COMPOSITIO MATHEMATICA

HANS FREUDENTHAL

Entwicklungen von Räumen und ihren Gruppen

Compositio Mathematica, tome 4 (1937), p. 145-234

http://www.numdam.org/item?id=CM_1937_4_145_0

© Foundation Compositio Mathematica, 1937, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http://http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Entwicklungen von Räumen und ihren Gruppen

von

Hans Freudenthal

Eine Folge topologischer Räume R_n , deren jeder $(n \ge 2)$ in den vorangehenden eindeutig stetig abgebildet ist, definiert einen Limesraum R, den R_n -adischen Limes der Folge. Eine Folge topologischer Räume R_n , deren jeder in den folgenden eindeutig stetig abgebildet ist, definiert einen Limesraum R, den R_n -alen Limes der Folge.

Sind die R_n topologische Gruppen und die Abbildungen stetige Homorphismen, so wird auch der Limesraum eine topologische Gruppe, der G_n -adische bzw. G_n -ale Limes der Folge.

Diese Begriffe sind — bis auf den R_n -alen Limes und teilweise auch den G_n -alen Limes — nicht neu:

P. Alexandroffs Spektralentwicklung kompakter Räume 1) ähnelt sehr der Erzeugung von Räumen als R_n -adische Limites; sie ist aber ganz darauf zugeschnitten, kompakte Räume in *Polyederfolgen* zu entwickeln; obendrein definieren in der Spektraltheorie nicht die Punktbildfolgen, sondern erst gewisse ("maximale") Simplexbildfolgen Punkte des Limesraumes.

Dagegen hat S. Lefschetz die R_n -adische Entwicklung kompakter Räume in Folgen kompakter Räume in voller Allgemeinheit definiert ²).

Unabhängig davon und unabhängig voneinander haben P. Alexandroff³) und Verf.⁴) etwa gleichzeitig die R_n -adische Entwicklung topologischer Räume von Neuem entdeckt.

Die G_n -adische Entwicklung topologischer Gruppen (d.h. Erzeugung als Limites G_n -adischer Folgen) geht für den Fall end-

i) Annals of Math. (2) 30 (1929), 101-187.

²) Annals of Math. (2) 32 (1931), 522-538, § 31.

³⁾ C. R. 200 (1935), 1708-1709.

⁴) Proceedings Amsterdam 38 (1935), 414—418. Man beachte die Änderung der Bezeichnungen: statt in- R_n -adisch sagen wir jetzt R_n -adisch, statt R_n -adisch auf- R_n -adisch.

licher (diskreter) G_n auf L. E. J. Brouwer ⁵) zurück, der als erster nichttriviale nicht-Liesche topologische Gruppen (eben als G_n -adische Limites endlicher Gruppen) definiert hat.

Ohne Kenntnis der Brouwerschen Note hat D. van Dantzig 6) ein Verfahren zur Erzeugung topologischer Gruppen, \mathfrak{B}_n -adisch genannt, ausgebildet, dem die G_n -adische Erzeugung sehr ähnlich sieht 7). Die Bezeichnung " \mathfrak{B}_n -adisch" hat van Dantzig nach dem Vorbild "p-adisch" geprägt. Ich habe meine Bezeichnung von van Dantzig übernommen; es sei aber bemerkt, daß sich die Begriffe \mathfrak{B}_n -adisch und G_n -adisch nicht decken; trotzdem dürfte zu Verwirrung kein Anlaß vorliegen. — Schließlich habe ich die Bezeichnung " R_n -adisch" wieder nach dem Muster " G_n -adisch" gebildet.

 G_n -adische Folgen diskreter G_n (inverse Homomorphismenfolgen) hat auch L. Pontrjagin 8) angewendet, ohne jedoch die Limites dieser Folgen einzuführen; später 9) treten bei ihm auch G_n -adische Folgen Liescher G_n mitsamt ihren Limesgruppen auf. Das erste nichttriviale Beispiel solcher Limites Liescher Gruppen sind die van Dantzigschen Solenoide 10). Verf. hat G_n -adische Folgen ebenfalls mehrfach verwandt 11).

 G_n -ale Folgen und ihre Limites treten (für diskrete G_n) zuerst bei L. Pontrjagin ⁸) auf (direkte Homomorphismenfolgen). Von der Theorie, die den Gegenstand dieser Arbeit bildet, fehlt in meiner vorläufigen Mitteilung ⁴) nur die R_n -ale Entwicklung und die Berücksichtigung der Topologie bei der G_n -alen Entwicklung. Die Bezeichnungen R_n -al und G_n -al habe ich als Pendant zu R_n -adisch und G_n -adisch (wie etwa dekadisch und dezimal) gewählt ¹²).

 R_n -adische und R_n -ale Erzeugung einerseits und G_n -adische und

⁵) Proceedings Amsterdam 12 (1910), 785—794.

⁶) Diss. Groningen (1931): Studiën over topologische Algebra. Siehe auch Compositio Math. 3 (1936), 408-426.

 $^{^{7}}$) Es handelt sich um die Komplettierung einer abzählbaren Gruppe \mathfrak{A} , in der man gewisse Normalteiler \mathfrak{B}_n (absteigende Folge mit (e) als Durchschnitt) und ihre Nebengruppen zu Umgebungen ernannt hat; setzt man $G_n=\mathfrak{A}/\mathfrak{B}_n$ und bestimmt man in natürlicher Weise die Homomorphismen zwischen den G_n , so ist ihr G_n -adischer Limes nichts Anderes als die im van Dantzigschen Sinne " \mathfrak{B}_n -adisch erzeugte" Komplettierung von \mathfrak{A} .

⁸⁾ Math. Ann. 105 (1931), 165-205 (194-197).

⁹⁾ C. R. 198 (1934), 238-240.

¹⁰) Fundamenta Math. 15 (1930), 102-125.

¹¹) Compositio Math. 2 (1935), 134—162, §§ 9—11. Annals of Math. (2) 37 (1936), 57-77, Nr. 21-26.

¹²⁾ Compositio Math. 2 (1935), 134-162, § 9.

 G_n -ale Erzeugung andererseits gingen bisher, wo sie in Untersuchungen auftraten, ziemlich isoliert nebeneinander her. Der Zusammenhang zwischen beiden ist kaum bemerkt und niemals systematisch untersucht worden. Kap. I-II dieser Arbeit bringen die allgemeine Theorie dieser Entwicklungen. Kap. VI soll zeigen, welche Bedeutung die Harmonie der Entwicklungen von Gruppen mit denen von Räumen für die Topologie hat; es soll die logische Struktur des Gedankengeflechtes freilegen, das zahlreichen topologischen Betrachtungen gemeinsam ist. In der Tat sind es immer wieder dieselben Wege, auf denen sich bei der Definition Bettischer Gruppen usw. der Übergang vom Kombinatorischen zum Mengentheoretischen vollzieht; es sind immer wieder dieselben Beweismethoden, mit denen man zu den einfachsten Sätzen über diese Gruppen gelangt. So ist z.B. die Definition der Bettischen Gruppen kompakter Räume bzw. offener Mengen ein G_n -adischer bzw. G_n -aler Prozeß, der von einem R_n -adischen bzw. R_n -alen Prozeß induziert wird; man kan sich also das umständliche Heranziehen konvergenter Zyklen usw. ersparen. So ist weiter die Definition lokaler Bettischer Gruppen ein G_nadischer bzw. G_n -aler Prozeß, dem auch wieder R_n -adische bzw. R_n -ale Prozesse zugrunde liegen. So stehen hinter den topologischen Dualitätssätzen, was ihren mengentheoretischen Teil anbelangt, Dualitätssätze für G_n -adische und G_n -ale Entwicklungen. Welchen Nutzen unter solchen Umständen eine einmal entwickelte allgemeine Theorie tragen kann, leuchtet wohl ein. Konkrete neue Einsichten vermitteln die Kap. I, II, VI allerdings kaum. Der Sinn von Kap. I-II ist mehr der einer logische Analyse, der von Kap. VI ist der des Durchexerzierens der Begriffe und Sätze aus Kap. I-II an einer großen Anzahl (immerhin ganz allgemeiner) Beispiele. Den Inhalt dieser Kap. wollen wir im Einzelnen hier nicht besprechen; zwei Dinge wollen wir nur erwähnen, weil sie mit dem Hauptthema der Arbeit in nicht so unmittelbarem Zusammenhang stehen: die allgemeine Form, die wir (35, 57) der Definition von Bettischer und Fundamentalgruppe gegeben haben, und die neuartigen Gruppen, die den Gegenstand von 54 bilden.

Von ganz anderer Art als die bisher genannten sind die Kap. IV, V, VII. Sie behandeln die R_n -adischen Entwicklungen kompakter Räume in Polyederfolgen. In Kap. IV wird bewiesen, daß sich jeder kompakte Raum derart durch eine R_n -adische Folge von Polyedern erzeugen läßt, daß alle zwischen den Polyedern gegebenen Abbildungen "Abbildungen auf" sind (auf- R_n -

adische Erzeugung). Dieser Satz scheint mir nicht wegen seiner Anwendungen interessant — bei allen in Frage kommenden Anwendungen läßt er sich umgehen —, sondern als Satz an und für sich. Er ist übrigens nicht ganz einfach zu beweisen. — In Kap. V werden verschiedene Polyederentwicklungen desselben kompakten Raumes miteinander verglichen. In Kap. VII werden die Polyederentwicklungen kompakter Räume verwandt, um von der Alexandroffschen Überführungsdefinition ¹³) her die Dimensionstheorie kompakter Räume zu entwickeln. — Auch der Inhalt der Kap. IV, V, VII findet sich im Wesentlichen in meiner vorläufigen Mitteilung ¹⁴).

Kap. III, das wir noch nicht erwähnt haben, beschäftigt sich mit der Topologisierung von abelschen Gruppen mit Koeffizientenbereichen; wie man hier zu verfahren hat, wenn man den Verhältnissen bei den Bettischen Gruppen gerecht werden will — diese Einsicht geht auf L. Pontrjagin ¹⁵) zurück.

Der Anhang der Arbeit enthält Beispiele.

Wir bemerken zum Schluß noch: Die hier behandelten Prozesse der Erzeugung von Räumen aus andern usw. sind wesentlich abzählbarer Natur; für die Untersuchung allgemeiner bikompakter Räume z.B. liefern sie wenig. Man kann aber die Spektralerzeugung bikompakter Räume, wie sie von A. Kurosch 16) entwickelt worden ist, ins R_n -adische und R_n -ale übersetzen. Wir haben diese Erweiterung hier nicht näher ausgeführt.

INHALT.

	Seit	e.
Kap. I. Entwicklungen von Räumen	[6]	150
1. Topologischer Raum	[6]	150
2—4. R_n -adische Entwicklung	[6]	150
5. R_n -adisches Konvergenzkriterium	[8]	152
6. R_n -adische Folgen als Räume aufgefaßt	[9]	153
7. Erhaltungssätze	[10]	154
8. R_n -adische Limessätze	[12]	156
9. R_n -adischer Umkehrsatz	[14]	158
10. R_n -adischer Doppelfolgensatz	[15]	159
10a. Typus, Auftypus, Isotypus R_n -adischer Folgen	[17]	161
11—12. R_n -ale Entwicklung	[18]	162
13. Übertragung R_n -adischer Sätze ins R_n -ale	[19]	163
14. Gemischtfolgensatz	[22]	166

¹³⁾ Math. Ann. 106 (1932), 161-238, § 3.

¹⁴⁾ Siehe 5).

¹⁵⁾ Annals of Math. (2) 35 (1934), 904-914, Def. 6.

¹⁶) Compositio Math. 2 (1935), 471-476.

	Se	eite
Kap. II. Entwicklungen von Gruppen und ihren		
Charakteren	[23]	167
		167
15. Topologische Gruppen	[23] $[24]$	168
17. Erster und zweiter Dualitätssatz	[24]	169
18. Entwicklungen von Gruppen	[26]	170
19. Übertragung R_n -adischer und R_n -aler Sätze ins G_n -adische und	[20]	170
G_n -ale	[27]	171
20—21a. Dritter bis sechster Dualitätssatz	[29]	173
at all protect to been been been been been been been bee	[20]	110
Kap. III. Gruppen mit Koeffizientenbereichen	[33]	177
22—23. Topologisierung	[33]	177
24—27. Sätze	[35]	179
	r3	1.0
Kap. IV. Die auf- R_n -adische Polyederentwicklung		
kompakter Räume	[39]	183
28. Formulierung des Satzes	[39]	183
29. Wesentliche und unwesentliche Abbildungen. Hilfssatz I	[39]	183
30. Irreduzible und reduzible Abbildungen. Hilfssatz II-VII	[40]	184
31. Normale Abbildungen. Hilfssatz VIII	[44]	188
32. Hauptsatz I	[47]	191
Kap. V. Der Austauschsatz	[47]	191
•		
33. Hilfssatz IX—XIII	[47]	$\frac{191}{192}$
	[48]	194
Kap. VI. Entwicklungen von Räumen und ihren		
Gruppen	[49]	193
35. Die Bettische Gruppe $\mathfrak{B}_{\varepsilon\eta}(R,S)$ co Γ , Δ mod M , N	[49]	193
36. Abbildungsprinzipien	[51]	195
37. Hauptsatz II	[52]	196
38. Bettische Gruppen und Zyklosen R_n -adischer Folgen	[53]	197
39. Hauptsatz III—IV	[55]	199
40. Hauptsatz V	[58]	202
41. Hauptsatz VI	[61]	205
42. Bettische Gruppen R_n -aler Folgen. Hauptsatz III*—V*	[63]	207
43. Bettische Gruppen und Zyklosen R_n -adischer Folgen im Kleinen		
kompakter Räume. Hauptsatz III**—IV**	[66]	210
44. Anwendungen von 43	[67]	211
45. Alexandroffsche Zahlen. Hauptsatz VII, VII*, VII**	[67]	211
46. Auf- und Isotypus. Hauptsatz VIII, VIII*, VIII**	[70]	214
47. Hauptsatz IX. Topologische Dualitätssätze für Bettische Grup-		
pen und Zyklosen	[70]	214
48. Topologische Dualitätssätze für Alexandroffsche Zahlen	[75]	219
49. Topologische Dualitätssätze für Auf- und Isotypus	[76]	220
50—53. Lokalisierungen von 48—49	[76]	220
54. Orientierungsgruppe. Einseitigkeitsgruppe	[79]	223
55. Dualitätssätze für Borelsche Mengen	[82]	226
56. Bettische Gruppen unendlicher Polyeder und ihrer Folgen	[82]	226
57. Wegegruppen	[83]	227

	Seite
Kap. VII. Polyederentwicklungen und Dimensions-	
theorie	[84] 228
58—59. Alexandroffsche Dimensionsdefinition. Rechtfertigungssatz60. Äquivalenz mit der Brouwerschen Dimension. Cantorsche Man-	[84] 228
nigfaltigkeiten	[86] 23 0
Anhang. Beispiele	[88] 232
Kap. III ist im Wesentlichen unabhängig von Ka	p. I, II.
Kap. IV, V sind unabhängig von Kap. II, III.	
Kap. VI ist unabhängig von Kap. IV, V.	
Kap. VII ist unabhängig von Kap. II, III, VI.	

$$I \overset{\mathcal{T}}{\searrow} \overset{IV \rightarrow V \rightarrow VII}{\underset{III \nearrow}{}} VI$$

Die Hauptsätze sind durch die ganze Arbeit durchnumeriert, die "Sätze" sind in jedem Kap. für sich numeriert (soweit sie überhaupt numeriert sind).

Kap. I.

Entwicklungen von Räumen.

- 1. Unter einem Raum verstehen wir vorläufig einen Kuratowskischen Raum, d.h. eine Menge R, in der gewisse Teilmengen (darunter R selbst und auch die leere Menge) als offen ausgezeichnet sind, und zwar so, daß der Durchschnitt endlich vieler und die Vereiniging beliebig vieler offener Mengen offen ist. Die Komplementärmengen offener heißen abgeschlossene Mengen. Eine Abbildung heißt stetig, wenn die Urbildmenge jeder offenen Menge offen (also auch die Urbildmenge jeder abgeschlossenen Menge abgeschlossen) ist. Eine Basis offener (abgeschlossener) Mengen von R ist ein System offener (abgeschlossener) Mengen, aus dem sich jede offene (abgeschlossene) Menge von R vermöge der Vereinigungs-(Durchschnitts-)Bildung gewinnen läßt 18a).
- 2. Eine Folge R_n (n = 1, 2, ...) von Räumen, von denen jeder (n > 1) in den vorangehenden eindeutig stetig abgebildet ist,

$$f_n^{n+1} R_{n+1} \subset R_n, 17$$

heißt eine R_n -adische Folge ¹⁸); handelt es sich um "Abbildungen auf",

^{16a}) Vgl. Alexandroff-Hopf, Topologie I (Berlin 1935), Kap. I, § 2.

¹⁷) Die Klammern hinterm Funktionszeichen lassen wir meistens weg.

¹⁸⁾ Siehe 4).

$$f_n^{n+1}R_{n+1}=R_n,$$

so sprechen wir speziell von einer auf- R_n -adischen Folge.

In solchen Folgen erklären wir für alle m > n die (stetigen) Abbildungen

$$f_n^m R_m \subset R_n$$

induktiv durch die Zusammensetzungsregeln

$$f_n^m f_m^l = f_n^l$$
.

Die Folge R_n bestimmt einen Limesraum R, als dessen Punkte a die Punktfolgen a_n (mit $a_n \, \in \, R_n$) erklärt sind, für die

$$a_n = f_n^{n+1} a_{n+1}$$

gilt; den Punkt a_n von R_n nennen wir dann auch die n-te Koordinate des Punktes a von R. Zu einem Raum wird R durch die folgende Festsetzung: Ist (für irgendein n) M eine offene (abgeschlossene) Menge aus R_n , so heißt die Menge aller Punkte von R, deren n-te Koordinate in M liegt, eine elementare offene (abgeschlossene) Menge von R. Zu offenen (abgeschlossenen) Mengen in R mögen die und nur die Mengen ernannt werden, die sich als Vereinigung (Durschschnitt) elementarer offener (abgeschlossener) Mengen darstellen lassen. (Man bemerkt ohne weiteres, daß sich jede offene (abgeschlossene) Menge sogar als Vereinigung (Durchschnitt) $abz\ddot{a}hlbar$ vieler elementarer Mengen darstellen läßt.)

Daß in dieser Topologisierung von R die Raumaxiome erfüllt sind, ist ohne Mühe einzusehen. Wir wollen hier nur zeigen, daß der Durchschnitt zweier elementarer offener Mengen von R eine (elementare) offene Menge ist; das ist nämlich die einzige Eigenschaft, für deren Beweis man die Stetigkeit der Abbildungen f_n^m braucht: Seien M und N zwei elementare offene Mengen aus R. Dann gibt es zwei Indices m und n und zwei offene Mengen $O_m \subset R_m$ und $O_n \subset R_n$, derart daß M bzw. N die Mengen der Punkte von R sind, deren m-te bzw. n-te Koordinaten in O_m bzw. O_n liegen. Sei etwa m > n und O_m' das f_n^m -Urbild f_n^m von f_n^m (das wegen der Stetigkeit der Abbildung auch wieder offen ist). f_n^m läßt sich dann auch auffassen als die Menge f_n^m Punkte von f_n^m 0, deren f_n^m 1 liegen, der Durchschnitt von f_n^m 2 und f_n^m 3 also als die Menge f_n^m 4 Punkte von f_n^m 6, deren f_n^m 7 deren f_n^m 8 deren f_n^m 9 und f_n^m 9 also als die Menge f_n^m 9 unkte von f_n^m 9 deren f_n^m 9 und f_n^m 9 und f_n^m 9 also als die Menge f_n^m 9 unkte von f_n^m 9 deren f_n^m 9 und f_n^m 9 also als die Menge f_n^m 9 unkte von f_n^m 9 deren f_n^m 9 und f_n^m 9 also als die Menge f_n^m 9 unkte von f_n^m 9 deren f_n^m 9 und f_n^m 9 also als die Menge

¹⁹) Bei einer Abbildung $fR \subset S$ heißt f-Urbild von $N \subset S$ die Gesamtheit aller a mit $fa \subset N$; es wird auch mit $f^{-1}N$ bezeichnet.

Koordinaten im Durchschnitt von O_m und O_m' (einer nach Voraussetzung offenen Menge) liegen. Also ist der Durchschnitt von M und N eine elementare offene Menge.

Die Topologisierung von R läßt sich auch so formulieren: n sei ein beliebiger Index. Wir suchen eine offene Menge O_n in R_n , bestimmen zu ihrem Urbild in R_{n+1} eine es enthaltende offene Menge O_{n+1} von R_{n+1} und fahren ebenso fort. Die Menge aller Punkte von R, deren (n+k)-te Koordinate für ein geeignetes k in O_{n+k} liegt, ist eine offene Menge von R, und alle offenen Mengen von R lassen sich auf diese Weise erzeugen. (Beim Beweis dieser Tatsache, der sehr leicht zu führen ist, wird auch wieder die Stetigkeit der Abbildungen verwendet.)

3. Die R_n -adische Folge bezeichnen wir auch als eine R_n -adische Erzeugung oder Entwicklung des Raumes R (ihres Limesraumes). R wird von der R_n -adischen Folge erzeugt oder ist in die R_n -adische Folge entwickelt und heißt ihr R_n -adischer Limes. Handelt es sich bei den f wieder um Abbildungen "auf", so fügen wir das Präfix "auf" hinzu.

Ersetzt man die Folge R_n (unter Beibehaltung der Abbildungen) durch eine unendliche Teilfolge, so wird, wie ohne weiteres zu sehen ist, ein dem ursprünglichen homöomorpher Limesraum erzeugt.

Aus einer R_n -adischen Entwicklung von R entsteht eine auf- R_n -adische, wenn man aus jedem R_n all die Punkte wegläßt, die nicht für jedes k Bilder eines Punktes von R_{n+k} sind, d.h. also R_n ersetzt durch den Durchschnitt aller Mengen $f_n^{n+k}R_{n+k}$. Wir nennen sie die zugehörige R_n -adische Entwicklung von R.

4. Die Abbildung die jedem Punkt a von R seine n-te Koordinate a_n zuordnet, heiße

$$a_n = f_n a$$
.

Sie ist eindeutig und stetig (das Urbild einer offenen Menge aus R_n ist ja sogar eine elementare offene Menge aus R). Es gelten die Zusammensetzungsregeln

$$f_n^m f_m = f_n$$
.

5. Als Umgebung einer Menge bezeichnen wir wie üblich eine offene Menge, die die gegebene Menge enthält. Eine Folge von Punkten heißt bekanntlich konvergent gegen einen Punkt a, wenn jede Umgebung von a fast alle Elemente der Folge enthält. Stetige Abbildungen führen konvergente Folgen in konver-

gente über. In einer wichtigen Klasse von Räumen (siehe die Eigenschaften a, b, d in 7) läßt sich, wie man weiß, die Topologie auf den Konvergenzbegriff zurückführen. Besonders in solchen Räumen ist der folgende (allgemein gültige) Satz nützlich:

 R_n -Adisches Konvergenzeriterium: Notwendig und hinreichend für die Konvergenzeiner Folge $a^{(v)}$ (v = 1, 2, ...) aus R ist ihre koordinatenweise Konvergenz, d.h. die Konvergenz (für jedes feste n) ihrer n-ten Koordinaten.

Notwendig: Wegen der Stetigkeit der Abbildung f_n ist für jedes feste n die Folge $f_n a^{(\nu)}$ konvergent.

Hinreichend: Wir setzen $\lim_{\nu} a_n^{(\nu)} = a_n$. Wegen der Stetigkeit der f_n^{n+1} ist $a_n = f_n^{n+1}$ a_{n+1} . Die Folge a_n bestimmt also einen Punkt a von R. Sei O eine a enthaltende elementare offene Menge von R. In R_n gibt es eine offene Menge O_n so, daß O die Menge aller Punkte von R ist, deren n-te Koordinaten in O_n liegen. O_n enthält a_n , also fast alle $a_n^{(\nu)}$. Demnach enthält O fast alle $a_n^{(\nu)}$. Jede (elementare, also jede) offene Menge von R, die a enthält, enthält fast alle $a_n^{(\nu)}$; $\lim_{n \to \infty} a_n^{(\nu)} = a$.

6. Man kann auch die R_n und R zusammen als einen Raum S auffassen: Elementare offene Menge in S sei erstens jede offene Menge jedes R_n , zweitens jede Menge, die folgendermaßen entsteht: man nehme für irgendein n eine offene Menge O_n aus R_n , bilde ihre f_n^m -Urbilder O_m (m>n) und ihr f_n -Urbild O; die Vereinigung von O und den O_l $(l \ge n)$ ist dann eine elementare offene Menge der zweiten Art von S. Offene Mengen in S sind wieder die und nur die Mengen, die sich als Vereinigung elementarer offener Mengen darstellen lassen. Daß S wirklich den Raumaxiomen genügt, ist wieder leicht einzusehen.

Man bemerkt ferner, daß in jeder Umgebung eines Punktes a von R (d.h. in jeder ihn enthaltenden offenen Menge) fast alle seine Koordinaten $f_n(a)$ liegen. Die n-ten Koordinaten eines Punktes a von R konvergieren also (in S) für wachsendes n gegen den Punkt a^{20}).

Die Topologie in S läßt sich auch direkt R_n -adisch erzeugen: Man fasse die Räume R_1, \ldots, R_n abstrakt zu einem neuen Raum S_n zusammen, d.h. man erzeuge eine Menge S_n als Vereinigung von R_1, \ldots, R_n (die als elementefremd angesehen werden). Als offen in S_n betrachte man die und nur die Mengen,

 $^{^{20})}$ Das rechtfertigt gewissermaßen unsere Terminologie " R_n -adischer Limes" usw.

die sich als Vereinigungen offener Mengen der R_k $(k=1,\ldots,n)$ darstellen lassen.

Man definiere

$$g_n^{n+1} S_{n+1} \subset S_n$$

auf jedem R_k $(k=1,\ldots,n)$ als die identische Abbildung und auf R_{n+1} als identisch mit f_n^{n+1} . So werden die S_n zu einer R_n -adischen Folge. Der von ihr erzeugte Limesraum S ist dem früher definierten S homöomorph (d.h. sie lassen sich eineindeutig so aufeinander abbilden, daß offenen Mengen offene Mengen entsprechen). Wir unterlassen den Beweis, der sehr leicht zu führen ist.

Weiter haben wir die

Bemerkung zum R_n -adischen Konvergenzkriterium: Notwendig und hinreichend für die Konvergenz der Folge $a^{(v)}$ $(v=1,2,\ldots)$ aus S ist die Konvergenz (für jedes n) der unendlichen Folge (soweit überhaupt definiert), bestehend aus den Punkten $f_n^m a^{(v)}$ (für $a^{(v)} \,\subset R_m$) und den Punkten $f_n a^{(v)}$ (für $a^{(v)} \,\subset R$).

Dies Kriterium folgt unmittelbar aus der letzten Definition der Topologie in S.

- 7. Wir beschäftigen uns nun mit folgenden Eigenschaften von Räumen:
 - a. Jede einpunktige Menge ist abgeschlossen.
- b. Je zwei Punkte a und b lassen sich durch Umgebungen U_a und U_b voneinander trennen, $a \in U_a$, $b \in U_b$, U_a fremd zu U_b . (Hausdorffscher Raum.)
- c. Ist p ein Punkt und A eine abgeschlossene Menge, die ihn nicht enthält, so gibt es eine Umgebung U_a von a und eine Umgebung U_A von A, die zueinander fremd sind.
- d. Es gibt eine *abzählbare* Basis der offenen Mengen. (Das "zweite Abzählbarkeitsaxiom".)
- e. In jeder unendlichen Teilmenge des Raumes gibt es eine konvergente Teilfolge. (d+Kompaktheit.)
- f. Der Raum ist metrisierbar. (Das ist nach P. Urysohn sicher dann der Fall, wenn a + c + d gilt.)

Wir werden zeigen, daß jede dieser Eigenschaften beim Übergang von den Räumen R_n der R_n -adischen Folge zum Limesraum R der Folge erhalten bleibt, d.h.: wenn alle R_n eine dieser Eigenschaften a — f besitzen, kommt sie auch R zu.

a. Sei a_n die n-te Koordinate des Punktes a aus R und A_n die (abgeschlossene) f_n -Urbildmenge von a_n in R. Die aus dem Punkt a bestehende Menge ist der Durchschnitt der abgeschlossenen Mengen A_n , also abgeschlossen.

