successfully
compiled and used TEX on Apple’s iPad.

Key words: TEX-8, ConTEXt, iPad.
Abstrakt: Článek nám představí úspěch Richarda Kocha, mimo jiné autora
programu TEXShop a distribuce MacTEX, kterému se podařilo zkompilovat
apoužít TEX na iPadu od firmy Apple.

Klíčová slova: TEX-8, ConTEXt, iPad.

arthur (dot) reutenauer (at) normalesup (dot) org
Allée du Torrent

Zone Tokoro
05000 GAP

France

84 doi: 10.5300/2011-2-4/84



15 15

15 15

Mobile TEX: Porting TEX to the iPad

Arthur Reutenauer
With lots of help from Richard Koch

Introduction

Over the 25 years of its existence, TEX has been ran on many platforms and has always been noted for
its portability, so it's not surprising that when new devices appear, TEX would soon be ported there,
too.

Today a new kind of device is in wide use that links computers to telephones and that represents
a new challenge on the path of TEX because of reasons both technical and ergonomic, the so-called
“smartphones”. But it may sound insane to want to use TEX on a Blackberry or a Nokia N97—although
word on the street is that Jonathan Kew, author of X ETEX and TEXworks, ported TEX to the iPhone last
year—so that's not exactly what I will talk about here.

I will present the achievement of Richard Koch, amongst others author of TEXShop and MacTEX
developer, who has successfully compiled and used TEX on Apple's iPad.

The latter does of course not qualify as a smartphone per se, but it shares a lot of features with
them, above all the aim at mobility, while having the advantage of giving the user an experience closer
to that of an actual computer. The iPad port of TEX, called TEX-8, should therefore give a good idea of
what “mobile TEX” could be. It might even be that TEX-8 could be copied to the other Apple mobile
devices with only minor changes (who wouldn't want to run TEX on an iPod touch?), but I will stick to
describing the experiments I made, thanks to Richard, on the iPad, and hint that they would probably
also apply to the other iThingies.

There are a number of issues arising from this task, that indeed could be qualified as Herculean.
The way programs work on the iPad is that they're made into “applications” from which you control
everything. It is the single entry point to the program, and in fact the only way we can interact with
the operating system, because we can't run two applications at the same time. This of course doesn't
mean that we can't program many things into an application, but it gives a very different touch: for
TEX to be made into an iPad application, we have to embed not only the TEX program itself, the format
file and the whole distribution into it, but also the editor itself! If we used a different application to
edit the source file, TEX-8 couldn't access it because of Apple's very restrictive policy.

Hence, the interesting issue is that, while all the pieces we need are obviously already available,
and the story of writing an iPad application for TEX mostly is the description of how we put the pieces
together, it also consists not in small part in crucial design choices aiming at crafting a reasonable user
interface.

A word of warning before we proceed to the description proper: I wanted to introduce this
project today but it is yet very much a work in progress, and I cannot present anything else than a
snapshot of the current development stage. I thus ask the reader to take the following pages with a
little bit of salt. All the advertised features, or lack thereof, I review here, will, no doubt, be greatly
improved in the future.

15

85



16 16

16 16

So here goes.

A user-friendly interface

A rich text editing environment

The natural entry point to TEX on the iPad seems to be the source code, and TEX-8 thus opens on the
editor window, that displays by default a document stored in the aplication about Sylow theorems in
group theory. The whole window is a text area, and the iPad virtual keyboard pops up, so that we can
type. Typing on the iPad is “not for sissies”, in Richard's words, and typing TEX code is rendered even
more awkward by the fact that many of TEX's special characters that are ubiquitous (‘\’ ‘{’ ‘}’ amongst
several others) are not present on the default keyboard, but demand instead, in order to be typed,
that one switch keyboard twice (using two different toggle keys), which would make the typing of any
serious TEX document extremely painful. In order to remedy that, Richard devised an additional row on
top of the standard keyboard, that pops up and disappears together with it. Though I personally regret
that the simulated keys don't make the nice keyboard-like sound when tapped, they are immensely
helpful and make for a reasonable tradeoff if one needs to type actual input on the iPad.