- b. Zu den Punkten a, b von R bestimme man n so, daß die n-ten Koordinaten a_n , b_n von a, b voneinander verschieden sind. Man trenne a_n , b_n in R_n durch Umgebungen; deren Urbilder in R sind dann Umgebungen von a, b in R, die das Gewünschte leisten.
- c. Sei p ein Punkt und A eine abgeschlossene Menge in R, die p nicht enthält. A ist der Durchschnitt elementarer abgeschlossener Mengen; unter ihnen gibt es sicher eine, B, die auch p nicht enthält. Es gibt dann weiter ein n und eine abgeschlossene Menge $B_n \subset R_n$, so daß B das f_n -Urbild von B_n ist. Hatte man n genügend groß gewählt, so liegt p_n , die n-te Koordinate von p, nicht in B_n . Nun trenne man p_n und B_n in R_n durch Umgebungen; deren f_n -Urbilder leisten das Gewünschte.
- d. Man bestimme zu jeder Basismenge irgendeines der Räume R_n das f_n -Urbild. Die (elementaren) Mengen, die man so erhält, bilden eine Basis für R.
- e. M sei eine unendliche Teilmenge von R, die Menge der n-ten Koordinaten der Punkte von M heiße M_n . In M_1 bestimme man eine konvergente Teilfolge $a_1^{(v)}$ ($v=1,2,\ldots$). $a^{(v)}$ sei ein Punkt von M, dessen erste Koordinate $a_1^{(v)}$ ist. Die zweite Koordinate von $a^{(v)}$ heiße $a_2^{(v)}$. Die Folge $a_2^{(v)}$ besitzt wieder eine konvergente Teilfolge $a_2^{(v')}$. Ebenso ziehe man aus der Folge der dritten Koordinaten, $a_3^{(v')}$, der Punkte $a^{(v')}$ eine konvergenten Teilfolge $a_3^{(v'')}$ und fahre so fort. Nach dem Diagonalverfahren ergibt sich schließlich eine Teilfolge $b^{(v)}$ von M, bei der für jedes feste n die Folge der n-ten Koordinaten konvergiert. Dann konvergiert aber (nach dem Konvergenzkriterium, siehe 5) die Folge $b^{(v)}$ selbst.
- f. Man darf annehmen, daß jedes R_n so metrisiert ist, daß alle Abstände ≤ 1 sind. Die Abstandsfunktion in R_n heiße ϱ_n . Für zwei Punkte a, b von R setze man als Abstand

$$\sigma(a, b) = \sum_{n=1}^{\infty} 2^{-n} \varrho_n(a_n, b_n),$$

worin a_n , b_n die n-ten Koordinaten von a, b seien. Man beweist leicht, daß das eine Metrik ist, die das Gewünschte leistet.

Alles, was wir hier für den Raum R bewiesen haben, gilt auch für den Raum S (siehe 6), d.h. jede der Eigenschaften a-f bleibt beim Übergang von der Folge R_n zum Raume S erhalten. Um das einzusehen, braucht man nach 6 und dem eben Bewiesenen nur zu zeigen, daß die Eigenschaften a-f sich von den R_n auf die S_n übertragen. Das ist aber evident. (Was f betrifft, so metrisiere

man S_n , indem man in den einzelnen R_1, \ldots, R_n , aus denen es zusammengesetzt ist, die Abstände beibehält und als Abstand zweier Punkte verschiedener R_k $(k = 1, \ldots, n)$ eins festsetzt.)

8. Wir nennen eine Abbildungsfolge (definiert für fast alle n)

$$g^n R_n \in Q$$

Abbildung der R_n -adischen Folge in den Raum Q, wenn

$$g^n f_n^m = g^m$$

gilt (soweit definiert).

Schema: $Q \leftarrow R_k \leftarrow R_{k+1} \leftarrow \ldots \leftarrow R$.

Umgekehrt nennen wir eine Abbildungsfolge (definiert für fast alle n)

$$g_n Q \subset R_n$$

Abbildung des Raumes Q in die R_n-adische Folge, wenn

$$f_n^m g_m = g_n$$

gilt (soweit definiert).

Schema: $R_1 \leftarrow R_2 \leftarrow \ldots \leftarrow \frac{R}{Q}$.

Weiter sprechen wir von einer Abbildung (φ_n^m) der einen R_n adischen Folge, $f_n^m R_m \subset R_n$, in die andere, $g_n^m S_m \subset S_n$, wenn

$$\varphi_n^m R_m \subset S_n$$

bei jedem festen n für fast alle m definiert ist und die Zusammensetzungsregeln

$$\varphi_n^p f_p^m = g_n^q \varphi_q^m = \varphi_n^m$$

gelten (soweit definiert).

Die definierten Abbildungen heißen eindeutig stetig, wenn die definierenden es sind.

Liegt eine eindeutige stetige Abbildung der ersten Folge in die zweite (φ_n^m) und ebenso eine der zweiten in die erste (ψ_n^m) vor, so sprechen wir von einer Homöomorphie beider R_n -adischer Folgen, wenn

$$\psi_n^p \varphi_p^m = f_n^m, \quad \varphi_n^p \psi_p^m = g_n^m$$

gilt (soweit definiert).

Schema
$$\begin{cases} R_1 \leftarrow R_2 \leftarrow \ldots \leftarrow R \\ \checkmark \qquad \qquad \checkmark \\ S_1 \leftarrow S_2 \leftarrow \ldots \leftarrow S. \end{cases}$$

Es ist klar, daß dieser Homöomorphiebegriff reflexiv und transitiv ist. Eine unendliche Teilfolge ist ein Spezialfall einer homöomorphen Folge.

Den Limesraum einer R_n -adischen Folge R_n nennen wir auch lim R_n .

Erster Limessatz (R_n -adisch): Die eindeutige stetige Abbildung (g^n) der R_n -adischen Folge R_n in den Raum Q induziert eine eindeutige stetige Abbildung von $\lim_n R_n$ in Q, $g = \lim_m g^m$ genannt, die durch

$$g = g^n f_n$$

definiert ist.

(Beweis klar. Die Unabhängigkeit von n bei der Definition ergibt sich unmittelbar aus den Zusammensetzungsregeln.)

Wendet man die eingeführte Schreibweise an auf $g^m = f_k^m$ (also $Q = R_k$), so kann man also sagen

$$\lim_{m} f_{k}^{m} = f_{k}.$$

ZWEITER LIMESSATZ (R_n -adisch): Die eindeutige stetige Abbildung (g_n) des Raumes Q in die R_n -adische Folge R_n induziert eine eindeutige stetige Abbildung von Q in $\lim_n R_n$, $g = \lim_n g_m$ genannt, die durch

$$f_n g = g_n$$

(für alle n) definiert ist.

g ist nämlich einfach die Abbildung, die jedem Punkt a von Q den Punkt von R zuordnet, dessen n-te Koordinate (für fast alle n) $g_n a$ ist (auf Grund der Zusammensetzungsregeln ist das wirklich ein Punkt von R); $f_n g a$ ist nun nichts Anderes als die n-te Koordinate von g a. Die Stetigkeit von g ergibt sich leicht so: O sei eine elementare 21) offene Menge aus R, sie ist durch eine offene Menge O_n aus R_n definiert, O ist die Menge aller Punkte von R, deren n-te Koordinate in O_n fällt. Das g-Urbild von O besteht also aus allen Punkten von Q, deren g_n -Bild in O_n fällt, und das ist eine offene Menge.

Dritter Limessatz (R_n -adisch): Die eindeutige stetige Ab-

²¹) Bei Stetigkeitsbeweisen genügt es natürlich, das Urbild jeder elementaren offenen Menge als offen nachzuweisen.

bildung (φ_n^m) der in- R_n -adischen Folge R_n in die R_n -adische Folge S_n induziert eine eindeutige stetige Abbildung von $\lim_n R_n$ in $\lim_n S_n$, φ genannt, die durch

$$\lim_n \lim_m \varphi_n^m = \varphi$$

definiert ist; dabei gelten die Zusammensetzungsregeln

$$g_n \varphi = \varphi_n^k f_k$$
.

Bei Abbildungen einer Folge in eine zweite und der zweiten in eine dritte setzen sich die induzierten Abbildungen wie die induzierenden zusammen.

Dieser Satz ergibt sich unmittelbar aus den beiden vorigen, und zwar wird bei der Bildung des inneren Limes der erste, bei der Bildung des äußeren Limes der zweite Limessatz angewandt.

Vierter Limessatz (R_n -adisch): Eine Homöomorphie zweier R_n -adischer Folgen induziert eine Homöomorphie der Limesräume.

Dieser Satz folgt unmittelbar aus dem vorigen.

Es sei bemerkt, daß der Satz sich keineswegs umkehren läßt; aus der Homöomorphie der Limesräume braucht keineswegs die der Folgen hervorzugehen.

9. Wir gehen nun umgekehrt von einem Raum R aus, von eindeutigen stetigen Abbildungen

$$f_n R \subset R_n$$

in gewisse Räume R_n $(n=1,2,\ldots)$ und eindeutigen stetigen Abbildungen

$$f_n^m R_m \subset R_n \qquad (m > n)$$
.

Dabei sollen die Zusammensetzungsregeln

$$f_n^m f_m = f_n$$
,

$$f_n^m f_m^l = f_n^l$$

gelten. Die Folge R_n erzeugt dann R_n -adisch einen Limesraum

$$R' = \lim_{n} R_n$$
,

und nach dem zweiten Limessatz ergibt sich eine eindeutige stetige Abbildung

$$f = \lim_n f_n$$
 , $fR \in R'$.

UMKEHRSATZ (R_n -adisch): Gibt es zu je zwei Punkten a und b von R ein n mit

$$f_n a \neq f_n b$$
,

so ist f eine eineindeutige stetige Einbettung von R in R'.

Sind die Abbildungen f_n Abbildungen von R auf R_n , so ist f(R) überall dicht in R'.

Die erste Aussage ist evident. Wir zeigen, daß in jeder nichtleeren offenen Menge O' von R' ein Punkt von f(R) liegt; wir dürfen annehmen, daß O' elementar ist. Es gibt eine offene Menge O_n von R_n , so daß O' die Menge aller Punkte von R ist mit n-ter Koordinate in O_n . Das f_n -Urbild von O_n in R heiße O. Da O_n nichtleer war und f_n eine Abbildung "auf" ist, kann auch O nicht leer sein, also auch nicht $f(O) \subset O'$.

Haben wir es mit kompakten Räumen zu tun, so ergeben beide Aussagen zusammen bekanntlich die Homöomorphie von R mit R'. Die Voraussetzungen besagen dann, daß die f_n (nach Zugrundelegung irgendeiner Metrik) beliebig kleine Abänderungen 22) von R sind, d.h. daß die Durchmesser der f_n -Urbildmengen der einzelnen Punkte von R_n mit $n \to \infty$ nach null geht.

10. Doppelfolgensatz $(R_n$ -adisch): Es liege eine Doppelfolge $R_{n_1n_2}$ von Räumen vor mit den eindeutigen stetigen Abbildungen

$$f_{n_1n_2}^{m_1m_2}\,R_{\,m_1\,m_2}\,\in\,R_{n_1n_2},\ m_1\geqq n_1,\ m_2\geqq n_2,\ m_1+m_2>n_1+n_2,$$

und den Zusammensetzungsregeln

$$f_{n_{1}n_{2}}^{m_{1}m_{2}}f_{n_{1}m_{2}}^{l_{1}l_{2}} = f_{n_{1}n_{2}}^{l_{1}l_{2}}.$$

$$R_{11} \leftarrow R_{12} \leftarrow \dots \leftarrow R_{1}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$R_{21} \leftarrow R_{22} \leftarrow \dots \leftarrow R_{2}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\vdots \leftarrow \vdots \leftarrow \vdots \leftarrow \vdots$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$R_{11} \leftarrow R_{22} \leftarrow \dots \leftarrow R.$$

Schema:

Dann sind die Räume

$$\lim_{n_2} \lim_{n_1} R_{n_1 n_2}, \ \lim_{n_1} \lim_{n_2} R_{n_1 n_2}, \ \lim_{n} R_{nn}$$

miteinander homöomorph.

²²) P. ALEXANDROFF a.a.O. ¹)

Das ist so zu verstehen: Die nach dem dritten Limessatz induzierte Abbildung (k>l) von $R_k=\lim_n R_{kn}$ in $R_l=\lim_n R_{ln}$ heiße

 $f_l^k = \lim_n f_{ln}^k,$

dabei ist $f_{ln}^k = \lim_m f_{ln}^{km} \; .$

Die R_k bilden eine R_n -adische Folge, $f_l^kR_k\subset R_l$, mit den üblichen Zusammensetzungsregeln. Wir definieren

$$R = \lim_{l} R_{l},$$

$$f_{l} = \lim_{k} f_{l}^{k},$$

$$f_{ln} = f_{ln}^{p} f_{p}$$

(wegen der Zusammensetzungsregeln ist das unabhängig von p). Die Räume R_{nn} bilden auch eine R_n -adische Folge, mit dem Limes

$$R' = \lim_{n} R_{nn}$$
.

Die Abbildungsfolge f_{nn} stellt eine eindeutige stetige Abbildung von R in die Folge R_{nn} dar, induziert nach dem zweiten Limessatz also eine eindeutige stetige Abbildung f von R in R'. Einem Punkt a von R wird also der Punkt a' von R' zugeordnet, dessen nn-te Koordinate (für alle n) $f_{nn}a$ ist. Wir zeigen, daß diese Abbildung auch in umgekehrter Richtung eindeutig und stetig ist.

Sei also a' ein Punkt von R' und a_{nn} seine nn-te Koordinate. Wir setzen

$$a_{ln} = f_{ln}^{nn} a_{nn}$$
,

 a_{ln} ist dann für willkürliche Indices (eindeutig) bestimmt. Für jedes feste n liegt also eine Abbildung von R' in die Folge R_{ln} vor; die nach dem zweiten Limessatz induzierte Abbildung von R' in R_l ordne dem Punkte a' den Punkt a_l zu. Dadurch entsteht wieder eine Abbildung von R' in die Folge R_l ; die nach dem zweiten Limessatz induzierte Abbildung von R' in R ordne dem Punkte a' den Punkt a zu. Das ist aber, wie man ohne weiteres sieht, die Umkehrung der früher konstruierten Abbildung von R in R'. Da alle unsere Abbildungen eindeutig und stetig sind, ist damit die Homöomorphie von R und R' bewiesen. Die Homöomorphie von R' und R' und R' bewiesen. Die Homöomorphie von R' und daraus ergibt sich unser Satz.

Greift man aus der gegebenen Doppelfolge statt der Diagonalfolge *irgend* eine einfache Folge, für die beide Indices monoton wachsen, so erhält man natürlich (bis auf Homöomorphien) denselben Limesraum.

10a. Typus einer R_n -adischen Folge nennen wir die Gesamtheit der zu ihr homöomorphen Folgen. Wie wir aus 8 wissen, bestimmt der Typus eindeutig den Limesraum (bis auf Homöomorphien).

Den Typus nennen wir Auf- bzw. Isotypus, wenn zu ihm eine R_n -adische Folge gehört, in der sämtliche Abbildungen f_n^m (also auch f_n) "Abbildungen auf" bzw. topologische "Abbildungen in" sind.

Auftypus-Kriterium $(R_n$ -adisch): Notwendig und hinreichend, damit die R_n -adische Folge R_n $(f_n^m R_m \subset R_n)$ zu einem Auftypus gehöre, ist, daß für jedes feste n fast alle Mengen $f_n^m R_m$ miteinander übereinstimmen. Die zugehörige (siehe 3) auf- R_n -adische Folge ist dann der gegebenen homöomorph.

Beweis: Notwendig: S_n $(g_n^m S_m = S_n)$ sei eine der gegebenen homöomorphe auf- R_n -adische Folge. Die Mengen $g_p^m S_m$ stimmen dann für alle m > p überein. Für fast alle m (bei festem n) dürfen wir schreiben

$$f_n^m R_m = \psi_n^p \varphi_n^m R_m,$$

nun ist aber

$$\boldsymbol{S}_p = \boldsymbol{g}_p^q \boldsymbol{S}_q = \boldsymbol{\varphi}_p^m \boldsymbol{\psi}_m^q \boldsymbol{S}_q \in \boldsymbol{\varphi}_p^m \boldsymbol{R}_m \in \boldsymbol{S}_p$$
 ,

also

$$\varphi_p^m R_m = S_p,$$

also

$$f_n^m R_m = \psi_n^p S_p$$

unabhängig von m.

Hinreichend: Bei festem n setzen wir den Durchschnitt aller $f_n^m R_m$ gleich S_n . Die S_n bilden eine R_n -adische Folge, wenn auf jedem S_m die Abbildung g_n^m als mit f_n^m übereinstimmend gewählt wird. Die Folgen R_n und S_n sind dann in der Tat homöomorph: die erste ist in die zweite abgebildet durch $\varphi_n^m = f_n^m$ (nach der Voraussetzung über die Mengen $f_n^m R_m$ bei festem n für fast alle m definiert), die zweite in die erste ebenfalls durch $\varphi_n^m = f_n^m$. Daß die φ_n^m , φ_n^m den Vorschriften genügen, ist evident.

ISOTYPUS-KRITERIUM (R_n -adisch): Notwendig und hinreichend, damit die R_n -adische Folge R_n ($f_n^m R_m \subset R_n$) zu einem Isotypus gehöre, ist, da β für $n \geq n_1$, $m \geq m_0(n)$, $p \geq p_0(m)$ die Mengen

 $f_n^p R_p$ durch die Abbildungen f_n^m topologisch in R_n abgebildet werden. Zu der gegebenen Folge läßt sich dann eine Folge S_n (S_m topologisch abgebildet in S_n durch g_n^m) desselben Typus in der Weise bestimmen, daß man nach einer geeigneten Auswahl $S_n = f_n^{n+1} R_{n+1}$ und $g_n^m = f_n^m$ setzt.

Beweis: Notwendig: $g_{\tau}^q = \varphi_{\tau}^m \psi_m^q$ ist eine topologische "Abbildung in", also ist es auch φ_{τ}^m auf der Teilmenge $\psi_m^q S_q$, also auch für alle $p \geq p_0(m)$ auf

$$f_m^p R_p = \psi_m^q \varphi_q^p R_p \in \psi_m^q S_q.$$

Weiter ist auch (wegen $g_q^r = \varphi_q^n \psi_n^r$) ψ_n^r für fast alle n eine topologische Abbildung. Darum ist $f_n^m = \psi_n^r \varphi_r^m$ für fast alle n und $m \ge m_0(n)$, $p \ge p_0(m)$ auf $f_m^p R_p$ topologisch.

Hinreichend: Man setze $n_2 = m_0(n_1)$, $n_3 = \text{Max}\left[m_0(n_2), \ p_0(n_1)\right]$ usw. Ferner $S_k = f_{n_k}^{n_{k+1}} R_{n_{k+1}}$, $g_l^k = f_{n_l}^{n_k}$. Dann ist S_k die gesuchte Folge. In der Tat ist dann g_{k-1}^k , also auch g_l^k topologisch, und mit $\varphi_l^k = \psi_l^k = f_{n_l}^{n_k}$ gehören unsere beiden Folgen zum selben Typus.

Wir bemerken noch, daß in einer Folge, die gleichzeitig zu einem Auf- und einem Isotypus gehört, beide Sätze sich hintereinander anwenden lassen. Der Limesraum ist dann bereits nach endlich vielen Schritten bestimmt.

11. Ein duales Gegenstück zur R_n -adischen Entwicklung ist die R_n -ale:

Eine Folge von Räumen R_n und von eindeutigen stetigen Abbildungen f^n jedes Raumes in den folgenden, $f_{n+1}^n R_n \subset R_{n+1}$ sei gegeben. Wir betrachten "Punktbildfolgen" a_n , die mit einem gewissen Index n=k beginnen, und für die $a_n \subset R_n$ und

$$a_{n+1} = f_{n+1}^n a_n$$

gilt. Zwei solche Punktbildfolgen heißen konfinal, wenn sie von einer gewissen Stelle an übereinstimmen. Wir definieren einen " R_n -al" erzeugten Limesraum R, dessen Punkte die Klassen konfinaler Punktbildfolgen sind. Dabei verstehen wir unter einen in R offenen jede Menge, die wie folgt entsteht:

Man bestimme ein k und eine offene Menge O_k in R_k , eine $f_{k+1}^k O_k$ enthaltende offene Menge O_{k+1} von R_{k+1} und fahre so fort:

$$f_{n+1}^n O_n \subset O_{n+1} \qquad (n \ge k).$$

Dies Verfahren definiert eine offene Menge O von R, zu der die und nur die Punkte von R gehören, zu denen es (für fast alle n) in O_n eine 23) n-te Koordinate gibt.

²⁸) Die n-te Koordinate eines Punktes von R ist im R_n -alen Fall nicht notwendig mehr eindeutig bestimmt!

Die Folge R_n werden wir eine R_n -ale Folge nennen und ihren Limesraum R einen R_n -al erzeugten oder entwickelten Raum. Man beachte, daß die Definition der $(R_n$ -alen) Topologie in R die unmittelbare Übertragung der Definition der R_n -adischen Topologie ist, die wir im letzten Absatz von 2 gegeben haben.

Die R_n -ale Entwicklung ist als Entwicklung von Räumen nicht so wichtig wie die R_n -adische. Hauptsächlich wohl deswegen, weil die Betrachtungen von 7 für die R_n -ale Erzeugung nicht durchzuführen sind 23a). So lassen sich ohne weiteres Beispiele dafür angeben (siehe Anhang), daß Hausdorffsche Räume R_n -al einen Raum erzeugen, in dem nicht einmal die einpunktigen Mengen abgeschlossen sind.

Auch das Konvergenzkriterium (siehe 5) überträgt sich natürlich nicht auf den R_n -alen Fall. Aber alle übrigen behandelten Eigenschaften der R_n -adischen Erzeugung finden ein Gegenstück in Eigenschaften der R_n -alen Erzeugung.

12. Zunächst kann man $f_n^m R_m \subset R_n$ induktiv definieren durch

$$f_n^m f_m^l = f_n^l$$
,

weiter $f^nR_n \,\subset R$ als die Abbildung, die einem Punkt a_n von R_n den Punkt von R zuordnet, der durch die a_n enthaltenden Punktbildfolgen bestimmt wird, d.h. der Punkt f^na_n wird durch die Punktbildfolge $f_{n+k}^na_n$, $k=0,1,\ldots$, definiert. Es gilt wieder

$$f^n f_n^m = f^m$$
.

 f^n ist stetig; denn das f^n -Urbild der oben definierten offenen Menge O von R ist nichts Anderes als die Vereinigung (für alle k) der f_{n+k}^n -Urbilder der offenen Mengen O_{n+k} , also offen.

Ebenso sieht man, daß man sich jede offene Menge O von R so definiert denken darf, daß die erzeugenden O_n die f^n -Urbilder von O sind; man braucht ja nur jedes O_n zu ersetzen durch die Vereinigung (für alle k) der f_{n+k}^n -Urbilder der O_{n+k} . Diese Vereinfachung erweist sich bei allerlei Betrachtungen als zweckmäßig.

13. Auch im R_n -alen Fall läßt sich R zusammen mit den R_n in natürlicher Weise als ein Raum auffassen; die Betrachtungen von 6 übertragen sich ohne wesentliche Änderung.

 $^{^{23}a})$ Dagegen werden sich bei Gruppen beide Entwicklungsarten als ungefähr gleichwertig erweisen. Immerhin genießt auch noch bei den Anwendungen auf Bettischen Gruppen usw. die G_n -adische Entwicklung eine gewisse Vorzugsstellung.

Der Inhalt von 7 findet, wie schon bemerkt, kein R_n -ales Analogon.

Die Definitionen aus 8 lassen sich ohne weiteres übertragen, und zwar wörtlich bis auf die Definition der Abbildung einer Folge in eine andere; dort hat man zu verlangen, daß die φ_n^m bei festem m für fast alle n definiert sind. Wir geben nur die Definitionsschemata an:

$$Q \to R_k \to R_{k+1} \to \dots \to R,$$

$$R_1 \to R_2 \to \dots \xrightarrow{\nearrow} R,$$

$$\begin{cases} R_1 \to R_2 \to \dots \to R \\ & \\ & \\ S_1 \to S_2 \to \dots \to S, \end{cases}$$

$$\begin{cases} R_1 \to R_2 \to \dots \to R \\ & \\ & \\ S_1 \to S_2 \to \dots \to S. \end{cases}$$

Es gelten dann die Sätze:

Erster Limessatz $(R_n$ -al): Die eindeutige stetige Abbildung (g_n) des Raumes Q in die R_n -ale Folge R_n induziert eine eindeutige stetige Abbildung von Q in $\lim R_n$, $g=\lim g_m$ genannt, die durch

$$g = f^n g_n$$

definiert ist.

Man kann also auch wieder

$$\lim_{m} f_{m}^{k} = f^{k}$$

schreiben.

ZWEITER LIMESSATZ $(R_n$ -al): Die eindeutige stetige Abbildung (g^n) der R_n -alen Folge R_n in den Raum Q induziert eine eindeutige stetige Abbildung von $\lim_n R_n$ in Q, $g = \lim_n g^n$ genannt, die durch

$$gf^n = g^n$$

(für alle n) definiert ist.

Dritter Limessatz $(R_n\text{-}al)$: Die eindeutige stetige Abbildung (φ_n^m) der $R_n\text{-}alen$ Folge R_n in die $R_n\text{-}ale$ Folge S_n induziert eine eindeutige stetige Abbildung von $\lim_n R_n$ in $\lim_n S_n$, φ genannt, die durch

$$\lim_{m}\lim_{n}\varphi_{n}^{m}=\varphi$$

definiert ist; dabei gelten die Zusammensetzungsregeln

$$\varphi f^n = g^p \varphi_n^n$$
.

Bei Abbildungen einer Folge in eine zweite und der zweiten in eine dritte setzen sich die induzierten Abbildungen wie die induzierten zusammen.

Vierter Limessatz $(R_n$ -al): Eine Homöomorphie zweier R_n -aler Folgen induziert eine Homöomorphie der Limesräume.

Wir unterlassen die Beweise, die sich von denen der R_n -adischen Sätze kaum unterscheiden.

Der Satz aus 9 überträgt sich wie folgt: Gegeben sei ein Raum R, eine Folge von Räumen R_n und eindeutigen stetigen Abbildungen

$$\begin{split} f^n R_n &\subset R, \\ f_n^m R_m &\subset R_n, \quad m < n. \end{split}$$

Die üblichen Zusammensetzungsregeln seien erfüllt. Die Folge R_n erzeugt R_n -al einen Limesraum

$$R' = \lim_{n} R_n$$
,

und nach dem Vorigen ergibt sich eine eindeutige stetige Abbildung

$$f = \lim_{n} f_n$$
, $fR' \in R$.

UMKEHRSATZ $(R_n$ -al): Schöpfen die f^nR_n den Raum R aus, so bildet f den Raum R' auf R ab.

Sind die Abbildungen fⁿ eineindeutig, so ist f eineindeutig.

Beides ist leicht zu beweisen.

Schließlich gilt im R_n-alen Fall auch der

Doppelfolgensatz $(R_n$ -al): Es liege eine Doppelfolge vor

$$f_{n_1 n_2}^{m_1 m_2} R_{m_1 m_2} \subset R_{n_1 n_2}, \ m_1 \leq n_1, \ m_2 \leq n_2, \ m_1 + m_2 < n_1 + n_2 \,,$$

mit den Zusammensetzungsregeln

$$f_{n_1n_2}^{m_1m_2}f_{m_1m_2}^{l_1l_2}\!=\!f_{n_1n_2}^{l_1l_2}.$$

Dann sind die Räume

$$\lim_{n_1} \lim_{n_2} R_{n_1 n_2}, \quad \lim_{n_2} \lim_{n_1} R_{n_1 n_2}, \quad \lim_{n} R_{nn}$$

miteinander homöomorph.

Die Limites sind dabei fast wörtlich genau so wie in 10 zu deuten, und auch der Homöomorphiebeweis überträgt sich leicht.

 $\begin{array}{c} \left\{\begin{array}{cccc} R_{11} \rightarrow R_{12} \rightarrow \ldots \rightarrow R_1 \\ \downarrow & \downarrow & \downarrow & \downarrow \\ R_{21} \rightarrow R_{22} \rightarrow \ldots \rightarrow R_2 \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \vdots \rightarrow \vdots \rightarrow \vdots \rightarrow \vdots \rightarrow \vdots \\ \downarrow & \downarrow & \downarrow & \downarrow \\ R_{.1} \rightarrow R_{.2} \rightarrow \ldots \rightarrow R. \end{array}\right.$

Die Definitionen des Typus, Auf- und Isotypus übernehmen wir aus 10a wörtlich auch für den R_n -alen Fall. Die beiden Kriterien erfahren unwesentliche Änderungen:

Auftypus-Kriterium $(R_n$ -al): Notwendig und hinreichend, damit die R_n -ale Folge R_n $(f_n^m R_m \in R_n)$ zu einem Auftypus gehöre, ist, daß für je zwei feste p und q und fast alle n $f_n^p R_p = f_n^q R_q$ gilt. Zur gegebenen Folge läßt sich dann eine auf- R_n -ale Folge desselben Typus bestimmen, indem man nach einer geeigneten Auswahl $S_{n+1} = f_{n+1}^n R_n$ und $g_n^m = f_n^m$ setzt.

Isotypus-Kriterium $(R_n\text{-}al)$: Notwendig und hinreichend, damit die $R_n\text{-}ale$ Folge R_n $(f_n^mR_m \in R_n)$ zu einem Isotypus gehöre, ist, daß für fast alle m und n (bei jedem festen p) die Mengen $f_m^pR_p$ durch f_n^m topologisch (in R_n) abgebildet werden. Zur gegebenen Folge läßt sich dann eine $R_n\text{-}ale$ Folge desselben Typus mit topologischen Abbildungen bestimmen, indem man nach geeigneter Auswahl $S_{n+1} = f_{n+1}^nR_n$, $g_n^m = f_n^m$ setzt.

Die Beweise wird der Leser in Analogie zum R_n -adischen Fall selbst führen können.

14. Man kann auch noch gemischte Folgen untersuchen. Den Doppelfolgensätzen entspricht dann ein Satz von natürlich viel geringerer Schärfe:

Gemischtfolgensatz²⁴): Eine gemischte Folge $R_{n_1n_2}$ mit eindeutigen stetigen

$$\begin{split} & f_{n_1 n_2}^{m_1 m_2} R_{m_1 m_2} \in R_{n_1 n_2}, \quad m_1 < n_1, \quad m_2 > n_2, \\ & f_{n_1 n_2}^{m_1 m_2} f_{m_1 m_2}^{l_1 l_2} = f_{n_1 n_2}^{l_1 l_2}, \end{split}$$

induziert einen wohlbestimmte stetige eindeutige Abbildung von

 $^{^{24})}$ Diesen Satz werden wir nicht verwenden. Er dient mehr zur Illustration. Wichtige topologische Begriffe beruhen gerade darauf, daß den Doppelfolgensätzen kein gleichwertiger Gemischtfolgensatz an die Seite tritt. Wären R_n -adische und R_n -ale Prozesse miteinander vertauschbar, so würden zahlreiche Definitionen, in denen beide Prozesse nacheinander auftreten, triviale Objekte erzeugen. Siehe 42, 43, 50.

$$R = \lim_{n_1} \lim_{n_2} R_{n_1 n_2} \ in \ R' = \lim_{n_2} \lim_{n_1} R_{n_1 n_2};$$

sind die $f_{m_{2}p}^{m_{1}p}$ eineindeutig, so ist es diese Abbildung auch.

Nach dem dritten Limessatz $(R_n$ -adisch) induziert nämlich die Abbildung f_{lq}^{kp} der R_n -adischen Folge R_{kp} (k fest) in die R_n -adische Folge R_{lq} (l fest, >k) eine eindeutige stetige Abbildung des Limesraumes R_k in den Limesraum R_l ; die R_k bilden also eine R_n -ale Folge mit dem Limesraum R. Ähnlich (mit Vertauschung der Grenzprozesse) ist R' zu verstehen.

Nach dem dritten Limessatz $(R_n$ -adisch) induziert weiter die Abbildung $f_{lq}^k(=\lim_p f_{lq}^{kp})$ der R_n -alen Folge R_k in die R_n -ale Folge R_{kq} (q fest) eine eindeutige stetige Abbildung von R in $R_{,q}(=\lim_k R_{kq})$. Durchläuft man alle q, so erhält man eine Abbildung von R in die R_n -adische Folge $R_{,q}$, also nach dem zweiten Limessatz $(R_n$ -adisch) eine eindeutige stetige Abbildung von R in $\lim_{k \to q} R_{,q} = R'$. Für die im Satz erwähnte Eigenschaft dieser Abbildung unterlassen wir den Beweis.

Kap. II.

Entwicklungen von Gruppen und ihren Charakteren.

15. Eine Menge G, die gleichzeitig Raum und Gruppe ist, heißt topologische Gruppe, wenn ihre Operationen stetig sind, wenn also zu jeder Umgebung O_{ab} von ab Umgebungen O_a von a und O_b von b mit $O_aO_b \subset O_{ab}$ existieren und mit O auch O^{-1} offen ist.

Dabei verstehen wir, wenn M und N Mengen sind, unter M^{-1} bzw. MN die Gesamtheit aller a^{-1} , bzw. ab mit $a \in M$, $b \in N$. Die Identität jeder Gruppe nennen wir e oder (additiv geschrieben) 0.

Aus der Definition der topologischen Gruppe folgt unmittelbar, daß mit O auch MO und OM offen sind (M beliebige Menge). Ferner zeigt man leicht, daß aus $\lim a_{\nu} = a$, $\lim b_{\nu} = b$ folgt $\lim a_{\nu}^{-1} = a^{-1}$ und $\lim a_{\nu}b_{\nu} = ab$.

Faktorgruppe ²⁵) G/H einer topologischen Gruppe G nach dem Normalteiler H heißt die Gruppe der Nebenklassen aH, die folgendermaßen zu topologisieren ist: Offen heißen die und nur die Mengen in G/H, die sich in der Form OH schreiben lassen (O) offen in G).

²⁵) Auch bei additiv geschriebenen Gruppen behalten wir diese Terminologie bei.

Die Eigenschaft 7d überträgt sich ohne weiteres von einer topologischen Gruppe auf jede Faktorgruppe, die Eigenschaften 7a + b + c und e - f auf die Faktorgruppen nach abgeschlossenen Normalteilern.

Die Bildung der Faktorgruppe stellt einen stetigen Homomorphismus ²⁶) dar; aber umgekehrt braucht sich nicht jeder stetige Homomorphismus durch Faktorbildung erzeugen zu lassen. Dann und nur dann läßt sich ein stetiger Homomorphismus durch Faktorbildung erzeugen, wenn er gebietstreu ist ²⁷).

Gebietstreu heißt dabei eine "Abbildung auf", die offene Mengen in offene überführt. Eine "Abbildung in" nennen wir gebietstreu, wenn es die zugehörige "Abbildung auf" ist.

Wir erwähnen noch die Sätze 27): (G/N)/(H/N) ist topologisch (d.h. in beiden Richtungen stetig) isomorph G/H. Ist G stetig bzw. gebietstreu homomorph in G' und dabei der Normalteiler H (stetig homomorph) in den Normalteiler H' abgebildet, so ist es auch G/H in G'/H'.

16. Sind G und J topologische Gruppen und ist J abelsch, so verstehen wir unter einem J-Charakter (oder kurz: Charakter) von G einen stetigen Homomorphismus von G in J,

$$xG \subset J$$

eine stetige Abbildung also mit der Eigenschaft

$$x(ab) = xa \cdot xb.$$

Die Charaktere von G werden zu einer Gruppe X zusammengefaßt durch die Festsetzung

$$xy(a) = xa \cdot ya$$

und zu einem Raum durch die Festsetzung: ein Punkt a aus G und eine offene Menge O_J aus J definieren eine "fundamentale" offene Menge O_X aus X, und zwar besteht O_X aus genau den x, für die

$$xa \in O_J$$

gilt; O_X ist also die größte Menge mit

$$O_X a \subset O_J;$$

offene Menge in X heißt jede Menge, die sich aus fundamentalen

²⁶) Homomorphismen sollen immer eindeutig sein.

²⁷) H. FREUDENTHAL [Annals of Math. (2) 37 (1936), 46-56].

durch endlichfache Durchschnitt- und beliebige Vereinigungsbildung erzeugen läßt ²⁸).

17. Erster Dualitätssatz: G_1 und G_2 seien topologische Gruppen und X_1 , X_2 ihre bzw. J-Charaktergruppen. Ein stetiger Homomorphismus

$$fG_1 \in G_2$$

induziert einen stetigen Homomorphismus

$$X_2 f \in X_1^{29}$$
),

 $der \ jedem \ x_2 \ aus \ X_2 \ zuordnet \ dasjenige$

$$x_1 = x_2 f$$

von X_1 , für das (identisch in $a_1 \in G_1$) gilt

$$x_1 a_1 = x_2 a_2$$

 $(a_2 = fa_1).$

Die Definitionsgleichung läßt sich auch schreiben:

$$(x_2f)a_1 = x_2(fa_1).$$

Daß x_2f ein Charakter von G_1 ist und X_2 durch f homomorph in X_1 abgebildet wird, ist klar. Wir müssen noch zeigen, daß X_2 durch f stetig in X_1 abgebildet wird. O_1 sei offen in X_1 ; wir zeigen, daß sein f-Urbild O_2 offen in X_2 ist. Wir dürfen annehmen, daß O_1 fundamental ist. Es gibt also ein $a_1 \,\subset G_1$ und ein offenes O_J in J, so daß O_1 die größte Menge mit

$$O_{\mathbf{1}}a_{\mathbf{1}}\subset O_{J}$$

ist. Dann ist aber O_2 die größte Menge von X_2 mit

$$O_2fa_1 \subset O_I$$

also tatsächlich offen.

ZWEITER DUALITÄTSSATZ: G_1 und G_2 seien topologische Gruppen und X_1 , X_2 ihre bzw. J-Charaktergruppen. Ein stetiger Homomorphismus von G_1 auf G_2 ,

$$fG_1=G_2$$

 $^{^{28}}$) Die Topologisierung besteht also darin, daß genau so viel offene Mengen eingeführt werden, wie nötig sind, damit jedes a ein stetiger Charakter auf X ist. Diese Topologie ist nicht in allen Fällen befriedigend (z.B. nicht bei kompakten G, weil dann X nicht diskret wird); das schadet aber weiter nicht.

²⁹) Bei den Charakteren schreiben wir also das Argument vor das Funktionszeichen. Das erweist sich als sehr praktisch.

induziert einen topologischen Isomorphismus von X_2 in X_1 . Läßt sich jeder auf einer Untergruppe von G_2 definierte J-Charakter auf ganz G_2 fortsetzen, so induziert ein topologischer Isomorphismus von G_1 in G_2 ,

$$fG_1 \subset G_2$$

einen stetigen Homomorphismus von X_2 auf X_1 .

Beweis: Sei $fG_1=G_2$ und $x_2f=e$ für ein gewisses $x_2\in X_2$. Dann ist $x_2fG_1=e$, also $x_2G_2=e$, also $x_2=e$. Die Abbildung $X_2f\in X_1$ ist also isomorph; wir zeigen nun, daß sie gebietstreu ist. Sei O_2 offen in X_2 ; wir dürfen annehmen, das es fundamental ist. Es gibt also ein $a_2\in G_2$ und ein offenes O_J in J, so daß O_2 die größte Menge mit

$$O_2a_2 \subset O_J$$

ist. Dann ist aber $O_1 = O_2 f$ die größte Menge von $X_2 f$ mit

$$O_1 f a_1 \in O_J \qquad (a_2 = f a_1),$$

also offen in X_2f .

Sei nun f ein topologischer Isomorphismus von G_1 in G_2 . Für irgendein $x_1 \in X_1$ definieren wir x_2 auf fG_1 durch

$$x_2(fa_1) = x_1a_1$$

und denken uns x_2 auf ganz G_2 fortgesetzt (was nach Voraussetzung erlaubt ist). Dann ist

$$x_2f=x_1,$$

also

$$X_2f=X_1,$$

womit unser Satz vollständig bewiesen ist.

18. Wir wenden nun die Begriffe der R_n -adischen und R_n -alen Entwicklung auf Gruppen an.

Ein System

$$f_n^m G_m \subset G_n$$
, $m > n$ bzw. $m < n$,

heißt eine G_n -adische bzw. G_n -ale Folge 30), wenn es erstens eine R_n -adische bzw. R_n -ale Folge ist und zweitens die G_n topologische Gruppen und die f_n^m stetige Homomorphismen sind. Eine solche Folge bestimmt G_n -adisch bzw. G_n -al eine topologische Limesgruppe

$$G=\lim_{n}G_{n}$$
;

³⁰) Siehe die historischen Bemerkungen der Einleitung.

man verstehe nämlich unter dem Produkt ab zweier Elemente a, b von G das Element von G, dessen n-te Koordinate

$$f_n a \cdot f_n b$$
 bzw. $f^n a \cdot f^n b$

ist. Man bemerkt ohne weiteres, daß die Definition sinnvoll ist, und daß durch unsere Festsetzung G wirklich eine Gruppe ist. Insbesondere ergibt sich als e von G das Element, dessen n-te Koordinate e ist; ferner sieht man, daß zwei Elemente von G invers zueinander sind, wenn es ihre n-ten Koordinaten sind. Weiter ist es klar, daß

$$f_n = \lim_n f_n^m$$
 bzw. $f^m = \lim_n f_n^m$

nicht nur eine stetige, sondern auch eine homomorphe Abbildung von R in R_n bzw. von R_m in R ist.

19. Man kann nun die Definitionen aus Kap. I, die Limessätze, die Umkehrsätze, die Doppel- und Gemischtfolgensätze und die Auf- und Isotypus-Kriterien für topologische Gruppen aussprechen. Dabei treten an die Stelle von Räumen Gruppen, an die Stelle von Abbildungen Homomorphismen und an die Stelle von topologischen Abbildingen topologische Isomorphismen.

Wir werden diese Sätze als G_n -adischen und G_n -alen Limessatz usw. zitieren, unterlassen es aber, sie hier explizit zu formulieren und zu beweisen, da gegenüber dem rein topologischen Fall keinerlei Modifikationen auftreten. Wir machen aber auf alle Fälle darauf aufmerksam, daß in der Definition der topologischen Isomorphie 31) zweier Folgen von den φ_n^m und ψ_n^m nur verlangt wird, daß sie stetige Homomorphismen (nicht etwa sogar, daß sie *Iso*morphismen) seien. Der Doppelfolgensatz lautet für Gruppen:

$$\lim_{n_1} \lim_{n_2} G_{n_1 n_2}, \ \lim_{n_2} \lim_{n_1} G_{n_1 n_2}, \ \lim_{n} G_{nn}$$

sind topologisch isomorph.

Einen gegenüber Kap. I neuen Gedankengang wollen wir in dieser Nr. aber noch durchführen; er ist übrigens den Betrachtungen über Auf- und Isotypus nahe verwandt.

Wir definieren zunächst: Ist r_n eine Folge endlicher oder unendlicher Kardinalzahlen, so bezeichnen wir mit $\sup_n r_n$ den Ausdruck r+0 bzw. r-0; hierbei sei r die kleinste Kardinal-

³¹) Das ist abgesehen vom Topologischen der L. Pontrjaginsche Begriff der Äquivalenz zweier Folgen, a.a.O. ⁸).

zahl mit der Eigenschaft, daß für fast alle n $r \ge r_n$ (mit tatsächlichem Auftreten des = -Zeichens) bzw. $r > r_n$ gilt. Ist r < s, so setzen wir r - 0 < r + 0 < s - 0. Ganz analog wird der sup von Ausdrücken der Form $r_n \pm 0$ definiert.

Unter dem Rang einer Gruppe verstehen wir die Minimalmächtigkeit eines Erzeugendensystems 32). Unter dem Rang einer Gruppenfolge G_n verstehen wir: $\sup_n \operatorname{Rang} G_n$. Unter dem Rang eines Folgentypus verstehen wir den Minimalrang der zu ihm gehörenden Folgen.

Wir betrachten nun Gruppen, die mitsamt ihren homomorphen Bildern die Eigenschaft besitzen: der Rang einer Untergruppe übertrifft den Rang der ganzen Gruppe nicht ³³). Für Folgen solcher Gruppen gilt das

RANG-KRITERIUM: Der Typusrang einer G_n -adischen bzw. G_n -alen Folge G_n ($f_n^m G_m \subset G_n$) ist gleich sup sup Rang $f_n^m G_m$ bzw. sup sup Rang $f_n^m G_m$. Zur gegebenen Folge läßt sich eine Folge desselben Typus mit Typusrang bestimmen, indem man nach geeigneter Auswahl $H_n = f_n^{n+1} H_{n+1}$ bzw. $H_{n+1} = f_{n+1}^n H_n$ und $g_n^m = f_n^m$ setzt.

Beweis: Es genügt den G_n -adischen Fall zu beweisen. H_n sei eine topologisch isomorphe Folge von Rangtypus. $f_n^m G_m = \psi_n^p \varphi_p^m G_m \subset \psi_n^p H_p$ für fast alle m und p, daher

$$\begin{aligned} \operatorname{Rang} f_n^m G_m & \leqq \operatorname{Rang} H_p \,, \\ \sup_m \operatorname{Rang} f_n^m G_m & \leqq \operatorname{Typusrang}, \\ \sup_n \sup_m \operatorname{Rang} f_n^m G_m & \leqq \operatorname{Typusrang}. \end{aligned}$$

Stände hier das Kleinerzeichen, so könnte man aus der Folge der ganzen Zahlen eine Teilfolge n_k ziehen, derart daß

$$\sup_{k}\operatorname{Rang} f_{n_{k}}^{n_{k+1}}G_{n_{k+1}}\!<\operatorname{Typusrang}$$

wäre. Dann wäre aber die Folge $f_{n_k}^{n_{k+1}}G_{n_{k+1}}$ eine der gegebenen topologisch isomorphe Folge mit kleinerem Rang als die Folge H_n , was der Voraussetzung widerspricht.

 $^{^{\}rm 32})\,$ d.h. ein System, aus dem sich durch endliche Produktbildung alle Gruppenelemente erzeugen lassen

³³) Diese Eigenschaft besitzen alle abelschen Gruppen; für die von endlich vielen Erzeugenden ist das eine bekannte Tatsache, für alle übrigen ist es trivial, da bei ihnen Rang und Mächtigkeit übereinstimmen.

20. Dritter Dualitätssatz: G_n sei eine G_n -ale Folge,

$$f_n^m G_m \subset G_n, \quad m < n,$$

$$\lim G_n = G.$$

 X^{n} 34) sei die J-Charakteregruppe von G_n und X die von G. Dann bilden die X^n eine G_n -adische Folge,

$$X^n f_n^m \in X^m, \quad m < n,$$

und es sind X und $\lim X^n$ topologisch isomorphe Gruppen.

Beweis: Daß die X^n eine G_n -adische Folge bilden, folgt unmittelbar aus dem ersten Dualitätssatz (siehe 17). Wenden wir ihn auf X^n und X an, so folgt aus

$$f^nG_n\subset G$$

(mit $f^n = \lim_m f_m^n$):

$$Xf^n \in X^n$$
.

Dabei ist

$$f^m f_m^n = f^n$$
.

Wir können also den zweiten Limessatz (G_n -adisch) (siehe 19) anwenden und erhalten einen stetigen Homomorphismus

$$\lim_n f^n = f,$$

$$Xf \in X';$$

hier soll X' die Limesgruppe der Folge X^n bezeichnen. Unsere Aufgabe ist es, zu zeigen, daß f sogar ein topologischer Isomorphismus von X auf X' ist.

Seien x_1 und x_2 zwei verschiedene Elemente von X, also zwei verschiedene Charaktere von G. Dann gibt es ein $a \in G$ mit

$$x_1a \neq x_2a$$
.

Dann hat man (für ein geeignetes n)

$$x_1f^na_n \neq x_2f^na_n$$
,

also

$$x_1f^n \neq x_2f^n$$
,

also

$$\lim_n x_1 f^n \neq \lim_n x_2 f^n$$

oder

$$x_1f \neq x_2f$$
.

Also ist f ein Isomorphismus.

³⁴⁾ Wo wir das Argument vor das Funktionszeichen schreiben, vertauschen wir zweckmäßig auch die Stellungen der Indices.

Sei x' ein Element von X' und $x^n \in X^n$ seine n-te Koordinate. Für ein Element $a \in G$ mit $f^n a_n = a$ setzen wir

$$xa = x^n a_n$$
.

Diese Festsetzung ist von der Wahl von a_n unabhängig. Sei nämlich $f^n a_n = f^m b_m = a$; dann gibt es nach der Definition des R_n -alen Limesraumes ein l mit $f^n_l a_n = f^m_l b_m$, und es ist

$$x^n a_n = x^l f_l^n a_n = x^l f_l^m b_m = x^m b_m$$
.

Das soeben auf G definierte x ist nichts Anderes als der G_n -ale Limes der auf den G_n definierten x^n ; also ist nach dem zweiten G_n -alen Limessatz x ein Charakter. Nach Konstruktion ist

$$xf^n=x^n$$
,

also

$$xf = x'$$
,

d.h. f ist ein Isomorphismus auf X'.

Zum Schluß müssen wir noch zeigen, daß die Umkehrung von f stetig ist, d.h. daß das f-Bild O' einer offenen Menge O von X wieder offen ist. Wir dürfen dazu annehmen, daß O fundamental ist. Es gibt also ein $a \in G$ und ein offenes $O_J \in J$, so daß O die Menge alle x mit

$$xa \in O_I$$

ist. Nun gibt es (für ein geeignetes n) ein a_n mit $a = f^n a_n$. O ist also auch die Menge aller x mit

$$xf^na_n\in O_J.$$

Die Menge aller $x^n \in X^n$ mit

$$x^na_n\subset O_J$$

(für dies wohlbestimmte a_n) heiße O^n . Dies O^n ist offen, und seine f^n -Urbildmenge ist O. Wir zeigen nun noch, daß das f_n^m -Urbild irgendeines O^m (m < n) in O^n enthalten ist; nach der zweiten in 2 für die R_n -adische Topologie gegebenen Definition erzeugen die O^n dann nämlich eine offene Menge in $\lim X^n$.

Das f_n^m -Urbild von O^m heiße P. Nach Definition ist n

$$O^m a_m \in O_J,$$

also

$$Pf_n^m a_m \subset O_J,$$

$$Pa_n \subset O_J,$$

$$P \subset O^n.$$

was wir beweisen wollten.

Die von den O^n in $X' = \lim X^n$ erzeugte offene Menge heiße O'. Das ist nun tatsächlich das f-Bild von O. Denn zu einem x' aus O' gibt es (ein n und) ein $x^n \in O^n$, das n-te Koordinate von x' ist. Das durch die Gleichungen $x^n a_n = xa$ bestimmte x genügt der Bezeihung $xa \in O_f$, liegt also in O. Andererseits ist für ein $x \in O$ jedes zugehörige $x^n \in O^n$, also $x \in O'$.

Damit ist bewiesen, daß f ein topologischer Isomorphismus von X auf X' ist.

21. VIERTER DUALITÄTSSATZ. G_n sei eine G_n -adische Folge.

$$f_n^m G_m \in G_n, \quad m > n.$$

$$\lim_n G_n = G,$$

$$\lim_n f_n^m = f_n.$$

 X^n sei die J-Charakteregruppe von G_n und X die von G. Dann bilden die X^n eine G_n -ale Folge

$$X^n f_n^m \subset X^m$$

mit der Limesgruppe X'. Die durch

$$f_nG\subset G_n$$

nach dem ersten Dualitätssatz induzierten stetigen Homomorphismen

$$X^n f_n \subset X$$

bestimmen nach dem zweiten G_n -alen Limessatz einen stetigen Homomorphismus

$$X'f \subset X$$
.

Hinreichend dafür, daß f ein topologischer "Isomorphismus in" sei, ist, daß die Folge G_n vom Auftypus sei.

Hinreichend dafür, daß f ein Homomorphismus von X auf X' sei, ist das gemeinsame Erfülltsein der folgenden drei Forderungen: (a) In J gibt es eine Umgebung P von e, die außer (e) keine Untergruppe von J enthält; (b) die Abbildung $f_nG = G_n$ ist gebietstreu; (c) jeder auf f_nG erklärte J-Charakter ist auf ganz G_n fortsetzbar. Ist die Folge G_n vom Auftypus, so ist (c) entbehrlich.

Daß die X^n eine G_n -ale Folge bilden, folgt unmittelbar aus dem ersten Dualitätssatz.

Ist die Folge G_n vom Auftypus, so dürfen wir, wie sich im fünften Dualitätssatz (21a) zeigen wird, ohne Schaden für X' annehmen, daß die G_n selbst bereits eine auf- G_n -adische Folge bilden. Dann ist auch $f_nG = G_n$, also nach dem zweiten Dualitäts-

satz (17) f_n ein topologischer Isomorphismus von X^n in X und f_n^m ein topologischer Isomorphismus vom X^n in X^m . Die X^n lassen sich dann einfach als eine aufsteigende Folge auffassen und ihr Limes X' als ihre Vereinigung. Dann ist also auch f ein topologischer Isomorphismus von X' in X.

Wir beweisen nun die zweite Behauptung des Satzes hinsichtlich f. x sei ein Element von X, also ein Charakter von G. $H_{(n)}$ sei die f_n -Urbildmenge der Identität von G_n in G. O sei eine Umgebung der Identität in G; fast alle $H_{(n)}$ liegen in O. Als O wählen wir die Menge aller a mit

$$xa \in P$$
.

(Definition von P, siehe Bedingung a.) Für fast alle n ist dann

$$xH_{(n)} \subset P$$
.

Andererseits ist $xH_{(n)}$ eine Untergruppe von J. Also ist

$$xH_{(n)}=e,$$

für fast alle n. x läßt sich somit auffassen als Charakter auf der Faktorgruppe $G/H_{(n)}$, also nach b als Charakter auf f_nG . Nach (c) gibt es eine Fortsetzung x^n dieses Charakters auf ganz G_n ; dabei ist $x^nf_n = x$ nach Konstruktion. Die Folge $x^nf_n^m = x^m$ erzeugt ein Element x' von X', und wegen $x^mf_m = x$ ist im Limes auch x'f = x. Jedes x von X gehört also zu X'f, was wir beweisen wollten.

Die letzte Aussage des Satzes ergibt sich ähnlich wie sein erster Teil.

21a. Fünfter Dualitätssatz: Seien G_n $(f_n^m G_m \subset G_n)$ und H_n $(g_n^m H_m \subset H_n)$ zwei Gruppenfolgen (beide G_n -adisch oder beide G_n -al) und seien X_n bzw. Y_n die zugehörigen J-Charakteregruppenfolgen. Ein stetiger Homomorphismus der ersten Gruppenfolge in die zweite, $\varphi_n^m G_m \subset H_n$, induziert einen stetigen Homomorphismus der zweiten Charakteregruppenfolge in die erste, $X^n \varphi_n^m \subset X^m$. Gehören überdies beide Gruppenfolgen zum gleichen Typus, so tun es auch die beiden Charakteregruppenfolgen.

(Folgt unmittelbar aus dem ersten Dualitätssatz (17).)

Sechster Dualitätssatz: Gehört die $(G_n$ -adische oder G_n -ale) Gruppenfolge G_n zu einem Auf- bzw. Isotypus, so gehört ihre J-Charakteregruppenfolge zu einem Iso- bzw. Auftypus. Jedoch hat man beim Schluß vom Isotypus auf den Auftypus darauf zu achten, daß die Fortsetzungsbedingung erfüllt ist: jeder auf einer Untergruppe eines G_n definierte J-Charakter läßt sich auf das ganze G_n fortsetzen.