Another standard iPad feature that could come in handy at that point would be auto-correc-
tion of the typed input. It behaves like some kind of aggressive spell-checker, automatically correcting
any words the user types, unless the latter directs otherwise. Having personally experienced how this
behaviour can have very disruptive effects in some places (when typing URLs, for example), I don't
especially recommend to turn it on by default, but it can be useful if one is typing lengthy text in a
natural language, and could have spared me to have written “The whoel ndow ia a text qrea, and the
ipad keybaoadr popz up, so thqt we cqntpe.” when I first typed the above paragraph.

Apart from that feature, the editor is very basic since it borrows from the standard TextEdit
application for typing plain text, and has therefore none of the capabilities one may expect from a
development enviroment for TEX, apart from a “typeset” button that has the obvious effect. Encoding
support is also very poor.

It should also be noted that for the moment, the TEX run freezes everything in the editor and
doesn't stop until it completes its task: one can neither use the editor, nor interrupt TEX as it runs.

A convenient file browser

It is yet quite cumbersome to upload files on the iPad. As I have not tried it personally—or rather I did
try, but nothing worked—I simply copy the notes by Richard:

My intention is that there will be three ways to proceed:

a. Load and unload in iTunes, connecting to a regular Mac.

b. Mail source and output into the iPad and back out.

c. Other suitable programs on the iPad can send source to TEX-8, and TEX-8 can send source and output
to them. Then these programs can communicate with the outside world.

16

86



87



18 18

18 18

No, really. That's all.
A this point of development, there is no search feature and also no magnification possible of the

page. And, as has already been hinted, the typesetting process gives absolutely no feedback to the user:
TEX doesn't display the output as it does on other systems, and the log file, though stored on disk as
usual, is not accessible at all. What's more, if compilation fails but some PDF file was already produced
by earlier runs, the user is presented with that file, which is a rather confusing behaviour.

The diligent reader may wonder what “TEX” we really used in all of the above, so let the audince
be reassured: we can of course use ConTEXt with TEX-8, just as LATEX and plain TEX; for the moment I only
experimented with Mark II, though, as I have only been able to use pdfTEX as the underlying engine.

A well-designed programming interface

Now to some technical issues: the main problem one is faced when making TEX into a iPad application
is that you simply can't run TEX as a separate process from the application. Apple policy forbids it. You
need to make a library out of the TEX program, and to call the main function (the entry point to any
program written in C) from the application. And TEX is not thought out for that use, which makes that
task awkward, even if of course possible. A funny issue is that, for example, in the sources for pdfTEX
which Richard took, there are two functions that are called main (in texk/web2c/lib/main.c
andtexk/web2c/lib/texmfmp.c in the source hierarchy, respectively); but of course only one
is the real entry point to the TEX program. Another much more serious problem is memory manage-
ment. Because traditionally each TEX run has been autonomous, TEX's memory doesn't need to be
managed so meticulously and one can rely on the operating system to clean up TEX's memory upon
exit, because TEX calls the C library function that is in fact called exit and that takes care of that.
When TEX is used as a library, though, calling exit shuts down the entire program, therefore killing
the editing window, and returning to the iPad “Home Screen”, which is a bit ridiculous; and while the
solution to this particular problem is obvious and immediate to implement (just remove the call to
exit), the underlying problem remains: TEX's memory isn't cleaned up and the system loses track of
it after the processing, leading to memory leaks. These leaks are in fact so important that the limited
iPad memory (256 megabytes), while vastly sufficient for any single run of TEX, can't handle the next
run and, as of today, you can't yet run TEX twice in a row. You need to quit the application and relaunch
it. Thankfully, the application reopens in the exact same state as it was wen we left it. This is of course
far from optimal, and unlike most of the problems outlined above, it will take work to be solved; but
we shouldn't despair.

Other than that, the typesetting speed is reasonable (for the first and only run), which is not that
suprising: though limited compared to today's computers, the iPad resources are still immensely more
powerful than what was available thirty years ago, when TEX was first developed.

Finally, as has already been said, we used pdfTEX; I have managed to compile LuaTEX as a li-
brary as to use for compiling simple documents, but, aside from having one more main function (in
texk/web2c/luatexdir/luatex.c, as it is), the memory management problems are even

18

88



89



20 20

20 20

Figure 3 The TEX-8 application in its natural habitat

20

90