Beweis: Man ersetzt die Folge G_n durch eine Folge H_n desselben Typus, bei der sämtliche Abbildungen "stetige Homomorphismen auf" bzw. "topologische Isomorphismen in" sind (nach dem vorigen Satz geht das ohne Schaden für den Typus der Charakteregruppe). Unser Satz folgt dann unmittelbar aus dem zweiten Dualitätssatz (17); daß auch die H_n die Fortsetzungsbedingung erfüllen, erreicht man, indem man wie in den Kriterien (10a, 13) die H_n als Untergruppen der G_n konstruiert.

Kap. III.

Gruppen mit Koeffizientenbereichen.

- **22.** Γ sei eine abelsche topologische Gruppe (additiv geschrieben); eine solche besitzt stets die Eigenschaft:
- (*) Zu jeder Umgebung O von 0 und jeder natürlichen Zahl m gibt es eine Umgebung P von 0 mit $mP \in O^{35}$).

Später werden wir noch verlangen:

(**) Zu jeder Umgebung O von 0 und jedem endlichen System ganzer Zahlen $u_{\mu\nu}$ gibt es eine Umgebung P von 0, derart daß jedes Gleichungssystem

$$\sum_{\mu}u_{\mu
u}\,\gamma_{\mu}=\gamma'_{
u}\,, \ \gamma'_{
u}\in P,$$

das sich überhaupt lösen läßt (bei gegebenen rechten Seiten), sich auch lösen läßt unter der Nebenbedingung

$$\gamma_{\mu} \in O$$
.

(**) ist erfüllt z.B. in allen kompakten separablen Gruppen (siehe 7e) ³⁶), aber auch in allen übrigen Gruppen, die man in der Homologietheorie als Koeffizientenbereiche zu verwenden pflegt. Wir erwähnen die folgenden:

³⁵) mP bedeutet $P + \ldots + P$ (m-mal). In M + N und M hat das +-und M-Zeichen die algebraische Bedeutung (siehe in 15: MN, M), nicht die logische, für die wir ein anderes Zeichen führen.

³⁶) Vielleicht sogar in allen vollständigen separablen Gruppen. $\sum u_{\mu\nu}\gamma_{\mu} = \gamma'_{\mu}$ läßt sich deuten als Homomorphismus der direkten Summe endlich vieler Exemplare von Γ in eine ebensolche direkte Summe. Ist die Bildmenge dabei abgeschlossen, so ist ein solcher Homomorphismus gebietstreu (H. FREUDENTHAL, Annals of Math. (2) 37 (1935), 46—56). Das ist aber gerade der Sinn der Forderung (**). Für kompakte Γ ließen sich übrigens die Sätze dieses Kap. einfacher beweisen, wenn man den zitierten Satz anwendet.

Additionsgruppe der ganzen Zahlen, mod 0 genannt.

Additionsgruppe der ganzen Zahlen mod m, mod m genannt.

Additionsgruppe der rationalen Zahlen, rat genannt.

Additionsgruppe der reellen Zahlen mod 1, mod 1 genannt. Additionsgruppe der ganzen m_{ν} -adischen Zahlen, mod (m_{ν}) genannt.

Die ersten drei sind diskret zu topologisieren, die vierte als Faktorgruppe der Additionsgruppe der reellen Zahlen, die letzte G_n -adisch.

23. A sei vorläufig eine (diskrete) abelsche Gruppe mit (beliebig viel) freien Erzeugenden.

Freie Gruppe co Γ über A nennen wir folgende toplogische Gruppe (mit G bezeichnet): Ihre Elemente sind die endlichen 37) Linearkombinationen der Erzeugenden von A mit Koeffizienten aus Γ . Gruppenoperation ist die koeffizientweise Addition. Unter dem absoluten Betrag $|\Sigma \gamma_{\nu} a_{\nu}|$ des Elementes $\Sigma \gamma_{\nu} a_{\nu}$ ($\gamma_{\nu} \subset \Gamma$, a_{ν} Erzeugende) verstehen wir die Menge aller

$$\sum v_{\nu}\gamma_{\nu}$$
 mit $v=0, \pm 1.$

Der absolute Betrag ist also eine endliche Menge aus Γ . Abstand der Elemente x, y nennen wir den absoluten Betrag von x-y. O-Kugel um x nennen wir die Gesamtheit aller Elemente, die von x einen Abstand haben, der in O liegt (O = Umgebung von O). Offen nennen wir jede Vereinigung von O-Kugeln (mit beliebigen "Mittelpunkten" und beliebigen O).

Wir müssen nun zeigen, daß unsere Gruppe G auf diese Art wirklich zu einem topologischen Raum wird (daß sie dann eine topologische Gruppe ist, ist evident). Es genügt zu zeigen, daß der Durchschnitt zweier O-Kugeln offen ist.

Wir bemerken zunächst

$$|0| = (0), |x| = |-x|, |x_1 + x_2| \in |x_1| + |x_2|.$$

Daraus folgt, daß der oben definierte Abstand formal den Regeln der üblichen Abstandsfunktion genügt (an die Stelle von \leq tritt c).

Wir müssen also zeigen: Ist

$$|x_1 - x_3| \in O_1, |x_2 - x_3| \in O_2,$$

 $^{^{37}}$) Man könnte auch unendliche Linearformen zulassen, nämlich gerade die, für die die Ausdrücke $\sum v_{\nu}\gamma_{\nu}$ (siehe einige Zeilen weiter unten) konvergieren. Man erreichte so, daß die Gruppe co einem *vollständigen* Γ wieder *vollständig* ist. Siehe auch 36).

so gibt es ein O_3 , so daß für alle x mit

$$|x-x_3| \in O_3$$

auch noch gilt:

$$|x_1-x| \in O_1, |x_2-x| \in O_2.$$

 O_3 bestimmen wir einfach so: Den Durchschnitt der (endlich vielen)

$$O_{\nu} - \alpha^{38}$$
) mit $\alpha \in |x_{\nu} - x_{3}|$ $(\nu = 1, 2)$

nennen wir O'_{ν} ; da er 0 enthalt, ist er nicht leer. Der Durchschnitt von O'_{1} und O'_{2} ist das gesuchte O_{3} . In der Tat ist dann für jedes $\alpha \in |x_{\nu} - x_{3}|, \quad \nu = 1, 2,$

$$\alpha + O_3 \subset O_{\nu}$$
,

also

$$|x_1 - x_3| + O_3 \subset O_1$$
,
 $|x_2 - x_3| + O_3 \subset O_2$.

Für jedes x mit

$$|x-x_3| \in O_3$$

gilt demnach

wie wir es wünschten.

Wir bemerken ausdrücklich, daß die Topologie in G durchaus abhängt von der Basis, die wir für A gewählt haben.

Die Eigenschaften 7a—c übertragen sich, wie man ohne weiteres sieht, von Γ auf G, die Eigenschaften 7d—f, wie sich später ergeben wird, ebenfalls, wenn A eine endliche Basis besitzt und Γ der Bedingung (**) genügt.

24. Unter einer ausgezeichneten Untergruppe der Gruppe G (freie Gruppe über A co Γ) verstehen wir im Folgenden stets eine Teilmenge, die so entsteht: man nehme eine Untergruppe A_1 von A und bilde alle endlichen Linearkombinationen von Elementen von A_1 mit Koeffizienten aus Γ . Nach Zugrundelegung einer Basis von A_1 kann man das so entstehende G_1 natürlich auch wie oben das G topologisieren (die autonome Topologisierung von G_1); man hüte sich jedoch vor der Annahme, daß dabei die von G in G_1 induzierte Topologie entstehe. Wir erwähnen darum aus-

³⁸) Wir erinnern nochmals an die Definition von M - N ³⁵).

drücklich, daß wir (wenn nichts Anderes bemerkt ist) G_1 mit der von G induzierten Topologie versehen.

Wenn wir von einem *Homomorphismus* von G (über A, co Γ) in G' (über A', co Γ') sprechen, wollen wir stets verlangen, daß er so entsteht: A ist homomorph in A' und Γ stetig homomorph in Γ' abgebildet, und entsprechend werden die Elemente von G in Elemente von G' abgebildet. Bis gegen Schluß des Kap. werden wir sogar Γ und Γ' als identisch miteinander und durch die identische Transformation aufeinander bezogen voraussetzen.

Wir erwähnen noch, daß ein Homomorphismus, bei dem eine O-Kugel (für jedes O) in eine O-Kugel (mit demselben O) abgebildet wird, sicher stetig ist; sonst aber brauchen unsere Homomorphismen keineswegs stetig zu sein. Wir wollen jetzt hinreichende Bedingungen für Stetigkeit und Gebietstreue der definierten Homomorphismen ableiten ³⁹).

25. Wir nennen eine freie Gruppe G über A co Γ endlicherzeugt, wenn die Zahl der Erzeugenden von A endlich ist.

SATZ 1 39a): Ein Homomorphismus einer endlich erzeugten freien Gruppe G co Γ über A in eine freie Gruppe G^* co Γ über A^* ist unter der Bedingung (**) stetig und gebietstreu.

Beweis: a_1, \ldots, a_n sei die gegebene Basis von A, a'_1, \ldots, a'_n seien bew. die Bilder der a_1, \ldots, a_n in A^* . Das Maximum der |a'| (genommen co mod 0) heiße m. Dann gilt zwischen einem x aus G und seinem Bild x' (in G^*) die Beziehung:

$$|x'| \in m |x|$$
.

Zu einer vorgelegten Umgebung O von 0 in Γ und zu m bestimmen wir nach (*) ein P. Für jedes x aus der P-Kugel um 0 liegt dann x' in der O-Kugel um 0. Unser Homomorphismus ist also stetig. a'_{μ} läßt sich durch Basiselemente von A^* ausdrücken in der Form

$$a'_{\mu}=\sum_{
u}u_{\mu
u}a^*_{
u},\quad \mu=1,\ldots,n.$$

Zu einer vorgelegten Umgebung O von 0 in Γ und zu n bestimmen wir nach (*) eine Umgebung O_1 von 0, so daß

$$nO_1 \subset O$$

³⁹) Um die Stetigkeit eines Homomorphismus zu beweisen, braucht man nur zu zeigen: jede Kugel um Null enthält das Bild einer geeigneten Kugel um Null. Analog für die Gebietstreue: das Bild jeder Kugel um Null enthält eine Kugel um Null aus der Bildmenge.

³⁸a) Die Sätze dieses Kap. werden wir kaum verwenden; sie dienen mehr der Illustration der Begriffe.

ist; zu O_1 und dem System $u_{\mu\nu}$ bestimmen wir nach (**) die Umgebung P von 0. Wir zeigen, daß das Bild der O-Kugel in G um 0 alle Punkte der P-Kugel in G* um 0 enthält, soweit sie überhaupt zum Bilde von G gehören. Sei also $|x'| \in P$ und x' Bild eines Punktes von G, also darstellbar in der Form

$$x' = \sum_{\mu
u} \gamma_{\mu} u_{\mu
u} a_{
u}^*,
onumber \ \sum_{\mu} \gamma_{\mu} u_{\mu
u} = \gamma'_{
u} \in P.$$

Nach (**) dürfen wir annehmen, daß alle γ_{μ} in O_1 liegen. Setzen wir x an in der Form

$$x = \sum_{\mu} \gamma_{\mu} a_{\mu},$$

so ist tatsächlich

$$|x| \in nO_1 \subset O$$

und x' das Bild von x. Wir haben also wirklich, wie wir es wünschten, zu x' ein Urbild in der O-Kugel um 0 gefunden.

26. Ist A^0 eine (diskrete) freie abelsche Gruppe, B eine Untergruppe, G^0 die Gruppe co Γ über A^0 , H die von B erzeugte (ausgezeichnete) Untergruppe von G^0 , so heiße $G = G^0/H$ Gruppe co Γ über $A = A^0/B$. Natürlich hängt auch G durchaus ab von A^0 und der Basiswahl in A^0 .

Ein Homomorphismus zwischen Gruppen der soeben definierten Art soll stets erzeugt werden durch Homomorphismen der zugehörigen A^0 und der Koeffizientenbereiche.

Eine ausgezeichnete Untergruppe von G (co Γ über A^0/B) soll dadurch entstehen, daß man von G^0 (co Γ über A^0) eine ausgezeichnete Untergruppe nimmt, die das von B erzeugte H enthält, und die Faktorgruppe nach H bildet.

Wir nennen G endlich erzeugt, wenn A^0 eine Gruppe von endlich vielen Erzeugenden war.

Satz 1 bleibt richtig, wenn man das Attribut "frei" wegläßt. (Folgt aus 15, letzter Absatz.)

Satz 2: In einer endlich erzeugten Gruppe (co Γ über A^0/B) ist unter der Bedingung (**) die Topologie unabhängig von A^0 und der Basiswahl in A^0 . (Hat man nämlich $A_1^0/B_1 = A_2^0/B_2$, so soll man zeigen, daß die zugehörigen G_1 und G_2 topologisch einander isomorph sind — algebraisch sind sie es sicher. Man darf dabei voraussetzen, daß die Erzeugendenzahl etwa von A_2^0 mit der von A_2^0/B_2 übereinstimmt. Dann gibt es einen Homomorphismus von A_1^0 auf A_2^0 , und der von ihm erzeugte Isomorphismus von G_1 auf G_2 ist nach Satz 1 stetig und gebietstreu.)

SATZ 3: In einer endlich erzeugten ausgezeichneten Untergruppe einer Gruppe (co Γ über A) stimmt unter der Bedingung (**) die induzierte Topologie mit der autonomen überein. (Folgt unmittelbar aus Satz 1.)

SATZ 4: Ein Homomorphismus einer ausgezeichneten Untergruppe einer Gruppe G (co Γ über A) in eine endliche erzeugte (co Γ über A^*), ist unter der Bedingung (**) gebietstreu. (Das ergibt sich aus den früheren Sätzen, wenn man berücksichtigt, daß es ja in G eine endlich erzeugte Gruppe gibt, deren Bild mit dem von G übereinstimmt.)

SATZ 5: Unter der Bedingung (**) ist die Gruppe co Γ über der direkten Summe zweier Gruppen mit endlich vielen Erzeugenden topologisch isomorph der direkten Summe der beiden Gruppen co Γ über den einzelnen Summanden. (Ist nämlich $A=A_1+A_2$, G bzw. G_1 bzw. G_2 die Gruppe über A bzw. A_1 bzw. A_2 , so erzeugt der naheliegende Homomorphismus von A auf A_{ν} nach Satz 1 einen stetigen gebietstreuen Homomorphismus von G auf G_{ν} , also einen topologischen Isomorphismus von G auf G_1+G_2 .)

- SATZ 6: Unter der Bedingung (**) ist eine endlich erzeugte Gruppe co Γ direkte Summe ausgezeichneter Untergruppen von je einer Erzeugenden. (Folgt unmittelbar aus Satz 5; die direkte Summe ist dabei wie ein cartesisches Produkt zu topologisieren.)
- **27.** Satz 7: Ist der Homomorphismus von Γ in Γ' stetig, so ist es auch der induzierte von G (co Γ über A) in G' (co Γ' über A). (Beweis klar.)

Wir werden späterhin auch beliebige Untergruppen (und deren homomorphe Bilder) von Gruppen co Γ verwenden; Homomorphismen zwischen solchen Gruppen werden jedoch immer durch Homomorphismen der vollen Gruppen erzeugt werden. Unter dem Rang einer solchen Untergruppe werden wir die Minimalmächtigkeit eines Elementesystems aus A verstehen, das (bei Verwendung von Koeffizienten aus Γ) zur Erzeugung der Untergruppe ausreicht.

Wir werden weiter G_n -adische und G_n -ale Folgen von Gruppen G_n (co Γ_n über A_n) betrachten (die A_n und Γ_n sind selbst G_n -adische bzw. G_n -ale Folgen). Alle Sätze aus Kap. II übertragen sich auf solche Folgen. Die Limesgruppe solcher Folge heißt G_n -adisch bzw. G_n -al erzeugte Gruppe co Γ_n über A_n . Sie braucht sich keineswegs mehr als eine Gruppe co Γ über A auffassen zu lassen. Doch überträgt sich auf eine solche Gruppe ohneweiteres die Rangdefinition und die Einschränkung, der wir die Homomorphismen unterworfen haben.

Kap. IV.

Die auf-R_n-adische Polyederentwicklung kompakter Räume.

28. In diesem und im folgenden Kapitel 40) beschäftigen wir uns nur mit kompakten metrisierbaren Räumen (siehe 7 b+d+e oder b+e+f); von derartigen Räumen R_n -adisch erzeugte Räume sind (siehe 7) auch wieder kompakt metrisierbar. Wo es nötig ist, werden wir diese Räume (ebenso die R_n -adischen Folgen mitsamt den Limites; siehe 6) als Teilmengen des Fundamental-quaders des Hilbertschen Raumes deuten.

Unser Ziel ist es in diesem Kap., zu beweisen den

Satz von der auf- R_n -adischen Entwickelbarkeit in Polyeder-folgen: Jeder kompakte metrisierbare Raum läßt sich in eine auf- R_n -adische Polyederfolge entwickeln 41).

Wesentlich ist dabei, daß es sich um eine auf- R_n -adische, nicht nur um eine R_n -adische Entwicklung handelt. Eine R_n -adische Entwicklung zu finden, ist, wie wir sehen werden, sehr leicht; um zu einer auf- R_n -adischen zu gelangen, hat man einige Schwierigkeiten zu überwinden.

Unter einem *Polyeder* verstehen wir hier und im Folgenden die Vereinigung *endlich* vieler Simplexe eines endlich dimensionalen cartesischen Raumes, die zu je zweien zum Durchschnitt ein Simplex haben, das für beide ein Randsimplex ist. Ein *Teilpolyeder* soll immer aus Simplexen der vorgelegten Teilung bestehen.

Ehe wir zum Beweise unseres Satzes schreiten, führen wir einige Begriffe und Hilfssätze ein.

29. Eine Abbildung f einer abgeschlossenen Menge M in ein Simplex T heißt bekanntlich wesentlich bzw. unwesentlich, wenn es nicht bzw. wohl möglich ist, f zu ersetzen durch eine Abbildung g von M in T, die auf dem Urbild des Randes $\Re(T)^{42}$)

⁴⁰⁾ In diesem und im folgenden Kap. werden alle Abbildungen als eindeutig stetig vorausgesetzt.

 $^{^{41}}$) Eine auf- R_n -adische Polyederentwicklung eines kompakten Raumes, deren Simplexdurchmesser nach null konvergieren mit $n \to \infty$, kann man in ein Alexandroffsches Spektrum (a.a.O. 1)) verwandeln, indem man die Abbildungen f_n^{n+1} simplizial in bezug auf die *vorliegenden* Unterteilungen macht. Unser Satz liefert also auch die Existenz eines Spektrums. Dagegen dürfte man aus einem Spektrum kaum eine auf- R_n -adische Polyederentwicklung ableiten können; die Existenz dieser Entwicklung scheint tiefer zu liegen als die jener.

 $^{^{42}}$) Mit \Re () bezeichnen wir sowohl die mengentheoretische als auch die kombinatorische Randbildung.

von T mit f übereinstimmt, aber einen gewissen Punkt von T unbedeckt läßt, $gM \supset T$. Bei einer unwesentlichen Abbildung läßt sich g bekanntlich sogar so wählen, daß das ganze Innere von T unbedeckt ist, $gM \subset \Re(T)$.

Sei f eine Abbildung der Menge M in die Menge N; N enthalte ein Simplex T. Wir sagen, daß T bei f wesentlich bzw. unwesentlich überdeckt wird, wenn die Urbildmenge von T durch f wesentlich bzw. unwesentlich in T abgebildet wird.

Ist f eine Abbildung einer Menge M in ein Polyeder P, so heißt g eine zulässige Abänderung von f, wenn für alle Punkte a von M ga in allen Simplexen liegt, in denen fa lag. Eine zulässige Abänderung läßt sich natürlich auch durch eine stetige Überführung bewerkstelligen, bei der jeder Punkt dauernd in allen seinen Simplexen bleibt.

Hilfssatz I: Sei $fR \in P$. Jede zulässige Abänderung g von f, die auf einer abgeschlossenen Teilmenge M von R definiert istläßt sich auf ganz R als zulässige Abänderung fortsetzen.

Beweis: Wir dürfen annehmen, daß M die Urbildmenge jedes nulldimensionalen Simplexes T^0 enthält; ist dies nicht der Fall, so brauchen wir nämlich nur g in jedem Punkt eines $f^{-1}T^0$ in dem g unerklärt ist, durch $gf^{-1}T^0=ff^{-1}T^0$ zu erklären. Wir nehmen induktiv an, daß M die Urbildmenge jedes p-dimensionalen Simplexes T^p enthalte. Für ein T^{p+1} ist dann g auf dem Urbild des Randes, $f^{-1}\Re(T^{p+1})$, erklärt. Nach einem bekannten Satz läßt sich die Abbildung g einer Teilmenge von $f^{-1}T^{p+1}$ in T^{p+1} auf ganz $f^{-1}T^{p+1}$ fortsetzen. Dabei entsteht sicher eine zulässige Abänderung von f. Wir dürfen also annehmen, daß g auch auf den Urbildern aller (p+1)-dimensionalen Simplexe von P in gewünschter Weise erklärt ist. Daraus ergibt sich durch einen Induktionsschluß unsere Behauptung.

30. Eine Abbildung f einer Menge M in ein Polyeder P heiße reduzibel bzw. irreduzibel, wenn es möglich bzw. unmöglich ist, durch zulässige Abänderung von f einen Punkt von fM von Bilde zu befreien, d.h. einen Punkt $a \in M$ und eine zulässige Abänderung g von f zu finden, so daß fa nicht zu gM gehört. Es ist klar, daß bei irreduzibelen Abbildungen jedes Simplex von P entweder ganz oder nur auf dem Rande überdeckt wird; ferner, daß die Irreduzibilität eine gegenüber Unterteilung invariante Eigenschaft ist.

Hilfssatz II: Ist die Abbildung $fM \in P$ irreduzibel, Q ein Teilpolyeder von P und N seine Urbildmenge, so ist auch die Abbildung $fN \in Q$ irreduzibel. (Speziell gilt das natürlich auch für den Fall, daß Q ein Simplex von P ist.)

Beweis: Nehmen wir an, $fN \subset Q$ sei reduzibel und $gN \subset Q$ eine zulässige Abänderung, die etwa den Punkt p von fN freilasse. Nach Hilfssatz I läßt sich gN zu einer auf ganz M definierten zulässigen Abänderung von f fortsetzen; sie heiße auch g.

Mit U_{α} bezeichnen wir die α -Umgebung von N. Das positive ε sei so klein gewählt, daß mit gN auch gU_{ε} den Punkt p nicht enthalte.

Wir erklären eine neue Abbildung $hM \,\subset P$ wie folgt: In $U_{\frac{1}{2}\varepsilon}$ setzen wir h=g, außerhalb U_ε h=f. Für jeden andern Punkt a von M soll ha die Strecke (fa,ga) im Verhältnis seiner Abstände von $M \setminus U_\varepsilon^{43}$) und $U_{\frac{1}{2}\varepsilon}$ teilen; die Strecke (fa,ga) existiert, weil g zulässige Abänderung von f war.

h ist eine zulässige Abänderung von f, und hM enthält p nicht, denn $hU_{\frac{1}{2}\varepsilon}=gU_{\frac{1}{2}\varepsilon}$ enthält p nach der Voraussetzung über ε nicht, $h(M \setminus U_{\varepsilon})=f(M \setminus U_{\varepsilon})$ enthält keinen Punkt von Q, also sicher nicht p, und von der Strecke (fa,ga) könnte höchstens der Endpunkt ga auf Q liegen, der fällt aber nach der Voraussetzung über ε nicht in p.

Damit hätte sich also gezeigt, daß $fM \subset P$ reduzibel wäre, was einen Widerspruch bedeutet. Also muß $fN \subset Q$ irreduzibel sein.

 $Hilfssatz\ III$: Notwendig und hinreichend für die Irreduzibilität der Abbildung $fM \in P$ ist, daß jedes Simplex aus P, von dem überhaupt ein innerer Punkt überdeckt wird, wesentlich überdeckt wird.

Notwendig: Nach Hilfssatz II wird jedes Simplex irreduzibel überdeckt; a fortiori wird also jedes Simplex, von dem überhaupt ein innerer Punkt überdeckt wird, wesentlich überdeckt.

Hinreichend: Es genügt zu zeigen: Eine Abbildung f einer abgeschlossenen Menge M in ein Simplex T lasse sich ersetzen durch eine Abbildung $gM \,\subset T$, eine zulässige Abänderung von f, mit $gM \, \supset p$ (p ein gewisser innerer Punkt von T); dann läßt sich f auch ersetzen durch eine Abbildung h, die auf dem Urbild des Randes von T mit f übereinstimmt, und für die ebenfalls $hM \, \supset p$ gilt.

Für $a \in f^{-1}\Re(T)$ liegen fa und ga niemals diametral in bezug auf p, da g zulässige Abänderung von f war. U_{ε} sei die ε -Umgebung von $f^{-1}\Re(T)$, und zwar sei $\varepsilon > 0$ so klein gewählt, daß erstens $fU_{\varepsilon} \supset p$ und zweitens für $a \in U_{\varepsilon}$ die Punkte fa und ga niemals

⁴³) $M \setminus N$ bedeutet die Menge aller Punkte, die zu M aber nicht zu N gehören. $M \vee N$ ist die Vereingung, $M \wedge N$ der Durchschnitt von M und N.

diametral in bezug auf p liegen können, d.h. die Strecke (fa, ga) den Punkt p nicht enthält.

Wir erklären h auf $f^{-1}\Re(T)$ als identisch mit f und auf $M \setminus U_{\varepsilon}$ als identisch mit g; für alle übrigen a soll ha die Strecke (fa, ga) im Verhältnis der Abstände des Punktes a von $f^{-1}\Re(T)$ und $M \setminus U_{\varepsilon}$ teilen.

Auf Grund unserer Voraussetzungen über ε leistet h das Gewünschte.

Bemerkung. Jedes Teilsimplex eines wesentlich überdeckten Simplexes wird auch wesentlich überdeckt. Denn würde es unwesentlich überdeckt, so würde es nach Hilfssatz III auch reduzibel überdeckt, also würde nach Hilfssatz II das ganze Simplex reduzibel, also nach Hilfssatz III unwesentlich überdeckt, im Widerspruch zur Behauptung.

Hilfssatz IV: Eine Abbildung $fM \in P$ läßt sich durch eine zulässige Abänderung ersetzen, die irreduzibel ist.

Beweis: Beginnend bei den unwesentlich überdeckten Simplexen T der höchsten Dimension ersetze man f auf $f^{-1}T$ durch eine Abbildung, die auf $f^{-1}\Re(T)$ mit f übereinstimme und keinen inneren Punkt von T überdecke. So fahre man durch alle Dimensionen fort. Nach der Bemerkung zu Hilfssatz III geht das. Nach endlich vielen Schritten erhält man eine zulässige Abänderung g von f, bei der jedes Simplex von P, von dem überhaupt ein innerer Punkt überdeckt wird, wesentlich überdeckt wird. Nach Hilfssatz III ist g irreduzibel.

Hilfssatz V: R_n sei eine auf- R_n -adische Folge, $f_n^m R_m = R_n$; $\lim_m f_n^m = f_n$. R_1 sei in ein Polyeder P abgebildet, $g^1 R_1 \subset P$. Dann ist auch R_n durch $g^n = g^1 f_1^n$ und R durch $g = g^1 f_1$ in P abgebildet. Ist nun $gR \subset P$ reduzibel, so ist es auch (für fast alle n) $g^n R_n \subset P$.

Beweis: Sei h eine zulässige Abänderung von g, bei der nur ein echter Teil von gR überdeckt wird. S sei der aus R und den R_n zusammengesetzte Raum (siehe 6) und $g'S \in P$ die Abbildung, die auf R als g und auf R_n als g^n definiert ist. Nach Hilfssatz I gibt es eine zulässige Abänderung h' von g', die auf R mit h übereinstimmt. Auf R_n heiße h' auch h^n ; es ist da eine zulässige Abänderung von g^n . Für fast alle n unterscheidet sich die Menge h^nR_n beliebig wenig h' von der Menge hR, ist also für fast alle n ebenfalls ein echter Teil von $gR = g^nR_n$. Also ist in der Tat (für fast alle n) g^n reduzibel.

⁴⁴⁾ Hier verwenden wir wesentlich, daß die R_n eine auf- R_n -adische Folge bilden.

Hilfssatz VI: Ist fM = N, $gN \in T$ (T ist ein Simplex), ist ferner g unwesentlich, so ist es auch fg. Ist fM = N, $gN \in P$ (P ist ein Polyeder), ist ferner g reduzibel, so ist es auch fg. (Beweis klar.)

Hilfssatz VII: Sei P_n eine auf- R_n -adische Folge von Polyedern, $f_n^m P_m$, $\lim_m f_n^m = f_n$. Sei M eine abgeschlossene Teilmenge von $\lim_n P_n$ und $M_n = f_n M$. Dann gibt es ein m und eine zulässige Abänderung g_1^m von f_1^m (definiert auf ganz P_m), derart daß für jedes n > m M_n durch $g_1^m f_m$ (eine zulässige Abänderung von f_n^n) irreduzibel abgebildet wird. Nach Hilfssatz V wird dann übrigens auch M durch $g_1^m f_m$ (eine zulässige Abänderung von f_1) irreduzibel abgebildet.

Beweis: P_1 sei d-dimensional. Wir bestimmen m_d so, daß jedes d-dimensionale Simplex T^d von P_1 durch $f_1^n M_n$ für $alle\ n$ wesentlich oder für $alle\ n \geq m_d$ unwesentlich überdeckt wird (nach Hilfssatz VI ist das möglich). Hinsichtlich jedes durch $f_1^m M_m$ unwesentlich überdeckten T^d von P_1 ersetzen wir $f_1^{m_d}$ auf dem $f_1^{m_d}$ Urbild von T^d (unter Festhaltung auf dem Urbild des Randes von T^d) durch (eine zulässige Abänderung) $k_1^{m_d}$, so daß $k_1^{m_d}(f_1^{m_d})^{-1}T^d$ keinen inneren Punkt von T^d mehr überdeckt. Nach Hilfssatz I dürfen wir uns $k_1^{m_d}$ auf ganz P_{m_d} als zulässige Abänderung von $f_1^{m_d}$ definiert denken.

Wir sagen nun statt $k_1^{m_d}$ wieder $f_1^{m_d}$ und dürfen von $f_1^{m_d}$ also voraussetzen, daß $f_1^{m_d}M_{m_d}$ nur von solchen T^d innere Punkte überdeckt, die von $f_1^{m_d}M_{m_d}$ wesentlich überdeckt werden. Diese T^d werden dann auch von f^nM_n , $n \ge m_d$ wesentlich überdeckt.

Wir bestimmen weiter $m_{d-1} > m_d$ so, daß jedes (d-1)-dimensionale) Simplex T^{d-1} von P_1 durch $f_1^n M_n$ für alle n wesentlich oder für alle $n \ge m_{d-1}$ unwesentlich überdeckt wird. Hinsichtlich jedes durch $f_1^{m_{d-1}} M_{m_{d-1}}$ unwesentlich überdeckten T^{d-1} verfahren wir genau wie oben (nach der Bemerkung zu Hilfssatz III werden von dem Abänderungsprozeß nur solche T^{d-1} berührt, die nicht auf einem wesentlich überdeckten T^d liegen, also nur solche T^{d-1} , die auf keinem T^d von $f_1^{m_{d-1}} M_{m_{d-1}}$ liegen).

So verfahren wir durch alle Dimensionen und erhalten schließlich ein $m (= m_0)$ und eine zulässige Abänderung g_1^m des gegebenen f_1^m . Dabei überdeckt für alle n > m die Abbildung $g_1^m f_m^n$ von M_n in P_1 jedes Simplex von P_1 wesentlich, wofern überhaupt ein innerer Punkt überdeckt wird. Nach Hilfssatz III leistet g_1^m das Gewünschte.

31. Eine Abbildung eines Polyeders P in ein anderes, Q, heiße normal 45), wenn eine Unterteilung Q' von Q existiert, derart daß die Abbildung von P in Q' simplizial und in jedem Simplex affin ist. Bei Unterteilungen des Urbildpolyeders bleibt die Normalität erhalten. Zusammensetzungen normaler Abbildungen sind normal.

 $Hilfssatz\ VIII$: In einem Polyeder P kann man eine Unterteilung und zu jedem seiner Simplexe T eine Umgebung U aus Simplexen der Unterteilung finden und eine Abbildung k von P auf sich, bei der jedes dieser U simplizial in sein zugehöriges T abgebildet wird.

Beweis: Wir wählen eine genügend feine Unterteilung von P und zu jedem T von P selbst (d.h. nicht von der Unterteilung) eine abgeschlossene Umgebung V, die aus Simplexen der Unterteilung zusammengesetzt ist. Dabei verlangen wir: Ist der Durchschnitt von T₁ und T₂ leer, so soll der Durchschnitt der zugehörigen V_1 und V_2 auch leer sein; ist T_3 der Durchschnitt von T_1 und T_2 , so soll V_3 den Durchschnitt von V_1 und V_2 enthalten. Hinsichtlich jedes nulldimensionalen Simplexes T^0 bilden wir alle Eckpunkte der Unterteilung, die zu dem zugehörigen V⁰ gehören, auf T^0 ab, und weiter, alle l der Größe nach durchlaufend, bilden wir hinsichtlich jedes l-dimensionalen Simplexes T^l alle Eckpunkte der Unterteilung, die zu dem zugehörigen V^l gehören, auf Ecken des T^l ab. Dabei werden Eckpunktmengen, die ein Simplex der Unterteilung bilden, abgebildet auf Eckpunktmengen, die ein Simplex der ursprünglichen Teilung bilden; wir können die Eckenabbildung also affin erweitern und erhalten ein Abbildung k, die das Gewünschte leistet.

Hilfssatz IX: Zu einem Polyeder P gibt es ein $\sigma > 0$ mit der folgenden Eigenschaft: Sind $fM \in P$ und $gM \in P$ zwei Abbildungen, die sich um weniger als σ unterscheiden (d.h. die Entfernung zwischen fa und ga ist für alle a kleiner als σ), so ist die Abbildung kg eine zulässige Abänderung von f (bzgl. k siehe Hilffssatz VIII).

Beweis: p sei ein Punkt von P und T das Simplex kleinster Dimension, auf dem p liegt. $\sigma(p)$ sei der Abstand zwischen p und dem Komplement des zu T gehörigen U. Die untere Grenze der $\sigma(p)$ heiße σ . Unterscheiden sich f und g um weniger als σ

⁴⁵) Gegenüber meiner Mitteilung (a.a.O. ⁴)) habe ich die Definition der Normalität etwas geändert. Normalität ist (was wir hiermit richtig stellen) keine Invariante bei zulässigen Abänderungen.

und liegt fa in T, so liegt ga in U, also kga, wie wir es wünschten, auch in T.

Hilfssatz X: Sei f eine Abbildung des Polyeders P in das Polyeder Q. In bezug auf eine geeignete Unterteilung von P gibt es eine normale Abbildung g, die zulässige Abänderung von f ist.

Beweis: h sei eine in bezug auf eine geeignete Unterteilung von P und Q simpliziale Abbildung, die sich von f um weniger als σ unterscheide (siehe Hilfssatz IX mit Q statt P). Man setze dann g = kh.

 $Hilfssatz \ XI: g$ sei eine zulässige Abänderung der Abbildung f des Raumes R in das Polyeder P; h sei eine normale Abbildung von P in das Polyeder Q. Dann ist hg zulässige Abänderung von hf.

Beweis: a sei ein Punkt von R. Das Simplex minimaler Dimension von P, das fa enthält, heiße T; das von Q, das hfa enthält, heiße U. Da $fa \in h^{-1}U$ ist und $h^{-1}U$ aus lauter Simplexen von P besteht, ist $T \subset h^{-1}U$, also $hT \subset U$. Nun ist aber $ga \in T$, also wirklich $hga \in U$.

Hilfssatz XII: Sei P_n eine auf- R_n -adische Folge von Polyedern mit den Abbildungen $f_n^m P_m = P_n$; $\lim_m f_n^m = f_n$. Sei M eine abgeschlossene Menge von $\lim_n P_n$ und $M_n = f_n M$. Dann gibt es eine auf- R_n -adische Folge von Polyedern Q_n mit normalen Abbildungen $g_n^m Q_m = Q_n$ und mit den folgenden Eigenschaften: Q_k entsteht aus einem gewissen P_{n_k} durch Unterteilen $(n_{k+1} > n_k)$; g_k^l (k > l) ist eine zulässige Abänderung von $f_{n_l}^{n_k}$; setzen wir $g_k M = N_k$ $(g_k$ bedeutet dabei $\lim_l g_k^l$), so sind die Abbildungen $g_l^k N_k$ und $g_l M$ irreduzibel. Die N_k sind dann notwendig Polyeder.

Beweis: Wir setzen $n_1=1$ und bestimmen n_2 und $h_{n_1}^{n_2}$ (als zulässige Abänderung von $f_{n_1}^{n_2}$) nach Hilfssatz VII so, daß $h_{n_1}^{n_2} f_{n_2}^n$ für alle $n>n_2$ M_n irreduzibel abbildet (auf M_{n_1}'); $M_{n_1}'=h_{n_1}^{n_2} M_{n_2}$. Nach Hilfssatz X dürfen wir $h_{n_1}^{n_2}$ in einer gewissen Unterteilung von P_{n_2} (für die wir im Folgenden wieder P_{n_2} schreiben) als normal voraussetzen. Zu n_2 bestimmen wir $n_3>n_2$ und $h_{n_2}^{n_3}$ (als zulässige Abänderung von $f_{n_2}^{n_3}$ und normal in bezug auf eine gewisse Unterteilung von P_{n_3} , die wir wieder P_{n_3} nennen) nach Hilfssatz VII so, daß $h_{n_2}^{n_3} f_{n_3}^n$ für alle $n>n_3$ M_n irreduzibel abbildet (auf M_{n_2}'); $M_{n_2}'=h_{n_2}^{n_3} M_{n_3}$. Dann ist $h_{n_1}^{n_3}=h_{n_1}^{n_2} h_{n_3}^{n_3}$

wegen der Normalität der Abbildung $h_{n_1}^{n_2}$ eine zulässige Abänderung von $h_{n_1}^{n_2}f_{n_2}^{n_3}$, also auch irreduzibel auf M_{n_3} und daher $h_{n_1}^{n_3}M_{n_3}=M'_{n_1}$. Nach Hilfssatz VI ist auch $h_{n_1}^{n_2}$ eine irreduzible Abbildung von M'_{n_2} . Ferner ist $h_{n_1}^{n_3}f_{n_3}^n$ als zulässige Abänderung von $h_{n_1}^{n_2}f_{n_2}^{n_3}f_{n_3}^n=h_{n_2}^{n_2}f_{n_2}^n$ eine irreduzible Abbildung von M_n .

So fahren wir fort und erhalten allgemein ein normales $h_{n_k}^{n_{k+1}}$ als zulässige Abänderung von $f_{n_k}^{n_{k+1}}$, derart daß $h_{n_k}^{n_{k+1}}f_{n_{k+1}}^n$ für alle $n>n_{k+1}\ M_n$ irreduzibel abbildet auf $M_{n_k}'=h_{n_k}^{n_{k+1}}M_{n_{k+1}}$. Dann ist $h_{n_1}^{n_{k+1}}=h_{n_1}^{n_k}h_{n_k}^{n_{k+1}}$ wegen der Normalität der Abbildungen eine zulässige Abänderung von $h_{n_1}^{n_k}f_{n_k}^{n_{k+1}}$, also auch irreduzibel auf $M_{n_{k+1}}$ und daher $h_{n_k}^{n_{k+1}}M_{n_{k+1}}=M_{n_k}'$. Nach Hilfssatz VI ist auch $h_{n_1}^{n_k}$ eine irreduzible Abbildung von M_{n_k}' . Schließlich ist $h_{n_1}^{n_{k+1}}f_{n_{k+1}}^n$ (als zulässige Abänderung von $h_{n_1}^{n_{k+1}}f_{n_{k+1}}^n f_{n_{k+1}}^n = h_{n_1}^{n_{k+1}}f_{n_{k+1}}^n$) eine irreduzible Abbildung von M_n .

Endlich setzen wir $h_{n_i} = \lim_{n_k} h_{n_i}^{n_k} f_{n_k}^{46}$), das ist eine Abbildung von $\lim_{n} P_n$ in P_{n_i} . Damit dieser Limes aber existiere, müssen wir unser eben geschildertes Verfahren etwas modifizieren: Jeweils vor der Bestimmung von n_{k+1} zerschlagen wir P_{n_k} so, daß das $h_{n_i}^{n_k}$ -Bild jedes Simplexes von P_{n_k} einen Durchmesser $\leq 2^{-k}$ hat. Die Normalität wird dadurch nicht gestört. Dann ist für jeden Punkt a aus $\lim_{n_k} P_n$ $(f_i = a_i)$:

$$\begin{split} \varrho(h_{n_{l}}^{n_{k}}f_{n_{k}}a, & h_{n_{l}}^{n_{k'}}f_{n_{k'}}a) \\ &= \varrho(h_{n_{l}}^{n_{k}}f_{n_{k}}^{n_{k'}}a_{n_{k'}}, & h_{n_{l}}^{n_{k}}h_{n_{k}}^{n_{k'}}a_{n_{k'}}) \end{split}$$
 $(k' \ge k)$ $\leq 2^{-k};$

die Punkte $f_{n_k}^{n_k'}a_{n_{k'}}$ und $h_{n_k}^{n_{k'}}a_{n_{k'}}$ liegen nämlich in einem Simplex von P_{n_k} , da die h zulässige Abänderungen der f sind; sie werden also durch $h_{n_l}^{n_k}$ auf Punkte im Abstand $\leq 2^{-k}$ voneinander abgebildet. Für wachsendes k bilden also die Punkte $h_{n_l}^{n_k}f_{n_k}a$ (gleichmäßig in a) eine Fundamentalfolge; ihr Limes 46), den wir h_{n_l} nannten, existiert also und ist eine stetige Abbildung von $\lim_{n} P_n$ in P_{n_l} . Die übliche Zusammensetzungsregel $h_{n_l}^{n_k}h_{n_k}=h_{n_l}$ ist dabei erfüllt. Weiter ist $h_{n_l}M=\lim_k h_{n_l}^{n_k}f_{n_k}M=\lim_k h_{n_l}^{n_k}M_{n_k}=M'_{n_l}$.

⁴⁶) Das ist natürlich ein Limes im gewöhnlichen, nicht im R_n -adischen Sinne.

Nennen wir die konstruierte Unterteilung von P_{n_k} jetzt Q_k , ersetzen wir $h_{n_l}^{n_k}$ bzw. h_{n_l} durch g_l^k bzw. g_l und M'_{n_k} durch N_k , so sind die Behauptungen unseres zu beweisenden Hilfssatzes erfüllt (daß g_l die Menge M irreduzibel abbilden muß, folgt aus Hilfssatz V).

32. Wir können jetzt den Entwicklungssatz (siehe 28) beweisen.

R sei ein kompakter Raum; wir stellen ihn uns als Teilmenge M des Fundamentalquaders E des Hilbertschen Raumes vor.

E können wir uns folgendermaßen auf- R_n -adisch erzeugt denken E_n sei das n-dimensionale Quader, das aus E durch Nullsetzen aller Koordinaten von der (n+1)-ten ab entsteht. f_n^m bzw. f_n sei die Projektion von E_m bzw. E auf E_n d.h. die Abbildung durch Nullsetzen aller Koordinaten von der (n+1)-ten ab.

 E_n fassen wir als ein Polyeder P_n auf, wenden Hilfssatz XII an und erhalten sogar einen schärferen Satz, als den, den wir beweisen wollten:

Hauptsatz I: Jeder kompakte metrisierbare Raum läßt sich in eine auf- R_n -adische Polyederfolge entwickeln, derart daß alle vorkommenden Abbildungen normal und irreduzibel sind.

Es läßt sich sogar jede R_n -adische Polyederentwicklung eines kompakten metrisierbaren Raumes durch Auswahlen, Zerschlagungen und zulässige Abänderungen in eine auf R_n -adische Polyederfolge mit obigen Eigenschaften verwandeln.

Daß der Limesraum der Polyederfolge dem gegebenen wirklich homöomorph ist, folgt aus den Bemerkungen, die wir im Anschluß an dem Umkehrsatz (9) über kompakte Räume gemacht haben.

Wir werden, wenn die Abbildungen normal bzw. irreduzibel sind, die Folgen selbst auch normal bzw. irreduzibel nennen.

Kap. V.

Der Austauschsatz.

33. Hilfssatz XIII: Zu einem Raum R und einer Abbildung fR = P (Polyeder) gibt es ein $\varepsilon > 0$ mit der folgenden Eigenschaft: Ist g eine ε -Abbildung von R auf das Polyeder Q, so gibt es eine hinsichtlich einer genügend feinen Unterteilung von Q normale Abbildung $hQ \subset P$, derart daß hg zulässige Abänderung von f ist.

Beweis: Wir dürfen uns R im Fundamentalquader des Hilbertschen Raumes vorstellen und g als eine ε -Verschiebung. Auf eine

genügend kleine Umgebung von R läßt sich die Abbildung f fortsetzen; so erhalten wir eine Abbildung $f'Q \in P$. War ε genügend klein gewählt, so ist f'g wenig verschieden von f, also kf'g (siehe Hilfssatz X) zulässige Abänderung von f. Nach Hilfssatz X ist in einer geeigneten Unterteilung von Q ferner kf' normal. Setzen wir kf' = h, so ist der Hilfssatz bewiesen.

Hilfssatz XIV. R sei ein Raum, ε_n eine positive Nullfolge und f_n eine ε_n -Abbildung von R auf das Polyeder P_n . Dann läßt sich eine normale irreduzible auf- R_n -adische Entwicklung von R finden, $g_n^m Q_m = Q_n$, $\lim_m Q_m = R$, $\lim_m g_n^m = g_n$, mit den folgenden Eigenschaften: Q_k ist ein Teilpolyeder einer Unterteilung von P_{n_k} ; g_k ist eine zulässige Abänderung von f_{n_k} . Dabei kann man die Folge n_k noch willkürlich vorschreiben, wenn man nur die Lücken in ihr genügend groß wählt.

Beweis: Nach dem Hauptsatz I (siehe 32) genügt es, unseren Hilfssatz zu beweisen mit der schwächeren Forderung, daß die Q_n nur eine R_n -adische (nicht notwendig irreduzible) Folge bilden.

Wir setzen $n_1=1$, $Q_1=P_1$. Seien n_k , $Q_k=P_{n_k}$ und die normalen Abbildungen g_l^k $(k>l,g_l^kQ_k\in Q_1)$ bereits so bestimmt, daß die üblichen Zusammensetzungsregeln gelten und $g_l^kf_{n_k}$ zulässige Abänderung von f_{n_l} ist. Dann bestimmen wir nach Hilfssatz XIII (mit Q_k statt P und einem der P_n statt Q) n_{k+1} , $Q_{k+1}=P_{n_{k+1}}$ und g_k^{k+1} (normale Abbildung) so, daß $g_k^{k+1}f_{n_{k+1}}$ zulässige Abänderung von f_{n_k} ist. g_l^{k+1} definieren wir durch $g_l^kg_k^{k+1}$. $g_l^{k+1}f_{n_{k+1}}=g_l^kg_k^{k+1}f_{n_{k+1}}$ ist dann wegen der Normalität von g_l^k eine zulässige Abänderung von f_{n_l} .

Schließlich setzen wir $g_l = \lim_k \dot{g_l^k} f_{n_k}$. Um die Existenz dieses Limes zu versichern, verfahren wir jedoch vorher mit den P_{n_k} wie im vorletzten Absatz von 31; wir unterlassen die Wiederholung jener Betrachtungen.

Nun sind tatsächlich, wie wir es haben wollten, die g_l (als Limites zulässiger Abänderungen) zulässige Abänderungen der f_l .

34. Wir sind jetzt im Stande, den Satz zu beweisen:

Austauschsatz: R sei auf zwei Arten auf- R_n -adisch entwickelt in irreduzible Polyederfolgen,

$$f_n^m P_m = P_n$$
, $\lim_n P_n = R$, $\lim_m f_n^m = f_n$, $g_n^m Q_m = Q_n$, $\lim_n Q_n = R$, $\lim_m g_n^m = g_n$.

Dann gibt es (mit geeigneten n_k) eine zusammengesetzte normale irreduzible Entwicklung von R,

$$\begin{split} h_{2k+1}^{2k+2} \, Q_{n_{k+2}} &\subset P_{n_{k+1}}, \quad h_{2k+3}^{2k+3} \, P_{n_{2k+3}} &\subset Q_{n_{2k+2}}, \\ h_n^l \, h_l^k &= h_m^k, \\ & \lim_k h_l^k = h_l, \end{split}$$

derart da β (für k+l gerade) h_l^k zulässige Abänderung von $f_{n_l}^{n_k}$ (k ungerade) oder von $g_{n_l}^{n_k}$ (k gerade) ist und ebenso h_l zulässige Abänderung von f_{n_l} oder g_{n_l} .

Beweis: Vereinigt man die P_n und Q_n zu einer Folge, so sind (da nach 9, Ende, die P_n und Q_n für genügend großes n durch ε -Abbildungen aus R entstehen) die Bedingungen von Hilfssatz XIV erfüllt. Daraus ergibt sich unser Satz bis auf die Tatsache daß die h_l^k (k+l gerade) zulässige Abänderungen der $f_{n_l}^{n_k}$ oder $g_{n_l}^{n_k}$ sind. Das beweisen wir, indem wir auf die Konstruktion von h_k^{k+2} (gemäß dem Beweis von Hilfssatz XIV) zurückgehen. Wir dürfen dabei voraussetzen, daß k ungerade ist.

 h_k^{k+1} war so konstruiert, daß $h_k^{k+1}g_{n_{k+1}}$ zulässige Abänderung von f_{n_k} ist, und h_{k+1}^{k+2} so, daß $h_{k+1}^{k+2}f_{n_{k+2}}$ zulässige Abänderung von $g_{n_{k+1}}$ ist. Wegen der Normalität von h_k^{k+1} ist dann auch

$$h_k^{k+1} h_{k+1}^{k+2} f_{n_{k+2}}$$
zulässige Abänderung von $f_{n_k},$

also

$$\boldsymbol{h}_k^{k+2} \boldsymbol{f}_{n_{k+2}}$$
zulässige Abänderung von $\boldsymbol{f}_{n_k}^{n_{k+2}} \boldsymbol{f}_{n_{k+2}}.$

Daraus folgt, da $f_{n_{k+2}}R=P_{n_{k+2}}$ ist, unmittelbar, daß auch h_k^{k+2} zulässige Abänderung von $f_{n_k}^{n_{k+2}}$ ist. Wegen der Normalität der Abbildungen ergibt sich daraus durch Zusammensetzen für h_k^t mit beliebigen k,l (k+l gerade) die zu beweisende Behauptung.

Kap. VI.

Entwicklungen von Räumen und ihren Gruppen.

Alle Räume werden als metrisiert vorausgesetzt.

35. Ein abstraktes d-dimensionales ε -Simplex in R ist ein orientiertes System von d+1 Punkten aus R, dessen Durchmesser $\leq \varepsilon$ ist. Ein Simplex heißt entartet, wenn einige seiner "Eckpunkte" zusammenfallen 46a).

^{46a}) Die sich für viele topologische Untersuchungen als fruchtbar erweisende Auffassung eines Simplexes als eines *endlichen* Punktsystems findet sich wohl zuerst bei P. Alexandroff [Math. Ann. 96 (1926), 489—511, eigentlich auch schon 94 (1925), 296—308].

 $\Re^d(R)$ co Γ nennen wir die freie Gruppe co Γ über der von den nichtentarteten (abstrakten d-dimensionalen) ε -Simplexen erzeugten freien Gruppe (siehe 22, 23); dabei identifizieren wir jedoch, wenn t und t' entgegengesetzt orientierte Simplexe sind, t' mit -t. Ein Element von $\Re^d(R)$ co Γ heißt ein d-dimensionaler ε -Komplex co Γ in R. Ein d-dimensionaler ε -Komplex co Γ in R ist also eine endliche Linearform nichtentarteter d-dimensionaler ε -Simplexe in R mit Koeffizienten aus Γ .

Die Randbildung erklären wir wie üblich.

Ein d-dimensionaler ε -Zyklus co Γ mod M in R (M abgeschlossen $\subset R$) ist ein Element von $\Re^d(R)$ co Γ , dessen Rand ein Element von $\Re^{d-1}(M)$ co Γ ist. Die Gruppe der d-dimensionalen ε -Zyklen co Γ mod M in R (topologisiert als Untergruppe von $\Re^d(R)$ co Γ) nennen wir $\Im^d(R)$ co Γ mod M.

Ein d-dimensionaler ε - η -Rand co $\Gamma\Delta$ ⁴⁷) in R rel S mod MN ⁴⁸) (Γ stetig homomorph abgebildet in Δ , $M \subset R \subset S$, $M \subset N \subset S$; M, N, R abgeschlossen in S) ist ein d-dimensionaler ε -Zyklus co Γ mod M in R, der gleichzeitig — bei Vernachlässigung eines ε -Komplexes co Γ aus N und vermöge der Homomorphismus von Γ in Δ — Rand eines η -Komplexes co Δ aus S ist. Die Gruppe dieser Ränder (topologisiert als Untergruppe von $\Re^d(R)$ co Γ) nennen wir $\Re^d_{\varepsilon\eta}(RS)$ co $\Gamma\Delta$ mod MN.

Bettische ε - η -Gruppe co $\Gamma\Delta$ von R rel S mod MN nennen wir die Gruppe 49)

 $\mathfrak{B}^d_{\varepsilon n}(RS)$ co $\Gamma \Delta \mod MN =$

 $= \mathfrak{Z}^d_{\varepsilon}(R) \text{ co } \Gamma \mod M / \mathfrak{Z}^d_{\varepsilon n}(RS) \text{ co } \Gamma \Delta \mod MN.$

Alle hier auftretenden Homomorphismen sind Homomorphismen im Sinne des Kap. III. Man beachte aber, daß die (definierte) Bettische Gruppe keineswegs eine Gruppe im Sinne des Kap. III zu sein braucht.

Aus Bequemlichkeitsgründen werden wir den Dimensionsindex der untersuchten Gruppen meistens weglassen. Auch von den übrigen Angaben werden wir häufig die eine oder die andere weglassen, wenn sie für die vorliegende Betrachtung keine Rolle

⁴⁷) Diese Zuziehung eines zweiten Koeffizientenbereiches entnehme ich P. ALEXANDROFF und H. HOPF, Topologie I (Berlin, Springer, 1935). Man könnte noch verschiedene Koeffizientenbereiche für die verschiedenen Dimensionen einführen (die natürlich in gewissen Abbildungsbeziehungen stehen müssen), doch scheint das nicht zu wesentlich Neuem zu führen.

⁴⁸) Wir lassen hier und später meistens die Kommata weg, die eigentlich zwischen M und N, zwischen R und S, zwischen Γ und Δ stehen müßten.

spielt. Die Angabe η lassen wir fast immer weg, wenn $\eta = \varepsilon$ ist, die Angabe Δ , wenn $\Gamma = \Delta$ ist, die Angabe S, wenn S = R ist, die Angabe N, wenn M = N ist, und die Angabe mod MN wenn M = N leer ist.

- 36. Abbildungsprinzipien.
- a) Der Übergang von ε zu $\varepsilon' \geq \varepsilon$ induziert einen stetigen Isomorphismus von \Re_{ε} in $\Re_{\varepsilon'}$ und dabei von \Re_{ε} in $\Re_{\varepsilon'}$, von $\Re_{\varepsilon\eta}$ in $\Re_{\varepsilon'\eta}$, also auch von $\Re_{\varepsilon\eta}$ in $\Re_{\varepsilon'\eta}$, der so entsteht: jeder ε -Komplex läßt sich auch als ε' -Komplex auffassen, jeder ε -Zyklus auch als ε' -Zyklus, jeder ε - η -Rand auch als ε' - η -Rand; diese Abbildung ist stetig, weil der absolute Betrag jedes Elements konstant bleibt, also ist auch die Abbildung von $\Re_{\varepsilon\eta}$ in $\Re_{\varepsilon'\eta}$ stetig.
- b) Der Übergang von η zu $\eta' \geq \eta$ induziert einen stetigen gebietstreuen Homomorphismus von \Re_{ε} auf \Re_{ε} , von \Im_{ε} auf \Im_{ε} , der so entsteht: \Re_{ε} und \Im_{ε} werden identisch abgebildet, jeder ε - η -Rand wird aufgefaßt als ein ε - η' - \Re and; aus denselben Gründen wie unter a ist die Abbildung stetig und wegen $\Re_{\varepsilon\eta'}$ top. is. $\Re_{\varepsilon\eta}/(\Im_{\varepsilon\eta'}/\Im_{\varepsilon\eta})$ gebietstreu.
- c) Ein stetiger Homomorphismus von Δ in Δ' und dabei von Γ in Γ' induziert einen stetigen Homomorphismus von \Re co Γ in \Re co Γ' und dabei von \Re co Γ in \Re co Γ' , von \Re co $\Gamma\Delta$ in \Re co $\Gamma'\Delta'$, also auch von \Re co $\Gamma\Delta$ in \Re co $\Gamma'\Delta'$, der dadurch entsteht, daß in jeder Linearform jeder Koeffizient durch den zugeordneten ersetzt wird; nach Kap. III, Satz 7 sind die Abbildungen stetig.
- d) Eine (nicht notwendig stetige) Abbildung von S in S' (und dabei von R in R', von N in N', von M in M'), bei der je zwei Punkte im Abstand $\leq \varepsilon$ bzw. $\leq \eta$ voneinander höchstens den Abstand ε' bzw. η' bekommen, induziert einen stetigen Homomorphismus von $\Re_{\varepsilon}(R)$ in $\Re_{\eta}(R')$ und dabei von $\Im_{\varepsilon}(R)$ mod M in $Z_{\varepsilon'}(R')$ mod M', von $\Im_{\varepsilon\eta}(RS)$ mod MN in $\Im_{\varepsilon'\eta'}(R'S')$ mod M'N', der folgendermaßen entsteht: jedem Simplex wird sein Bildsimplex oder, falls das entartet, 0 zugeordnet. Die Abbildungen sind stetig, da der absolute Betrag sicher nicht wächst 50).

⁴⁹) Es ist wohl nützlich, $\mathfrak{B}_{\varepsilon\eta}$ in dieser Allgemeinheit zu definieren (unter Zuziehung von M, N und S). Die Einführung des M rührt von S. Lefschetz her (siehe Topology [A. M. S. Coll. Publ. XII (1930)], Ch. II). Aber implicite kommt unsere allgemeinere Form von $\mathfrak{B}_{\varepsilon\eta}$ bereits in zahlreichen Arbeiten vor; wir haben sie nur in Evidenz gesetzt.

⁵⁰) Gerade um *dies* zu erreichen, müssen wir die Gruppen co Γ so topologisieren, wie wir es in Kap. III getan haben. Siehe ¹⁵).

- e) Der Übergang von R zu $R' \supset R$, von M zu $M' \supset M$ und von Γ zu $\Gamma' \supset \Gamma$ (bei dem alle Inklusionen usw. erhalten bleiben sollen) induziert einen stetigen Isomorphismus von $\Re(R)$ co Γ in $\Re(R')$ co Γ' und dabei von $\Re(R)$ co Γ mod M in $\Re(R')$ co Γ' mod M', von $\Re(RS)$ co $\Gamma \Delta$ mod MN in $\Re(R'S)$ co $\Gamma' \Delta$ mod M'N, also auch von $\Re(RS)$ co $\Gamma \Delta$ mod MN in $\Re(R'S)$ co $\Gamma' \Delta$ mod M'N, der als Spezialfall der unter c und d behandelten ensteht.
- f) Der Übergang von S zu $S' \supset S$, von N zu $N' \supset N$ und von Δ zu $\Delta' \supset \Delta$ (bei dem alle Inklusionen erhalten bleiben sollen) induziert einen gebietstreuen Homomorphismus von $\Re(R)$ co Γ auf $\Re(R)$ co Γ und dabei von $\Re(R)$ co Γ mod M auf $\Re(R)$ co Γ mod M, von $\Re(RS)$ co $\Gamma\Delta$ mod MN in $\Re(RS')$ co $\Gamma\Delta'$ mod MN', also auch von $\Re(RS)$ co $\Gamma\Delta$ mod MN auf $\Re(RS')$ co $\Gamma\Delta'$ mod MN', der als Spezialfall der unter c und d behandelten entsteht; die Gebietstreue ist genau wie in b einzusehen.

In allen diesen Fällen setzen sich, wenn mehrere Übergänge hintereinander ausgeführt werden, die induzierten Homomorphismen wie die entsprechenden Übergänge zusammen.

In den Fällen a, b, e, f, nennen wir den induzierten Homomorphismus auch den (zu dem betreffenden Übergang gehörigen) natürlichen Homomorphismus; in den Fällen c, d geben wir dem induzierten Homomorphismus dasselbe Funktionszeichen wie der induzierenden Abbildung.

Die fünf Abbildungsprinzipien lassen sich noch kombinieren; wir verzichten auf die explizite Formulierung.

37. HAUPTSATZ II: $\mathfrak{B}_{\varepsilon\eta}(RS)$ co $\Gamma\Delta$ mod MN ist stetig isomorph ⁵¹) einer Untergruppe der Gruppe co Δ über $\mathfrak{R}_{\eta}(R)/\mathfrak{H}_{\eta\eta}(SS)$ mod MN. Bestehen R, S, M, N nur aus endlich vielen Punkten, so ist $\mathfrak{B}_{\varepsilon\eta}$ sogar stetig isomorph ⁵¹) einer Untergruppe einer endlich erzeugten Gruppe co Δ . Sind die Räume total beschränkt ⁵²) und ist $\varepsilon < \eta$ ^{52a}), so ist $\mathfrak{B}_{\varepsilon\eta}$ stetig isomorph einer Untergruppe einer endlich erzeugten Gruppe co Δ .

Beweis: Die ersten beiden Aussagen sind evident ⁵³). — Wir setzen $\vartheta = \frac{1}{2}(\eta - \varepsilon)$ und konstruieren auf Grund der Total-

 $^{^{51})}$ Für M=N läßt sich hier sogar topologische Isomorphie erreichen; bei der dritten Aussage scheint das aber nicht möglich zu sein.

 $^{^{52}}$) R heißt bekanntlich total beschränkt, wenn es zu jedem positiven ϑ in R eine endliche Punktmenge gibt, von der jeder Punkt von R einen Abstand $\leq \vartheta$ hat.

^{52a}) Für $\varepsilon = \eta$ scheint das nicht richtig zu sein.

⁵³) Wenn G eine topologische Gruppe, U eine Untergruppe, N ein Normalteiler ist, so ist NU/N stetig isomorph abgebildet auf $U/U \wedge N$, also in $G/U \wedge N$. $\mathfrak{H}_{\eta \eta}$ ist, wie man ohne weiteres sieht, eine ausgezeichnete Untergruppe.

beschränktheit endliche Teilmengen M', N', R', S' von bzw. M, N, R, S mit $M' \,\subset R' \,\subset S'$, $M' \,\subset N' \,\subset S'$, derart daß jeder Punkt von M bzw. N bzw. R bzw. S einen Abstand $\leq \vartheta$ von der Menge M' bzw. N' bzw. R' bzw. S' hat. Dann gibt es eine ϑ -Verrückung Φ (d.h. eine nicht notwendig stetige Abbildung, die jeden Punkt um höchstens ϑ verschiebt) mit

$$\Phi M \subset M', \ \Phi N \subset N', \ \Phi R \subset R', \ \Phi S \subset S'.$$

Nach Prinzip d (36) induziert Φ die stetigen Homomorphismen

$$\Phi \Re_{\varepsilon}(R) \subset \Re_{\eta}(R'), \ \Phi \Im_{\varepsilon}(R) \subset \Im_{\eta}(R'), \ \Phi \Im_{\varepsilon\varepsilon}(R) \subset \Im_{\eta\eta}(R')^{54},$$

also auch

$$\mathfrak{Z}_{\varepsilon}(R)/\mathfrak{H}_{\varepsilon\varepsilon}(R)$$
 in $\mathfrak{Z}_{\eta}(R')/\mathfrak{H}_{\eta\eta}(R')$.

Bei diesem letzten Homomorphismus gehen die und nur die Restklassen in 0 über, in denen Zyklen z liegen, für die

$$\Phi z_{\varepsilon} \sim 0$$
 in $S' \mod N'$

ist; sie bilden eine Untergruppe U von $\mathfrak{Z}_{\varepsilon}(R)$. Für die Elemente von U gilt a fortiori

$$\Phi z_{\varepsilon} \widetilde{\eta} 0$$
 in $S \mod N$,

also, da bei einer $\vartheta\text{-Verrückung}$ jeder z_ε sich selbst $\eta\text{-homolog}$ bleibt, auch

$$z_{\varepsilon} \widetilde{\eta} 0$$
 in $S \mod N$.

Somit ist

$$U \in \mathfrak{H}_{\varepsilon\eta}(RS) \mod MN$$
.

Nun ist

$$\mathfrak{Z}_{\varepsilon}(R)/U$$
 stetig isomorph in $\mathfrak{Z}_{\eta}(R')/\mathfrak{H}_{\eta\eta}(R')$

abgebildet; ferner ist

 $\mathfrak{Z}_{\varepsilon}(R)/\mathfrak{F}_{\varepsilon\eta}(RS)$ topologisch isomorph $(\mathfrak{Z}_{\varepsilon}(R)/U)/(\mathfrak{F}_{\varepsilon\eta}(RS)/U)$, also stetig isomorph abgebildet in

$$\mathfrak{Z}_{\eta}(R')/\Phi\mathfrak{H}_{\varepsilon\eta}(RS),$$

also auch in

$$\Re_{\eta}(R')/\Phi \Re_{\eta\eta}(SS) \bmod NN$$
,

wie wir es wünschten.

38. Eine R_n -adische Entwicklung nennen wir gleichmäßig, wenn die Abbildungen f_n^m gleichartig gleichmäßig stetig sind.

 $^{^{54})}$ Wir lassen hier meistens einen Teil der Bestimmungsstücke weg. Wir dürfen ferner $\Gamma=\varDelta$ voraussetzen.

Eine Abbildung in eine R_n -adische Entwicklung heißt gleichmäßig stetig, wenn die abbildenden Funktionen gleichartig gleichmäßig stetig sind.

Wir definieren nun die Bettische Gruppe einer gleichmäßigen R_n -adischen Entwicklung co einer G_n -adischen Entwicklung. Das ist die Gruppe 54a)

$$\begin{split} \mathfrak{B}_{\varepsilon_{(n)}\eta_{(n)}}(R_{(n)}S_{(n)}) & \text{co } \Gamma_{(n)}\varDelta_{(n)} \text{ mod } M_{(n)}N_{(n)} = \\ & = \lim_n \mathfrak{B}_{\varepsilon_n\eta_n}(R_nS_n) & \text{co } \Gamma_n\varDelta_n \text{ mod } M_nN_n; \end{split}$$

dabei sollen die S_n (und gleichzeitig die R_n , N_n und M_n) eine gleichmäßige R_n -adische Folge

$$f_n^mS_m \in S_n, \ f_n^mR_m \in R_n, \ f_n^mN_m \in N_n, \ f_n^mM_m \in M_n$$

und die Δ_n (und gleichzeitig die Γ_n) eine G_n -adische Folge

$$f_n^m \Delta_m \subset \Delta_n, f_n^m \Gamma_m \subset \Gamma_n^{54b}$$

bilden; die ε_n bzw. η_n sollen nirgends zunehmende positive Nullfolgen sein und zwar so beschaffen, daß je zwei Punkte von S_m im Abstand $\leq \varepsilon_m$ bzw. η_m voneinander durch f_n^m abgebildet werden in zwei Punkte im Abstand $\leq \varepsilon_n$ bzw. η_n voneinander (solche Folgen ε_n , η_n existieren auf Grund der Gleichmäßigkeit der f_n^m). Die auf Grund der Abbildungsprinzipien (36) induzierten stetigen Homomorphismen

$$f_n^m \mathfrak{B}_{\varepsilon_m \eta_m}(R_m S_m) \ldots \subset \mathfrak{B}_{\varepsilon_n \eta_n}(R_n S_n) \ldots$$

existieren dann, und die Bettische Gruppe als G_n -adischer Limes dieser Folge ist dann definiert.

Den Entwicklungstypus der Bettischen Gruppe, wie er durch diese Definition gegeben ist, nennen wir die $Zyklose^{55}$) & der gleichmäßigen R_n -adischen Entwicklung co der G_n -adischen Entwicklung.

Speziell ist damit auch die Bettische Gruppe und die Zyklose eines festen Raumes R bei festen oder variablen S, M, N, Γ , Δ definiert (die f_n^m sind dann auf einer oder mehrerer dieser Räume und Gruppen die identischen Abbildungen).

Daß für den Fall eines festen R = S (mit M = N leer) und fester Koeffizientenbereiche unsere Definition der Bettischen

 $^{^{54}a})$ Zum Zeichen eines vollzogenen Grenzübergang klammern wir den betreffenden Index ein.

⁵⁴b) Für die Abbildungen der Räume und der Gruppen verwenden wir also dasselbe Funktionszeichen. Das ist bequem und ungefährlich.

⁵⁵⁾ Dies Wort übernehmen wir von L. Pontrjagin, a.a.O. 13), 198.

Gruppe (einschließlich der Topologie; siehe ¹⁵), L. Pontrjagin) mit der üblichen übereinstimmt, bedarf keines Beweises.

Dagegen könnte man mit viel Recht für die Bettische Gruppe von R rel S noch eine andere Definition vorschlagen an Stelle von $\mathfrak{B}(RS) = \lim \mathfrak{B}_{\varepsilon_n n_n}(RS)$, nämlich

$$\mathfrak{B}^*(RS) = \mathfrak{B}(RR)/\lim \left(\mathfrak{F}_{\varepsilon_n\eta_n}(RS)/\mathfrak{F}_{\varepsilon_n\eta_n}(RR)\right)$$
.

Man kann das unter Berücksichtigung von M, N, Γ und Δ noch allgemeiner aufschreiben (M und Γ benehmen sich dabei wie R; N und Δ wie S); man kann sogar variable Bestimmungsstücke zulassen. Zweifellos hätte diese Definition einige Vorzüge gegenüber unserer (aber auch Nachteile); wir werden sie kaum berücksichtigen, da sie sich im Großen und Ganzen nicht viel anders als unsere benimmt und es für die meisten Anwendungen gleichgültig ist, welche Definition man zugrunde legt 56). — Wo wir nicht ausdrücklich etwas Anderes bemerken, meinen wir jedenfalls, wenn wir von Bettischer Gruppe, Zyklose usw. sprechen, immer die der ersten Definition.

39. Hauptsatz III: Bei der Definition der Bettischen Gruppe darf man die Grenzübergänge in den einzelnen Bestimmungsstücken ε_n , η_n , R_n , S_n , M_n , N_n , Γ_n , Δ_n unabhängig voneinander vollziehen.

(Unmittelbare Folge des G_n -adischen Doppelfolgensatzes, siehe 19.)

Bemerkung: Der Grenzübergang in bezug auf R_n , S_n , M_n , N_n muß im allgemeinen gemeinsam vollzogen werden; nur wenn die Beziehung $S_l \supset R_m \supset M_p$, $S_l \supset N_n \supset M_p$ für alle l, m, n, p einen Sinn hat (das ist der Fall, wenn die Räume absteigende Folgen bilden) und erfüllt ist, darf man auch diese Grenzübergänge unabhängig voneinander vollziehen. Analoges gilt für Γ_n , Δ_n .

Folgerung 1: Bei der Definition der Bettischen Gruppe darf man erst den Grenzübergang mit $\varepsilon_n \to 0$ und dann den mit $\eta_n \to 0$ vollziehen.

 $^{^{56}}$) In der Sprache der konvergenten Zyklen läßt sich der Unterschied zwischen $\mathfrak B$ und $\mathfrak B^*$ so formulieren: bei der Berechnung von $\mathfrak B$ wird S sowohl zugezogen, um festzustellen, ob ein Zyklus konvergiert, als auch um festzustellen, ob er nullhomolog ist; bei Berechnung von $\mathfrak B^*$ jedoch wird S nur zu dem zweiten Zweck herangezogen. — Übrigens ist es sehr wahrscheinlich, daß in einer absteigenden Folge kompakter Räume und sehr allgemeiner (nicht nur kompakter, für die das evident ist) Koeffizientenbereiche $\mathfrak B$ und $\mathfrak B^*$ identisch sind; doch das wäre eine ziemlich tief liegende Tatsache.

Folgerung 2: Die Bettische Gruppe der Folge R_n , S_n , M_n , N_n , Γ_n , Δ_n ist gleich dem Limes der Bettischen Gruppen:

$$\lim_{n} \mathfrak{B}(R_{n}S_{n}) \ co \ \Gamma_{n}\Delta_{n} \ mod \ M_{n}N_{n}$$
.

Wenn wir hier und in Zukunft die Indices ε_n und η_n weglassen, so bedeutet das, daß der Grenzübergang in bezug auf ε_n und η_n bereits vollzogen ist.

Hauptsatz IV: a, b) Bettische Gruppe und Zyklose sind unabhängig von der speziellen Wahl der Folgen ε_n , η_n .

- c) Ein stetiger Homomorphismus bzw. topologischer Isomorphismus der Koeffizientenbereichfolge in bzw. auf eine andere induziert einen stetigen Homomorphismus bzw. topologischen Isomorphismus der zugehörigen Bettischen Gruppen und Zyklosen.
- d) Eine gleichmäßig stetige bzw. gleichmäßig topologische Abbildung der R_n -adischen Folge der Räume in bzw. auf eine andere induziert einen stetigen Homomorphismus bzw. topologischen Isomorphismus der zugehörigen Bettischen Gruppen und Zyklosen.
- e) Werden bei c oder d mehrere Abbildungen hintereinander ausgeführt, so setzen sich die induzierten Abbildungen wie die induzierenden zusammen.
- f) Die Bettische Gruppe und die Zyklose hängt nur ab von dem gemeinsamen Entwicklungstypus der Folgen R_n , S_n , N_n , M_n und Γ_n , Λ_n .

Bemerkung: Bei c, d, f hüte man sich vor der Annahme, die Bettische Gruppe und die Zyklose seien bereits durch die Limites der Folgen R_n , S_n , M_n , N_n und Γ_n , Δ_n bestimmt. Hinsichtlich der ersten Folgen stimmt das allerdings in kompakten Räumen (Hauptsatz V), hinsichtlich der zweiten gilt das selbst unter sehr einschränkenden Voraussetzungen nicht (siehe Anhang).

Folgerung 1: Die Bettische Gruppe und Zyklose eines festen Raumes R bei festen S, N und M hängt nur von R, S, M, N und dem Entwicklungstypus der Γ_n , Δ_n ab.

Folgerung 2: Die Bettische Gruppe und Zyklose bei festen Koeffizientenbereichen hängt nur von den Koeffizientenbereichen und dem Entwicklungstypus der Raumfolgen ab.

Beweis der Hauptsatzes IV: a, b) Sind zwei Folgenpaare gegeben ε_n , η_n , ε_n' , η_n' , so hat man zwei G_n -adische Folgen

$$f_n^m \mathfrak{B}_{\varepsilon_m \eta_m} \subset \mathfrak{B}_{\varepsilon_n \eta_n}, \ \ f_n^m \mathfrak{B}_{\varepsilon_m' \eta_m'} \subset \mathfrak{B}_{\varepsilon_n' \eta_n'} \ .$$

Auf Grund der Abbildungsprinzipien (36d) gibt es stetige Homomorphismen

$$\varphi_n^m \mathfrak{B}_{\varepsilon_m \eta_m} \subset \mathfrak{B}_{\varepsilon_n' \eta_n'}, \ \ '\varphi_n^m \mathfrak{B}_{\varepsilon_m' \eta_m'} \subset \mathfrak{B}_{\varepsilon_n \eta_n},$$

definiert bei festem n für fast alle m; man braucht nämlich nur m so groß zu wählen, daß

$$\varepsilon_{m} \leq \varrho(\varepsilon_{n}^{'}), \ \eta_{m} \leq \varrho(\eta_{n}^{'}), \ \varepsilon_{m}^{'} \leq \varrho(\varepsilon_{n}), \ \eta_{m}^{'} \leq \varrho(\eta_{n})^{57}$$

ist, und das ermöglicht uns die Gleichmäßigkeit der Entwicklung. Die φ_n^m und ' φ_n^m bilden nun die beiden G_n -adischen Folgen stetig homomorph ineinander ab, aber es sind sogar die Zusammensetzungsregeln

$$\varphi_n^p \varphi_n^m = f_n^m, \quad \varphi_n^p \varphi_n^m = f_n^m$$

erfüllt, die den topologischen Isomorphismus beider Folgen (der bzw. Zyklosen) und ihrer Limesgruppen (der Bettischen Gruppen) gewährleisten (G_n -adischer dritter Limessatz, 19).

c, d) Es liegen nun zwei (gleichmäßige) Folgen von Räumen und Gruppen vor

$$f_n^m S_m \subset S_n, \ldots, f_n^m \Delta_m \subset \Delta_n, \ldots,$$

 $f_n^m \Delta_m \subset \Delta_n, \ldots, f_n^m \Delta_m' \subset \Delta_n', \ldots$

und die (gleichmäßig stetige) Abbildungsfolge

$$\varphi_n^m S_m \subset S_n', \ldots, \qquad \varphi_n^m \Delta_m \subset \Delta_n', \ldots$$

der ersten in die zweite,

$$\varphi_n^p f_p^m = 'f_n^q \varphi_q^m = \varphi_n^m.$$

Die φ_n^m induzieren auf Grund der Abbildungsprinzipien (36c) stetige Homomorphismen von

$$\mathfrak{B}_{\varepsilon_m\eta_m}(R_mS_m)$$
 co $\Gamma_m\Delta_m \mod M_nN_n$ in
$$\mathfrak{B}_{\varepsilon_n\eta_n}(R_n'S_n') \text{ co } \Gamma_n'\Delta_n' \mod M_n'N_n',$$

die bei festem n für fast alle m definiert sind (man wähle m ähnlich wie in a, b) und denselben Zusammensetzungsregeln genügen, also einen stetigen Homomorphismus der einen Gruppenfolge $\mathfrak{B}_{\varepsilon_n\eta_n}\ldots$ in die andere verursachen. Das ist aber ein stetiger Homomorphismus der einen Zyklose in die andere und damit auch der einen Bettischen Gruppe in die andere (G_n -adischer dritter Limessatz, 19).

Die andere Aussage des Satzes, topologisch isomorphe und

 $^{^{57}}$) ϱ ist so definiert: alle Punkte im Abstand $\leq \varrho(\alpha)$ voneinander sollen durch irgendeine beliebige der vorliegenden Abbildungen in Punkte im Abstand $\leq \alpha$ voneinander übergeführt werden.

gleichmäßig topologische Abbildungen betreffend, läßt sich genauso wie die eben behandelte erste Aussage beweisen oder auch als unmittelbare Folgerung der ersten Aussage.

- e) ist evident.
- f) ist nur eine Zusammenfassung von a, b und den zweiten Aussagen von c, d.
- 40. Wir gehen jetzt zur Betrachtung kompakter R_n -adischer Raumfolgen über. Eine R_n -adische Folge kompakter R_n ist bei geeigneter Metrisierung von selbst gleichmäßig. Wir metrisieren nämlich den aus R und den R_n zusammengesetzten Raum S (siehe 6) irgendwie und dann die R_n als Teilmengen von S. In bekannter Weise können wir schließen: Gäbe es Punktepaarfolgen

$$\begin{split} a_{v} \in R_{n_{v}}, \quad b_{v} \in R_{n_{v}}, \quad \text{Abst } (a_{v}, b_{v}) & \leq 2^{-v}, \\ \text{Abst } (f_{n_{v}}^{m_{v}} a_{v}, \quad f_{n_{v}}^{m_{v}} b_{v}) &> \delta > 0, \end{split}$$

so dürfte man wegen der Kompaktheit annehmen, daß die a_{ν} und b_{ν} (in S) konvergieren. Daraus folgte dann, nach der Bemerkung zum Konvergenzkriterium (6), daß die

$$f_k^{n_v} f_{n_v}^{m_v} a_v, f_k^{n_v} f_{n_v}^{m_v} b_v$$

(für jedes k, für das sie definiert sind) zum selben Punkte konvergierten, also wieder nach der Bemerkung zum Konvergenzkriterium auch, daß die

$$f_{n_{\boldsymbol{v}}}^{m_{\boldsymbol{v}}}a_{\boldsymbol{v}}, \quad f_{n_{\boldsymbol{v}}}^{m_{\boldsymbol{v}}}b_{\boldsymbol{v}}$$

zum selben Punkte konvergierten, im Widerspruch zur Annahme.
Ebenso zeigt man daß bei Abbildungen kompakter R-

Ebenso zeigt man, daß bei Abbildungen kompakter R_n -adischer Folgen in andere die gleichmäßige Stetigkeit schon aus der Stetigkeit folgt.

Folgerung 3 aus Hauptsatz IV: Im kompakten Fall sind Bettische Gruppe und Zyklose topologische Invarianten. (Ergibt sich unmittelbar aus dem Vorhergehenden.)

Wir legen wieder die Bezeichnungen von 38, 39 zugrunde.

Hauptsatz V: Sind die R_n , S_n , M_n , N_n , in sich kompakt, so hängen Bettische Gruppe und Zyklose der Folge (außer vom Entwicklungstypus der $\Gamma_n \Delta_n$) nur ab von $R = \lim_n R_n$, $S = \lim_n S_n$, $M = \lim_n M_n$, $N = \lim_n N_n$ (und ihrer gegenseitigen Lage), es sind nämlich die Gruppenfolgen

$$\mathfrak{B}_{\varepsilon_n\eta_n}(R_nS_n)$$
 co $\Gamma_n\Delta_n \mod M_nN_n$, $\mathfrak{B}_{\varepsilon_n\eta_n}(RS)$ co $\Gamma_n\Delta_n \mod MN$

topologisch isomorph, also auch ihre Limites:

$$\lim_{n} \mathfrak{B}_{\varepsilon_{n}\eta_{n}}(R_{n}S_{n}) \ co \ \Gamma_{n}\Delta_{n} \ \mathrm{mod} \ M_{n}N_{n},$$
$$\lim_{n} \mathfrak{B}_{\varepsilon_{n}\eta_{n}}(RS) \ co \ \Gamma_{n}\Delta_{n} \ \mathrm{mod} \ MN.$$

Ebenso hängen unter denselben Bedingungen bei einer stetigen Abbildung einer Raumfolge in eine andere die induzierten Abbildungen der bzw. Bettischen Gruppen und Zyklosen nur ab von der Abbildung der bzw. Limesräume, und es gilt eine ähnliche Limesformel wie oben.

Bemerkung: Der Satz zeigt, daß im kompakten Fall die Betrachtung variabler R, S, M, N nichts Neues liefert gegenüber der Betrachtung fester.

Folgerung 1: Die Gruppen

$$\lim_{n} \lim_{m} \mathfrak{B}_{\varepsilon_{m}\eta_{m}}(R_{n}S_{n}) \text{ co } \Gamma_{m}\Delta_{m} \text{ mod } M_{n}N_{n},$$

$$\lim_{n} \mathfrak{B}_{\varepsilon_{n}\eta_{n}}(RS) \text{ co } \Gamma_{n}\Delta_{n} \text{ mod } MN$$

sind topologisch isomorph bei in sich kompakten R_n , S_n , M_n , N_n oder kurz: der Limes der Bettischen Gruppen ist gleich der Bettischen Gruppe des Limes ⁵⁸).

(Ergibt sich aus Hauptsatz V unter Anwendung von Hauptsatz III unmittelbar.)

Folgerung 2: Bilden die in sich kompakten R_n , S_n , M_n , N_n eine absteigende Folge, so hängen Bettische Gruppe und Zyklose der Folge nur von denen der Durchschnitte der R_n , S_n , M_n , N_n ab.

(Diese Durchschnitte sind nämlich nichts Anderes als die R_n -adischen Limites.)

Bemerkung zu Folgerung 1: Keineswegs ist auch der Limes der Zyklosen gleich der Zyklose des Limes. Wohl gilt das, wenn z.B. die R_n Polyeder sind (siehe Hauptsatz VI).

Beweis des Hauptsatzes V: Nach Folgerung 3 aus Hauptsatz IV (siehe diese Nr.) dürfen wir in unsern Räumen eine beliebige Metrik voraussetzen (wenn nur in ihr die f_n^m gleichartig gleichmäßig stetig bleiben). Wir denken uns daher R, S, M, N, R_n ,

⁵⁸) Man kommt also zu denselben Ergebnissen, ob man die Bettische Gruppe, wie wir es im Wesentlichen getan haben, nach Vietoris, oder ob man sie mit Alexandroffschen Spektren definiert; siehe ⁴¹).

 S_n , M_n , N_n wie zu Beginn dieser Nr. zu einem kompakten Raum vereinigt.

Wegen der Kompaktheit können wir eine nirgends abnehmende positive monotone Nullfolge ϑ_n bestimmen, so daß erstens die Abbildung f_n^m und $f_n (= \lim_m f_n^m)$ jeden Punkt (von S_m und S)

um höchstens ϑ_n verrückt (in einen Punkt von S_n) und zweitens zu jedem Punkt von R_n bzw. S_n bzw. M_n bzw. N_n im Abstande $\leq \vartheta_n$ ein Punkt von R bzw. S bzw. M bzw. N existiert. Dann gibt es eine (nicht notwendig stetige) ϑ_n -Verrückung, Φ^n genannt, mit

$$\Phi^n S_n \subset S$$
, $\Phi^n R_n \subset R$, $\Phi^n N_n \subset N$, $\Phi^n M_n \subset M$.

Wir wählen die Folgen ε_n , η_n , über die wir noch (nach Hauptsatz IVa, b) verfügen dürfen, wie folgt:

$$\varepsilon_n = \eta_n = 4\vartheta_n$$
.

Bequemlichkeitshalber lassen wir die Angaben η_n , S_n , M_n , N_n , S, M, N, Γ_n , Δ_n im weiteren Verlauf des Beweises weg.

Wir betrachten nun unsere beiden Folgen

$$f_n^m \mathfrak{B}_{\varepsilon_m}(R_m) \subset \mathfrak{B}_{\varepsilon_n}(R_n),$$

$$g_n^m \mathfrak{B}_{\varepsilon_m}(R) \subset \mathfrak{B}_{\varepsilon_n}(R),$$
(†)

deren topologische Isomorphie wir zu beweisen haben (g_n^m) bedeutet hier den auf Grund der Abbildungsprinzipien 36 a—c beim Übergang von ε_m zu ε_n und von $\Gamma_m \Delta_m$ zu $\Gamma_n \Delta_n$ induzierten stetigen Homomorphismus).

Die stetige Abbildung $f_nR \in R_n$ (zusammen mit der Abbildung der m-ten Koeffizientenbereiche in die n-ten) induziert (36c, d) einen stetigen Homomorphismus

$$\psi_n^m \mathfrak{B}_{\varepsilon_m}(R) \subset \mathfrak{B}_{\varepsilon_n}(R_n),$$

der bei jedem festen n für fast alle m definiert ist (nämlich für $\varepsilon_m + 2\vartheta_n \le \varepsilon_n$). Da die Zusammensetzungsregeln

$$f_n^p \psi_p^m = \psi_n^p g_p^m = \psi_n^m$$

offensichtlich erfüllt sind, ist (ψ_n^m) ein stetiger Homomorphismus der zweiten Folge (†) in die erste.

Umgekehrt induziert die Abbildung $\Phi^m R_m \subset R$ (zusammen mit der Abbildung der Koeffizientenbereiche) nach 36c, d einen stetigen Homomorphismus

$$\varphi_n^m \mathfrak{B}_{\varepsilon_m}(R_m) \subset \mathfrak{B}_{\varepsilon_n}(R),$$

der bei festem n für fast alle m definiert ist (nämlich für $\varepsilon_m + 2\vartheta_n \leqq \varepsilon_n$). Von den Zusammensetzungsregeln

$$g_n^p \varphi_n^m = \varphi_n^p f_p^m = \varphi_n^m$$

ist die Beziehung zwischen dem ersten und dritten Glied evident. Um die Beziehung zwischen zweitem und drittem Glied zu beweisen, verfahren wir so: f_p^m und Φ^p sind beide ϑ_p -Verrückungen, also ist $\Phi^p f_p^m$ eine $2\vartheta_p$ -Verrückung; dagegen ist Φ^m eine ϑ_m -Verrückung. Wenden wir nun auf einen ε_m -Zyklus aus R_m einerseits $\varphi_n^p f_p^m$, andererseits φ_n^m an, so erhalten wir (für fast alle n) zwei ε_n -Zyklen, in R_n , die (in R_n) ($\varepsilon_m + 2\vartheta_p + \vartheta_m$)-homolog sind. Sie sind dann auch ($\varepsilon_m + 3\vartheta_n$)-homolog, also für fast alle m auch ε_n -homolog. Also vermitteln in der Tat $\varphi_n^p f_n^m$ und φ_n^m dieselbe Abbildung von $\mathfrak{B}_{\varepsilon_m}(R_m)$.

Aus dem Zusammensetzungsregeln folgt, daß (ψ_n^m) einen stetigen *Homomorphismus der ersten Folge in die zweite* vermittelt.

Um einzusehen, daß hier ein topologischer Isomorphismus vorliegt, brauchen wir nur noch

$$\varphi_n^p \psi_p^m = g_n^m, \quad \psi_n^p \varphi_p^m = f_n^m$$

zu beweisen. Die erste Gleichung ergibt sich daraus, daß φ_n^p und ψ_p^m durch ϑ_p -Verrückungen, also $\varphi_n^p \psi_p^m$ durch eine $2\vartheta_p$ -Verrückung induziert wird, während g_n^m ohne jede Verrückung (durch einen natürlichen Homomorphismus und den der Koeffizientenbereiche) entsteht; wendet man beide Abbildungen auf einen ε_m -Zyklus in R an, so erhält man für fast alle m also $(\varepsilon_m+2\vartheta_p)$ -homologe ε_n -Zyklen in R, diese sind auch $(\varepsilon_m+2\vartheta_n)$ -homolog, also für fast alle m auch ε_n -homolog.

Analog beweist man die zweite Gleichung, indem man zeigt, daß die beiden Seiten einen ε_m -Zyklus in R_m bzw. abbilden in ε_n -Zyklen in R_m , die $(\varepsilon_m + \vartheta_m + 2\vartheta_p)$ -homolog, also $(\varepsilon_m + 3\vartheta_n)$ -homolog, also für fast alle m auch ε_n -homolog sind.

Damit ist die erste Aussage des Hauptsatzes bewiesen; für die zweite Aussage unterlassen wir den Beweis, der sich von dem eben geführten nicht wesentlich unterscheidet.

41. Wir betrachten für den Augenblick feste in sich kompakte R, S, M, N und feste $\Gamma \Delta$. Ein besonders einfacher Fall ist der, daß die Entwicklung, die die Zyklose definiert, sich so wählen läßt, daß alle ihre Abbildungen "topologische Isomorphismen auf" sind. Wir wollen das den polyederartigen Fall nennen. (Es ist natürlich keine Verallgemeinerung, wenn man nur verlangt,

daß fast alle Abbildungen "topologische Isomorphismen auf" sind.) In diesem Fall wird Zyklose und Bettische Gruppe nur scheinbar durch einen unendlichen $(G_n$ -adischen) Prozeß bestimmt.

Hauptsatz VI: Sind die Koeffizientenbereiche fest und liegt in der R_n -adischen Folge $R_nS_nM_nN_n$ der kompakte und polyederartige Fall (für jedes n) vor, so ist nicht nur die Bettische Gruppe des Limes gleich dem Limes der Bettischen Gruppen, sondern es ist auch die Zyklose des Limes, d.h. im wesentlichen die Folge

$$\mathfrak{B}_{\varepsilon_n\eta_n}(RS)$$
 co $\Gamma\Delta \mod MN$,

topologisch isomorph der Entwicklung

$$\mathfrak{B}(R_nS_n)$$
 co $\Gamma\Delta$ mod M_nN_n $(f_n^m\mathfrak{B}(R_mS_m)\ldots \subset \mathfrak{B}(R_nS_n)\ldots).$ (Beweis klar.)

Der polyederartige Fall liegt z.B. vor, wenn die R_n, \ldots Polyeder sind; er liegt aber auch dann vor, wenn die Räume nur (in einer gewissen Weise) im Kleinen zusammenhängend von jeder Dimension (im Homologiesinne) sind. Es gilt der

Satz 1: Ist R = S kompakt, M und N leer, gibt es weiter zu jeder abgeschlossenen Umgebung V eines beliebigen Punktes a eine abgeschlossene Umgebung U von a und danach zu jedem positiven η ein positives ε , derart da β jeder höchstens d-dimensionale ε -Zyklus co mod 0 aus U in V co mod 0 η -berandet, so liegt für R der polyederartige Fall co Γ vor.

Bemerkung: Einfacher läßt sich unsere Berandungsvorschrift so formulieren: Die Zyklosen (bis zur d-ten Dimension) von U rel V sind die Nullzyklosen ⁵⁹).

Beweis: Es ist klar, daß man mit endlich vielen U und V für ganz R auskommt. Wir untersuchen zunächst die Verhältnisse co mod 0 und konstruieren eine ϑ -Modifikation 60), d.h. eine Zuordnung folgender Art: Jedem höchstens (d+1)-dimensionalen δ -Simplex t in R (und damit in additiver Weise auch jedem Komplex co mod 0) wird ein δ' -Komplex t' co mod 0 zugeordnet, so daß die Berandungsrelationen erhalten bleiben. Dabei soll jede Ecke sich selbst entsprechen und der Durchmesser der aus t und t' bestehende Menge für alle höchstens d-dimensionalen t höchstens d sein. Nachdem man d positiv vorgeschrieben hat,

⁵⁹⁾ Das ist der Typus einer Folge von Gruppen, die alle nur aus der Null bestehen.

⁶⁰⁾ Definition von P. ALEXANDROFF 13), Nr. 55.

wollen wir für genügend kleines δ und beliebiges δ' die Modifikation den angeführten Bedingungen gemäß bestimmen.

Dazu verfahren wir so: t_1 sei ein eindimensionales Simplex genügend kleinen Durchmessers und r_0 sein Rand. r_0 berandet einen Komplex t_1' (der aus kleinen Simplexen besteht) und mit t_1' zusammen eine Menge kleinen Durchmessers bildet. Sei t_2 ein zweidimensionales Simplex und r_1 sein Rand. r_1 ist eine algebraische Summe gewisser t_1 , die zugehörigen t_1' addieren wir in derselben Weise und erhalten r_1' . Mit r_1' verfahren wir ebenso wie vorhin mit r_0 und so fort durch alle nötigen Dimensionen. Das ergibt die gewünschte Modifikation. Man kann übrigens voraussetzen, daß, nachdem ϑ und ϑ' festgelegt sind, für alle |t'| (co mod 0 berechnet) eine obere Schranke m existiert; ferner daß bei der Modifikationen alle ϑ' -Simplexe (und -Komplexe) unverändert bleiben.

Wir zeigen nun, daß der natürliche Isomorphismus von $\mathfrak{B}_{\varepsilon'\eta}$ in $\mathfrak{B}_{\varepsilon\eta}$ ($\varepsilon' \leq \varepsilon$) ein "topologischer Isomorphismus auf" ist, sobald ε (in Abhängigkeit von η) genügend klein gewählt ist. Man braucht nämlich nur eine ϑ -Modifikation ($\vartheta < \eta$) zu bestimmen, die ε -Komplexe in ε' -Komplexe überführt; zu jedem ε -Zyklus findet man so einen ε' -Zyklus, der ihm ($\varepsilon + \vartheta$)-homolog, also für genügend kleines ε auch η -homolog ist; zu jedem Element von $\mathfrak{B}_{\varepsilon\eta}$ findet man also ein Urbild in $\mathfrak{B}_{\varepsilon'\eta}$. Wegen (*) aus 22 ist diese Umkehrung stetig.

Weiter ist für kleine η der natürliche gebietstreue Homomorphismus von $\mathfrak{B}_{\varepsilon\eta'}$ auf $\mathfrak{B}_{\varepsilon\eta}$ ($\eta' \leq \eta$) ein Isomorphismus, solange $\varepsilon \leq \eta'$ ist. Denn ein η -Komplex, dessen Rand ein ε -Zyklus ist, läßt sich in einen η' -Komplex mit demselben Rand modifizieren. Daß dieser Isomorphismus topologisch ist, ist klar.

Zusammen ergibt das, daß bei geeigneter Wahl der Folgen ε_n , η_n die Gruppen $\mathfrak{B}_{\varepsilon_n\eta_n}$ auf einander topologisch isomorph bezogen sind, was wir beweisen wollten.

42. In kompakten Räumen sind Bettische Gruppe und Zyklose, wie wir sahen, topologische Invarianten. Für andere Räume liefern die bisherigen Definitionen jedoch keine invarianten Begriffe. In im Kleinen kompakten Räumen zieht man daher eine Definition vor, die auf der Nacheinanderanwendung R_n -adischer und R_n -aler Prozesse beruht.

Wir beschäftigen uns zunächst — etwas allgemeiner — mit einer R_n -alen Folge in sich kompakter R_n , S_n , M_n , N_n ,

$$f_n^m R_m \subset R_n, \quad f_n^m S_m \subset S_n, \dots$$

und einer G_n -alen Folge,

$$f_n^m \Gamma_m \subset \Gamma_n, \ldots$$

Nach Hauptsatz IV induzieren die f_n^m stetige Homomorphismen der Bettischen Gruppen $\mathfrak{B}(R_n,S_n)$ co $\Gamma_n \Delta_n \mod M_n N_n$. Diese Gruppen bilden also eine G_n -ale Folge; ihr Typus heißt die $\mathbf{Z}yklose$ und ihr Limes die $\mathbf{B}ettische$ Gruppe der Folge. Diese Definition ist natürlich von der früher gegebenen wesentlich verschieden. Man kann noch etwas allgemeiner verfahren. Man braucht nicht vorauszusetzen, daß die einzelnen $\mathfrak{B}(R_nS_n)$ co $\Gamma\Delta$ mod M_nN_n bei festem $\Gamma\Delta$ berechnet sind. Dann hat man also statt der einfachen G_n -alen Folge $\Gamma_n\Delta_n$ eine gemischte Doppelfolge $\Gamma_{kn}\Delta_{kn}$, die etwa in bezug auf den ersten Index G_n -adisch und in bezug auf den zweiten G_n -al ist;

$$f_n^m \Gamma_{km} \subset \Gamma_{kn}$$

ist also für jedes feste m und n (m < n) ein stetiger Homomorphismus der G_n -adischen Folge Γ_{km} in die G_n -adische Folge Γ_{kn} . Die Bettische Gruppe unserer G_n -alen Folge ist dann definiert als

$$\begin{split} \lim_n \mathfrak{B}(R_n S_n) & \text{ co } \varGamma_{(k)n} \varDelta_{(k)n} \bmod M_n N_n = \\ & = \lim_n \lim_k \mathfrak{B}_{\varepsilon_k \eta_k}(R_n S_n) \text{ co } \varGamma_{kn} \varDelta_{kn} \bmod M_n N_n {}^{60a}); \end{split}$$

ihr Erzeugungstyp ist die Zyklose 60b).

Aus dem G_n -alen Doppelfolgensatz (19) ergibt sich unmittelbar Hauptsatz III*: Bei der Definition der Bettischen Gruppe darf man die einzelnen G_n -alen und R_n -alen Grenzübergänge unabhängig voneinander vollziehen.

Bemerkung 1: Der Grenzübergang in bezug auf R_n , S_n , M_n , N_n muß im allgemeinen gemeinsam vollzogen werden; nur wenn die Beziehung $S_k \supset R_l \supset M_n$, $S_k \supset N_m \supset M_n$ für alle Indices einen Sinn hat und erfüllt ist, darf man diese Grenzübergänge unabhängig voneinander vollziehen. Analoges gilt für Γ_n , Δ_n .

Bemerkung 2: Eine Vertauschung G_n -aler und G_n -adischer Prozesse ist natürlich nicht zulässig.

Hauptsatz IV*: c) Ein stetiger Homomorphismus bzw. topolo-

⁶⁰a) Wie im letzten Absatz von 38 kann man auch hier eine Gruppe B* definieren; der Inhalt von 56) überträgt sich dann m.m.

⁶⁰b) Man könnte den Begriff der Zyklose hier noch weiter verschärfen, indem man sie erklärt als Typus der fraglichen Gemischtfolge; wir haben zwar Typen von Gemischtfolgen nicht definiert, es liegt aber auf der Hand, wie man das tun könnte. Da diese Verschärfung aber keine wesentlich neue Fragestellung nach sich zieht, unterlassen wir es, sie zu verwenden.

gischer Isomorphismus der Koeffizientenbereichfolge in bzw. auf eine andere induziert einen stetigen Homomorphismus bzw. topologischen Isomorphismus der zugehörigen Bettischen Gruppen und Zyklosen.

- d) Eine stetige bzw. topologische Abbildung der R_n -alen Folge der Räume in bzw. auf eine andere induziert einen stetigen Homomorphismus bzw. topologischen Isomorphismus der zugehörigen Bettischen Gruppen und Zyklosen.
- e) Werden bei c und d mehrere Abbildungen hintereinander ausgeführt, so setzen sich die induzierten Abbildungen wie die induzierenden zusammen.
- f) Die Bettische Gruppe und die Zyklose hängen nur ab von dem gemeinsamen Entwicklungstypus der Folgen der Räume und der Koeffizientenbereiche.

Den Beweis unterlassen wir, da er mit dem von Hauptsatz IV fast wörtlich übereinstimmt.

Hauptsatz V*: Die R_n , S_n , M_n , N_n mögen jetzt aufsteigende Folgen kompakter Räume bilden. Lassen wir nur solche R_n , S_n , M_n , N_n zu, die in ihren Limites abgeschlossene Hüllen offener Mengen darstellen, so hängen Bettische Gruppe und Zyklose (außer vom Entwicklungstypus der Koeffizientenbereiche) nur ab von den Limesräumen R, S, M, N (und ihrer gegenseitigen Lage). Ebenso hängen unter denselben Bedingungen bei einer stetigen Abbildung einer Raumfolge in eine andere die induzierten Abbildungen der bzw. Bettischen Gruppen und Zyklosen nur ab von der Abbildung der bzw. Limesräume.

Dieser Satz ergibt sich unmittelbar aus dem vorigen, denn nach dem Borelschen Überdeckungssatz müssen je zwei der zugelassenen Folgen, die dieselben Limesräume R, S, M, N erzeugen topologisch äquivalent sein.

Wenn wir jetzt von der Bettischen Gruppe oder Zyklose in sich im Kleinen kompakter 61) R, S, M, N sprechen, meinen wir immer die Bettische Gruppe oder Zyklose einer R_n -alen Folge R_n , S_n , M_n , N_n , die R, S, M, N erzeugt und den Bedingungen des Hauptsatzes V genügt. Die Definition hat dann, wie wir sahen, unabhängig von der Wahl der R_n -alen Folge einen Sinn. Sie ist auch topologisch invariant.

Liegt bei den R_n, S_n, M_n, N_n der polyederartige Fall vor (das

 $^{^{61}}$) Es ist klar, daß im Spezialfall kompakter R, S, M, N die Bettische Gruppe der früher definierten topologisch isomorph wird. Für die Zyklose gilt etwas Ähnliches, sobald man den Bemerkungen 60b) Rechnung trägt.

kann sich insbesondere dann ereignen, wenn die R, S, M, N offene Teilmengen euklidischer Räume sind), und sind die $\Gamma_n \Delta_n$ fest, so ist zwar der Grenzübergang zu $\mathfrak{B}(R_n S_n)$ mod $M_n N_n$ nur scheinbar; trotzdem aber darf man aber G_n -adische und G_n -ale Prozesse nicht vertauschen, dazu müßte man erst über ein Art Gleichmäßigkeit der polyederartigen Charakters verfügen.

43. Man kann nun wieder R_n -adische Folgen im Kleinen kompakter Räume betrachten und die Bettischen Gruppen und Zyklosen dieser Folgen ganz genauso wie in 38 definieren, nur mit dem Unterschied, daß an die Stelle der topologisch nicht invarianten $\mathfrak{B}_{\varepsilon_n\eta_n}(R_n, S_n)\ldots$ die, wie wir sahen, topologisch invarianten, Bettischen Gruppen im Kleinen kompakter Räume (nach 42) treten. Wir haben also stetige Abbildungen bzw. Homomorphismen

$$f_n^m R_m \subset R_n, \ldots, f_n^m \Gamma_m \subset \Gamma_n, \ldots,$$

die nach Hauptsatz IV stetige Homomorphismen der zugehörigen Bettischen Gruppen (im Sinne von 42) induzieren. So entsteht eine G_n -adische Gruppenfolge, deren Limes wir die Bettische Gruppe unserer Folge im Kleinen kompakter Räume nennen; ihr Erzeugungstypus heißt wieder die Zyklose 60b). Bei der Bildung dieser Bettischen Gruppe 60a) liegen drei Grenzübergänge vor:

$$\lim_{n}\lim_{l}\lim_{k}\mathfrak{B}_{\varepsilon_{k}\eta_{k}}(R_{ln}S_{ln})\text{ co }\Gamma_{kln}\Delta_{kln}\text{ mod }M_{ln}N_{ln}.$$

Hierbei sind die R_{ln}, \ldots abgeschlossene Hüllen offener Mengen in R_n, \ldots , die über l vereinigt R_n, \ldots ergeben und die $\Gamma_{kln} \Delta_{kln}$ sind dreifache Gruppenfolgem, die in dem ersten und dritten Index G_n -adisch und im zweiten Index G_n -al sind.

Hauptsatz III**, IV**: Die Hauptsätze III, IVc—f bleiben gültig, wenn man die neue Definition Bettischer Gruppen und Zyklosen (R_n -adischer Folgen im Kleinen kompakter Räume) zugrundelegt und nur Abbildungen mit kompakten Urbildern kompakter Mengen zulä βt .

Den Beweis unterlassen wir wieder, da er von dem der Hauptsätze III, IV kaum abweicht.

Man kann das Verfahren der abwechselnden Anwendung R_n -adischer und R_n -aler Prozesse natürlich beliebig weit fortsetzen, ohne daß jedoch wesentlich Neues darüber zu sagen wäre. Ist der R_n -adische Prozeß speziell eine unendliche Durchschnitts- und der R_n -ale Prozeß speziell eine unendliche Vereinigungsbildung, so kommt man auf die Art zu Bettischen Gruppen und

Zyklosen von F_{σ^-} , $F_{\sigma\delta^-}$, $F_{\sigma\delta\sigma^-}$, ... und O_{δ^-} , $O_{\delta\sigma^-}$, $O_{\delta\sigma\delta^-}$, ... Mengen. Doch hat man keine topologische Invarianz der so definierten Bettischen Gruppen und Zyklosen zu erwarten.

44. Wichtig sind die eben definierten Bettischen Gruppen und Zyklosen R_n -adischer Folgen besonders für den Fall, daß die R_n , S_n , M_n , N_n absteigende Folgen abgeschlossener Teilmengen eines festen im Kleinen kompakten Raumes bilden; insbesondere ist der Fall interessant, daß der Durchschnitt der R_n leer ist. Speziell kann man so den $Enden^{62}$) im Kleinen kompakter Räume Bettische Gruppen und Zyklosen zuordnen, wenn man von den R_n noch verlangt, daß sie abgeschlossene Hüllen offener Mengen und ihre Ränder kompakt sind.

Beachtet man, daß durch Weglassen einer abgeschlossenen Menge aus einem kompakten Raum ein im Kleinen kompakter Raum entsteht, so kann man das eben Gesagte zum Studium lokaler Eigenschaften kompakter Räume verwenden. Ist nämlich a ein Punkt von R und U_n eine Folge auf a zusammenschrumpfender Umgebungen, so liefern die zur Folge $U_n \setminus a^{63}$) $(=R_n)$ gehörende Bettische Gruppe und Zyklose eine (nach Hauptsatz IV**) topologisch invariante Eigenschaft von R im Punkte a. Oder: Liegt R in einem kompakten Raum E, ist a wieder ein Punkt von R und U_n eine auf a zusammenschrumpfende Folge von Umgebungen in E, so liefern die Durchschnitte der U_n mit E (als unsere R_n) eine Bettische Gruppe und Zyklose, die (nach Hauptsatz IV**) topologische Invarianten von E in a sind.

Man kann dies Verfahren noch mannigfach variieren, z.B. indem man die M_n noch in bestimmter Weise abnehmen läßt. Wir wollen jedoch auf diese Dinge nicht weiter eingehen.

45. In vielen Fällen werden die Zyklosen wesentlich mehr leisten als die Bettischen Gruppen oder gar die Bettischen Zahlen (d.h. die Ränge der Bettischen Gruppen). Dafür sind die Zyklosen jedoch sehr unhandlich. Es gibt aber eine arithmetische Invariante der Zyklosen, die in manchen Fällen mehr leisten kann als die

⁶²) Siehe H. FREUDENTHAL [Math. Ztschr. 33 (1931), 692—713]. Ein ähnlicher Begriff (ideal elements) findet sich bei S. Lefschetz a.a.O. ⁴⁹), Ch. VII, § 2. Recht zweckmäßig erscheint der Lefschetzsche Begriff aber nicht, denn er beruht auf der Anwendung absteigender Folgen offener Mengen, von denen weder verlangt wird, daß der Durchschnitt ihrer abgeschlossenen Hüllen leer ist (es soll der Durchschnitt der Mengen selbst leer sein), noch daß ihre Ränder kompakt sind. Schließt man nach Lefschetz den Raum durch seine Enden ab, so entsteht kein vernünftiges topologisches Gebilde.

⁶³⁾ Das Zeichen war in 43) erklärt worden.

Bettischen Gruppen; wir meinen den Rang der Zyklose, den wir die Alexandroffsche Zahl nennen ⁶⁴).

Das Rangkriterium (19) hat uns gelehrt, zu einer gegebenen Entwicklung eine topologisch isomorphe zu konstruieren, deren Rang mit dem des Typus übereinstimmt. Für die geometrischen Anwendungen ist es wichtig, zu wissen, daß die Entwicklung vom Typusrang sich auch geometrisch realisieren läßt. Das ist der Sinn der folgenden Sätze.

Wir betrachten in dieser Nr. nur absteigende (im R_n -adischen Fall) und aufsteigende (im R_n -alen Fall) Folgen R_n , S_n , M_n , N_n ; ebenso nur absteigende oder aufsteigende Koeffizientenbereichfolgen Γ_n , Δ_n .

Wo von einer Zyklose die Rede ist, verstehen wir unter ihrer *Alexandroffschen Zahl* ihren Rang (unter Berücksichtigung der Koeffizientenbereiche) ⁶⁵).

Zunächst eine Vorbemerkung: Ist $\varepsilon < \varepsilon'$, $\eta < \eta'$, $R \in R'$, $S \in S'$, $M \in M'$, $N \in N'$, $\Gamma \in \Gamma'$, $\Delta \in \Delta'$, so ist

$$\mathfrak{B}_{\varepsilon\eta}(RS)$$
 co $\Gamma\Delta \mod MN$ (+)

in $\mathfrak{B}_{\varepsilon'\eta'}(R'S')$ co $\Gamma'\Delta'$ mod N'M' (-)

auf Grund der Abbildungsprinzipien (36) durch den natürlichen Homomorphismus f abgebildet. Der stetige Homomorphismus f läßt sich in zwei Schritte zerleggen, wenn man zwischen den Gruppen (+) und (-) die Gruppe

$$f\mathfrak{B}_{\varepsilon\eta}(RS) \text{ co } \Gamma\Delta \mod MN$$
 (±)

einschaltet; der erste Schritt wird ein stetiger "Homomorphismus auf", der zweite ein topologischer "Isomorphismus in".

Diese Zerlegung läßt sich bis zu einem gewissen Grade geometrisch realisieren, wenn man zwischen (+) und (-) die Gruppe

$$\mathfrak{B}_{\varepsilon\eta'}(RS') \text{ co } \Gamma\Delta' \text{ mod } MN'$$
 (\mp)

einschaltet; auf grund der Abbildungsprinzipien (36) wird dann der erste Schritt wieder ein stetiger "Homomorphismus auf",

⁶⁴) Diese Bezeichnung haben wir gewählt, weil ähnliche Invarianten in zahlreichen Untersuchungen von P. Alexandroff (unter dem Namen Bettische Zahlen) auftreten. Die Bezeichnung "Bettische Zahlen" reserviert man besser für die Ränge der Bettischen Gruppen.

⁶⁵⁾ Man könnte natürlich unter Berücksichtigung von 60b) einen verschärften Rangbegriff für Gemischtfolgen einführen und damit den Begriff der Alexandroffschen Zahl verschärfen.

der zweite wenigstens ein stetiger "Isomorphismus in". Die Gruppe (\pm) ist also stetig isomorphes Bild der Gruppe (\mp) .

Man kann daran denken, dieselben Betrachtungen bei den Bettischen Gruppen \mathfrak{B} durchzuführen. Dieser Gedankengang braucht aber nicht zu gelingen, denn es ist keineswegs gesagt, daß der natürliche Homomorphismus von $\mathfrak{B}(RS)$ in $\mathfrak{B}(RS')$ ein "Homomorphismus auf" ist, daß also $f\mathfrak{B}(RS)$ stetig isomorphes Bild von $\mathfrak{B}(RS')$ ist. Wir haben hier nicht die Sicherheit, daß die abstrakte Zerlegung von f geometrisch realisierbar ist. Wohl wäre das der Fall, sobald wir mit \mathfrak{B}^* statt \mathfrak{B} (siehe 38, letzter Absatz) arbeiteten.

Immerhin gilt die Realisierbarkeit der Zerlegung von f noch für die \mathfrak{B} , wenn die RSMN etwa Polyeder sind, da dann \mathfrak{B} (für geeignete ε , η) mit $\mathfrak{B}_{\varepsilon\eta}$ übereinstimmt.

Wir beschäftigen uns zuerst mit R_n - G_n -adischen Folgen, wie wir sie in 38 behandelt haben, und beweisen die "Realisierbarkeit" der Alexandroffschen Zahl.

Hauptsatz VII: Zu den absteigenden Folgen $R_nS_nM_nN_n$ bzw. $\Gamma_n\Delta_n$ lassen sich homöomorphe bzw. topologisch isomorphe Folgen $R'_nS'_nM'_nN'_n$ bzw. $\Gamma'_n\Delta'_n$ finden, derart daß der Rang der G_n -adischen Folge

$$\mathfrak{B}_n' = \mathfrak{B}_{\varepsilon_n'\eta_n'}(R_n'S_n') \text{ co } \Gamma_n'\Delta_n' \text{ mod } M_n'N_n'$$

gleich der Alexandroffschen Zahl ist. Und zwar läßt sich bereits die nach dem Rangkriterium zu der Folge

$$\mathfrak{B}_n = \mathfrak{B}_{\varepsilon_n \eta_n}(R_n S_n) \ co \ \Gamma_n \Delta_n \ mod \ M_n N_n$$

bestimmte Folge (vom Typusrang) \mathfrak{B}'_n durch geeignete Wahl von R'_n , S'_n , M'_n , N'_n , Γ'_n , Δ'_n realisieren.

Bemerkung 1: Nach Hauptsatz IV darf man tatsächlich ohne Nachteil für die Zyklose die Folgen R_n, \ldots durch die Folgen R_n', \ldots ersetzen.

Bemerkung 2: Nach Hauptsatz V spielt in kompakten Räumen — und für die werden wir uns hauptsächlich interessieren — die Variabilität von R_n , S_n , M_n , N_n keine wesentliche Rolle.

Beweis von Hauptsatz VII: Die Folge \mathfrak{B}'_n (mit dem Typusrang als Rang), die aus der Folge \mathfrak{B}_n nach dem Rangkriterium (19) entsteht, sieht so aus: Nachdem eine gewisse Auswahl aus der Indexfolge getroffen war, wird $\mathfrak{B}'_n = f_n^{n+1}\mathfrak{B}_{n+1}$ gesetzt. Nach den Bemerkungen, die wir unserm Hauptsatz vorangehen ließen, wird \mathfrak{B}'_n realisiert durch

$$\mathfrak{B}'_n = \mathfrak{B}_{\varepsilon_{n+1}n_n}(R_{n+1}S_n) \text{ co } \Gamma_{n+1}\Delta_n \text{ mod } M_{n+1}N_n$$

(bis auf stetige Isomorphismen, die aber für die Berechnung des Ranges keine Rolle spielen).

Über die in 42 behandelten Folgen können wir nach der Vorbemerkung viel weniger sagen:

HAUPTSATZ VII* (speziell): Bei festen Koeffizientenbereichen läßt sich eine aufsteigende Folge von Polyedern durch eine topologisch isomorphe ersetzen, deren Rang mit der Alexandroffschen Zahl der Zyklose der Folge

$$\mathfrak{B}(R_nS_n) \bmod M_nN_n$$

übereinstimmt.

Bemerkung: Nach Hauptsatz IV* können wir tatsächlich ohne Nachteil für die Zyklose die Folge so ersetzen.

Über die in 43 behandelten Folgen können wir hier nichts sagen. Dagegen könnten wir Hauptsatz VII in vollem Umfang auf die Folgen aus 42 und 43 übertragen, wenn wir uns statt mit den \mathfrak{B} mit den \mathfrak{B}^* beschäftigten. Wir unterlassen die Formulierung ⁶⁶).

46. Was wir in der vorigen Nummer für den Rang getan haben, können wir fast ebenso für den Auftypus und den Isotypus tun.

Hauptsatz VIII, VIII* (speziell): Sind die Zyklosen der in Hauptsatz VII, VII* (speziell) behandelten Folgen vom Auf- bzw. Isotypus, so lassen sich die Folgen innerhalb ihres Typus so ersetzen, daβ die zugehörigen Folgen Bettischer Gruppen Auf- bzw. Isofolgen werden. Beim Isotypus ist jedoch etwa darauf zu achten, ob die auftretenden natürlichen Homomorphismen gebietstreu sind.

Der Beweis ergibt sich aus 45 ohneweiteres.

Beschäftigt man sich mit den B*, so kann man auch hier (wie in 45) den Gültigkeitsbereich des Hauptsatzes ausdehnen ⁶⁶).

47. Die R_n -adischen und R_n -alen Entwicklungen lassen sich gut gebrauchen, um von dem *Pontrjaginschen Dualitätssatz für Polyeder* (gelegen in der Sphäre E) auf die Verallgemeinerung für beliebige abgeschlossene Mengen (R in E) zu schließen.

R läßt sich nämlich auffassen als Durchschnitt einer abstei-

⁶⁶) Man kann natürlich neben der (abstrakten) Alexandroffschen Zahl eine geometrische einführen, die den minimalen geometrisch realisierbaren Rang angibt. Ähnlich kann man einen geometrischen Auf- bzw. Isotypus einführen. Siehe jedoch ⁵⁶).

genden Folge von Polyedern R_n und $E \setminus R$ als Vereinigung der aufsteigenden Folge $E \setminus R_n$, und auf diese Folgen kann man Folgerung 1 aus Hauptsatz V (40) bzw. Hauptsatz V* (42) anwenden.

Allgemeiner betrachten wir die R_n -adischen Folgen $R_n, \ldots, \Gamma_n^{67}$), ...,

$$f_n^m R_m \subset R_n, \ldots$$

und die R_n -alen Folgen $R^n, \ldots, \Gamma^{n 67}, \ldots$

$$R^n f_n^m \subset R^m, \ldots$$
 68)

in ihren gegenseitigen Beziehungen.

Hauptsatz IX: Ist von den Gruppen

$$\mathfrak{B}(R_n, S_n)$$
 co $\Gamma_n \Delta_n \mod M_n N_n$, $\mathfrak{B}(R^n, S^n)$ co $\Gamma^n \Delta^n \mod M^n N^n$

die erste topologisch isomorph der J-Charakteregruppe der zweiten und zwar derart, da β

$$b^n(f_n^m b_m) = (b^n f_n^m) b_m \tag{\S}$$

 $(b_m \ bzw. \ b^n \ Elemente \ der \ \mathfrak{B}(R_m, S_m)... \ bzw. \ \mathfrak{B}(R^n, S^n)...),$ so ist die Bettische Gruppe der ersten $(G_n$ -adischen) Folge topologisch isomorph der J-Charakteregruppe der Bettischen Gruppe der zweiten $(G_n$ -alen) Folge.

Ist umgekehrt von den beiden obigen Gruppen die zweite isomorph der J-Charakteregruppe der ersten und zwar derart, daß wieder (§) gilt, sind weiter die Bedingungen aus 21 erfüllt, so ist die Bettische Gruppe der zweiten Folge isomorph der J-Charakteregruppe der ersten.

Dieser Satz ergibt sich unmittelbar aus 3. und 4. Dualitätssatz (20, 21). Im zweiten Teil unserer Aussage haben wir gleich in der Voraussetzung auf den topologischen Charakter der Isomorphie verzichtet, erstens weil der 4. Dualitätssatz (21) doch keine volle Aussage über topologische Isomorphie der Limesgruppe der einen Folge mit der Charakteregruppe der Limesgruppe der andern liefert, zweitens aber — und das ist das Hauptargument — weil bei den Anwendungen der zweiten Hälfte unseres Satzes die in der Voraussetzung geforderten Isomorphien tatsächlich nur im algebraischen Sinne erfüllt sein werden.

⁶⁷⁾ Hier gilt dasselbe wie in 65) und 66).

⁶⁸) Hier ist es wieder zweckmäßig, die Stellung von Argument und Funktionszeichen und damit auch von beiden Indices zu vertauschen; siehe ²⁹).

Die Bedingung (§) wird bei unsern Anwendungen immer erfüllt sein, auch wo wir nicht explizit darauf hinweisen. Die Bildung von b^nb_n wird nämlich stets in der Weise vor sich gehen, daß einem Zyklenpaar, das b^n bzw. b_n repräsentiert, ein Element aus J zugeordnet wird (Schnittzahl, Verschlingungszahl); die betrachteten Räume werden ab-bzw. aufsteigenden Folgen bilden (die f_n^m also "Homöomorphien in" sein); für die Bildung des "Produkts" zweier Zyklen wird es dann gleichgültig sein, in welchen Raum der Folge sie vorgenommen wird. Es wird sogar bei den Anwendungen bereits eine Produktbildung $\gamma^n \gamma_n \in J$ ($\gamma^n \in \Gamma^n$, $\gamma_n \in \Gamma_n$) mit den üblichen Eigenschaften und der Beziehung

$$\gamma^n(f_n^m\gamma_m)=(\gamma^nf_n^m)\gamma_m$$

vorliegen und b^nb_n wird definiert sein durch diese Produktbildung der Koeffizientenbereiche und eine Produktbildung gewisser Zyklen co mod 0 und co mod m.

Wenn Γ , Δ , Γ^* , Δ^* , J so beschaffen sind, daß für irgendwelche Polyeder R, S, M, N der e-dimensionalen Mannigfaltigkeit E (mit den üblichen Inklusionseigenschaften) die Gruppen

$$\mathfrak{B}^d(RS)$$
 co $\Gamma \Delta \mod MN$,
 $\mathfrak{B}^{d^*}(R^*S^*)$ co $\Gamma^*\Delta^* \mod M^*N^*$ (§§)

für

$$R^* = E \setminus N^{69}$$
), $S^* = E \setminus M$, $M^* = E \setminus S$, $N^* = E \setminus R$, $d^* = e - d$

zueinander dual sind, so wollen wir $\Gamma \Delta \Gamma^* \Delta^* J$ brauchbar nennen. Dabei heißen obige Gruppen dual zueinander, wenn die zweite topologisch isomorph der J-Charakteregruppe der ersten und die erste isomorph der J-Charakteregruppe der zweiten ist und diese Beziehungen durch die Schnittgröße vermittelt werden.

Satz 2: Ist $\Gamma_n \Delta_n \Gamma_n^* \Delta_n^*$ J brauchbar 70), so ist (für beliebige abgeschlossene Mengen der e-dimensionalen Mannigfaltigkeit E) unter den Bettischen Gruppen

$$\mathfrak{B}^{d}(RS)$$
 co $\Gamma_{(n)}\Delta_{(n)}$ mod MN , $\mathfrak{B}^{d*}(R*S*)$ co $\Gamma_{(n)}^{*}\Delta_{(n)}^{*}$ mod $M*N*$

die erste topologisch isomorph der J-Charakteregruppe der zweiten und unter den Bedingungen von 21 auch die zweite isomorph der

⁶⁹⁾ Wegen des Zeichens \ siehe 43).

⁷⁰) Diese Forderung braucht natürlich nur an den Typus der Folgen von Koeffizientenbereichen gestellt zu werden.

J-Charakteregruppe der ersten; beide Gruppen sind dann dual zueinander.

(Unmittelbare Folge aus Hauptsatz VI.)

Besteht für $\Gamma_n \Delta_n \Gamma_n^* \Delta_n^* J$ bei beliebigen abgeschlossenen R, S, M, N aus E die in Satz 2 ausgesprochene Dualität, so wollen wir $\Gamma_n \Delta_n \Gamma_n^* \Delta_n^* J$ sehr brauchbar nennen. Sehr brauchbar sind z.B. für J = mod 1 die kompakten $\Gamma_n = \Delta_n$, wenn $\Delta_n^* = \Gamma_n^*$ die zugehörigen diskreten Charakteregruppen mod 1 sind; ferner z.B. $\Gamma_n = \Delta_n = \Delta_n^* = \Gamma_n^* = J = \text{rat.}$

Satz 2 läßt sich nun auch so aussprechen: Sind die Bedingungen aus 21 erfüllt, so sind brauchbare Bestimmungsstücke auch sehr brauchbar.

Weiß man nichts über die Brauchbarkeit der Bestimmungsstücke, so kann man immerhin noch behaupten:

Satz 3: Ist E die Sphäre und genügen die Δ_n^* der Bedingung (**) aus 22, so ist $\mathfrak{B}(R^*S^*)$ co $\Gamma_n^*\Delta_n^*$ mod M^*N^* sowie die zugehörige Zyklose eine innere topologische Invariante des Systems R, S, M, N.

Dieser Satz ergibt sich mit denselben Methoden, die Verf. anderwärts ⁷¹) entwickelt hat. Dabei hat man nur darauf zu achten, daß auch der topologische Charakter der Bettischen Gruppe und Zyklose invariant bleiben, und das geschieht mit (*) und (**).

Aus Satz 2 kann man in bekannter Weise auf die Dualitätssätze Jordanscher Art schließen. Die Randbildung induziert nämlich einen stetigen Homomorphismus von $\mathfrak{B}^d_{\varepsilon\eta}(RS)$ co $\Gamma\Delta$ mod MN in $\mathfrak{B}^{d-1}_{\varepsilon\eta}(MN)$ co $\Gamma\Delta$: Der Rand eines ε -Zyklus aus R mod M ist ein ε -Zyklus z' aus M; dadurch wird zunächst $\mathfrak{F}^d_{\varepsilon}(R)$ co Γ mod M stetig homomorph in $\mathfrak{F}^{d-1}_{\varepsilon}(M)$ co Γ abgebildet. Gehört z zu $\mathfrak{F}^d_{\varepsilon\eta}(RS)$ co $\Gamma\Delta$ mod MN, ist also $z=k'+\mathfrak{R}(k)$ $(k \in S, k' \in N)$, so ist $z'=\mathfrak{R}(k')$, also z' in $\mathfrak{F}^{d-1}_{\varepsilon\eta}(MN)$ co $\Gamma\Delta$. Das gibt also wirklich einen stetigen Homomorphismus obiger Bettischer Gruppen. Wir brauchen aber mehr:

Hilfssatz: Der durch die \mathfrak{R} andbildung induzierte stetige Homomorphismus von $\mathfrak{B}^d_{\varepsilon\eta}(RS)$ co $\Gamma\Delta$ mod MN in $\mathfrak{B}^{d-1}_{\varepsilon\eta}(MN)$ co $\Gamma\Delta$ ($\varepsilon<\eta$) ist gebietstreu, sobald in S die Randbildung ein gebietstreuer Homomorphismus ist — und das ist z.B. der Fall, wenn S eine Vollkugel ist. In der Tat ist wegen der Voraussetzung über die Gebietstreue der Homomorphismus der Zyklengruppen gebietstreu, also auch der der Faktorgruppen. Die Voraussetzung

⁷¹) Compositio Math. 2 (1935), 163-176.

der Gebietstreue kommt darauf hinaus, daß in R jeder Zyklus vom absoluten Betrage $\subset P$, der überhaupt berandet, auch einen Komplex vom absoluten Betrage $\subset O$ berandet (O vorgegeben, P zu bestimmen, beide offen); in der Vollkugel folgt das ohneweiteres aus (*), siehe 22^{72}).

Satz 4: Ist R eine abgeschlossene Teilmenge der Mannigfaltigkeit E, sind $\Gamma_n \Delta_n \Gamma_n^* \Delta_n^* J$ sehr brauchbar, und bedeutet die Anhängung eines Sternes an Mengen die Bildung des Komplementes in E, so sind

$$\mathfrak{B}^d(R \wedge U, R \wedge V)^{-73}) \tag{a}$$

und

$$\mathfrak{B}^{d^*-1}(R^*R^*) \bmod V^* \wedge R^*, \ U^* \wedge R^* \tag{\beta}$$

zueinander dual 74), falls U und V abgeschlossene Vollkugeln aus E sind, und ebenso

$$\mathfrak{B}^d(RR) \bmod R \setminus V, R \setminus U$$

und

$$\mathfrak{B}^{d^*-1}(R^* \wedge U, R^* \wedge V),$$

falls U und V offene Vollkugeln aus E sind.

Beweis: Aus der Tatsache, daß U und V Vollkugeln sind und aus Hilfssatz 1 folgert man in bekannter Weise, daß (α) zu $\mathfrak{B}^{d^*-1}(UV)$ mod $R \wedge U$, $R \wedge V$ topologisch isomorph zu ist. Fügt man hier zu den Mengen $R \setminus U$ bzw. $R \setminus V$ zu, so erhält man aus der letzten Gruppe die im wesentlichen mit ihr übereinstimmende $\mathfrak{B}^{d^*-1}(U \vee R, V \vee R)$ mod RR; die ist aber nach Satz 3 dual mit (β). Damit ist die erste Behauptung bewiesen, die zweite ergibt sich ganz ähnlich.

Aus diesem Satz ergibt sich speziell:

SATZ 5: Wenn die $\Gamma_n \Delta_n \Gamma_n^* \Delta_n^* J$ sehr brauchbar sind (insbesondere also, wenn sie brauchbar sind und die Bedingungen aus 21 erfüllt sind), gilt für eine abgeschlossene Teilmenge der Sphäre der Duali-

 $^{^{72}}$) Man braucht nämlich nur das gegebene z zu ersetzen durch ein z', das aus z durch eine ϑ -Verrückung $(\vartheta = \frac{1}{2}(\eta - \varepsilon))$ entsteht, und dessen Ecken in einer festen (nur von ε , η abhängigen endlichen Menge liegen. Die Homologie von z und z' läßt sich dann durch einen Komplex bewerkstelligen, dessen absoluter Betrag ein gewisses festes (nur von der Dimension der Sphäre abhängiges) Vielfaches von |z| nicht überschreitet, und für die Nullhomologie von z' braucht man nur einen Komplex, dessen absoluter Betrag sich durch |z'| und die feste endliche Menge in einfacher Weise abschätzen läßt.

⁷³) Wegen der hier verwendeten Zeichen siehe ⁴³).

⁷⁴) Die Dualität wird hier natürlich durch Verschlingungszahlen bewerkstelligt.

tätssatz in bezug auf die Bettischen Gruppen der Dimensionen d und d^*-1 ^{74a}).

48. Man darf erwarten, weitergehende Dualitätsaussagen machen zu dürfen, wenn man sich statt mit den Bettischen Gruppen mit den Alexandroffschen Zahlen beschäftigt.

Wir nennen $\Gamma_n \Delta_n \Gamma_n^* \Delta_n^* J$ brauchbar (A) bzw. sehr brauchbar (A), wenn für alle Polyeder bzw. abgeschlossene Mengen R, S, M, N der Mannigfaltigkeit E die Ränge der Gruppen

(siehe 45) übereinstimmen. Das wird bei den meisten Koeffizientenbereichen der Fall sein, sobald sie brauchbar bzw. sehr brauchbar im früheren Sinne sind.

SATZ 2': Sind $\Gamma_n \Delta_n \Gamma_n^* \Delta_n^*$ J brauchbar (A), so stimmen die Alexandroffschen Zahlen dualer Dimensionen für RSMN und R*S*M*N* überein.

Beweis: Nach Hauptsatz VII (45) darf man die absteigenden Polyederfolgen $R_nS_nM_nN_n$ (mit den Limites RSMN) und die Koeffizientenbereiche so wählen, daß der Rang der Folge

$$\mathfrak{B}^d(R_nS_n)$$
 co $\Gamma_n\Delta_n \mod M_nN_n$

mit ihrer Alexandroffschen Zahl p übereinstimmt. Wegen der Voraussetzung über die Brauchbarkeit ist der Rang der Folge

$$\mathfrak{B}^d(R_n^*S_n^*)$$
 co $\Gamma_n^*\Delta_n^*$ mod $M_n^*N_n^*$

gleich \mathfrak{p} , ihre Alexandroffsche Zahl \mathfrak{p}' also sicher nicht größer als \mathfrak{p} . Ebenso beweist man nach Hauptsatz VII* die umgekehrte Ungleichheit, womit unser Satz bewiesen ist.

Ebenso beweist man die Sätze:

Satz 3': In der Sphäre E ist die Alexandroffsche Zahl von R*S*M*N* co $\Gamma\Delta$ eine innere topologische Invariante von RSMN.

SATZ 4': Sind R, U, V, R*, U*, V* wie in Satz 4 definiert und $\Gamma_n \Lambda_n \Gamma_n^* \Lambda_n^*$ J brauchbar (A), so stimmen die Alexandroffschen Zahlen

 $\mathfrak{p}^d(R \wedge U, R \wedge V)$ co $\Gamma \Delta$ und $\mathfrak{p}^{d^*-1}(R^*R^*)$ mod $V^* \wedge R^*, U^* \wedge R^*$ co $\Gamma^* \Delta^*$

 $^{^{74}a}$) Mit der üblichen Abweichung für die Dimension Null, die wir hier und später nie ausdrücklich erwähnen. Diese Abweichung läßt sich übrigens leicht vermeiden, wenn man bei der Definition von Bettischen Gruppen stets fordert, daß M nichtleer ist.

⁷⁵⁾ Wegen der Bezeichnungen siehe 47 §§.

überein, ebenso

 $\mathfrak{p}^d(RR) \bmod R \setminus V$, $R \setminus U$ co $\Gamma \Delta$ und $\mathfrak{p}^{d^*-1}(R^* \wedge U, R^* \wedge V)$ co $\Gamma \Delta$.

Sind die $\Gamma_n \Delta_n \Gamma_n^* \Delta_n^* J$ sehr brauchbar (A), so gilt diese Gleichheit auch für die Bettischen Zahlen ⁷⁶).

- SATZ 5': Sind die $\Gamma_n \Delta_n \Gamma_n^* \Delta_n^*$ J brauchbar (A), so stimmen die Alexandroffschen Zahlen dualer Dimensionen einer abgeschlossenen Teilmenge der Sphäre und ihres Komplementes überein; sind sie sehr brauchbar (A), so gilt diese Gleichheit auch für die Bettischen Zahlen.
- 49. Was wir in 48 mit der Alexandroffschen Zahl getan haben, können wir ebenso gut mit dem Auftypus und Isotypus tun. Statt Realisierbarkeitssätzen können wir hier aber den 6. Dualitätsatz (21a) verwenden. Wir wollen uns damit begnügen, das Analogen zu Satz 5' zu formulieren:

SATZ 5": Sind die $\Gamma_n \Delta_n \Gamma_n^* \Delta_n^*$ J brauchbar, und ist die Zyklose der abgeschlossenen Menge R der Sphäre vom Auf-bzw. Isotypus, so ist die von $E \setminus R$ vom Iso- bzw. Auftypus; ist unter denselben Bedingungen die Zyklose von $E \setminus R$ vom Auf- bzw. Isotypus, so ist die von R vom Iso- bzw. Auftypus. Beim Schluß vom Isotypus auf den Auftypus hat man jedoch darauf zu achten, daß die Fortsetzungsbedingung erfüllt ist.

Die Fortsetzungsbedingung ist sicher erfüllt, wenn $\Gamma_n = \Delta_n$ kompakt sind und J = mod 1 ist. Übrigens ist dann die Zyklose von R vom Auftypus, die Zyklose von $E \setminus R$ (co abzählbaren diskreten $\Gamma_n^* = \Delta_n^*$) also vom Isotypus.

Ferner ist die Fortsetzungsbedingung erfüllt bei $\Gamma_n = \Delta_n$ = J = rat. Die Zyklose von R ist dann übrigens vom Isotypus, die von $E \setminus R$ (co rat) also vom Auftypus.

Analog zu einer Bezeichnungsweise von Alexandroff darf man wohl im Falle des Isotypus von Kondensationsfreiheit, im Falle des Auftypus von Erreichbarkeit sprechen.

50. Die Folgen von Räumen, mit denen wir uns in 43 beschäftigt haben, sind in unsern Dualitätsbetrachtungen noch nicht aufgetreten. Wie in 44 bereits angedeutet wurde, werden sie bei Untersuchungen im Kleinen eine Rolle spielen.

Wir wollen also Bettische Gruppen, Zyklosen und Alexandroffsche Zahlen im Kleinen definieren. Wir werden das auf zwei verschiedene Arten tun, die wir als erster Art und zweiter Art unterscheiden (bzw. durch Anhängen des Index 1 und 2).

⁷⁶) Definiert als Ränge der Bettischen Gruppen.

R sei jetzt stets eine abgeschlossene Teilmenge der Mannigfaltigkeit E und a ein Punkt von R. U_n sei eine absteigende Folge von Kugelumgebungen von a in E mit a als Durchschnitt, ebenso V_n ; $U_n \,\subset V_n$. $R^* = E \setminus R$. $U_n^* = E \setminus U_n$, $V_n^* = E \setminus V_n$.

Zum Studium der Eigenschaften von R im Kleinen betrachten wir die $(G_n$ -adische) Folge erster Art

$$\mathfrak{B}(R \wedge \overline{U}_n, R \wedge \overline{V}_n) \text{ co } \Gamma_n \Delta_n^{77})$$

und die $(G_n$ -ale) Folge zweiter Art

$$\mathfrak{B}(RR)$$
 co $\Gamma_n \Delta_n \mod R \setminus V_n$, $R \setminus U_n$.

Zum Studium der Eigenschaften von $E \setminus R$ im "unendlich Großen" betrachten wir die $(G_n$ -adische) Folge erster Art

$$\mathfrak{B}(R^*{\scriptstyle \wedge} U_n,\, R^*{\scriptstyle \wedge} V_n)$$
 co $\varGamma_n^*\varDelta_n^*$

und die $(G_n$ -ale) Folge zweiter Art

$$\mathfrak{B}(R^*R^*)$$
 co $\Gamma_n^*\Delta_n^*$ mod $R^*\wedge \overline{V}_n^*$, $R^*\wedge \overline{U}_n^*$.

Die zugehörigen Limesgruppen, Entwicklungstypen und deren Ränge nennen wir Bettische Gruppen, Zyklosen und Alexandroffsche Zahlen im Kleinen, $\mathfrak{B}(a;R)$, $\mathfrak{C}(a;R)$, $\mathfrak{p}(a;R)$ bzw. $\mathfrak{B}(a;R^*)$, $\mathfrak{C}(a;R^*)$, $\mathfrak{p}(a;R^*)$ (noch unterschieden durch die Indices 1 und 2). Aus Hauptsatz IV* und IV** folgt, daß sie von der speziellen Wahl der Folgen U_n , V_n nicht abhängen (insbesondere darf man $U_n = V_n$ setzen 77a), und bei topologischen Abbildungen von R bzw. E unverändert bleiben.

Die Hauptsätze V und V* lehren uns, daß $\mathfrak{B}_1(a;R)$ und $\mathfrak{B}_2(a;R^*)$ uninteressant sind; die eine ist nämlich gleich Bettischen Gruppe der einpunktigen Menge (a), also in null Dimensionen eine freie Gruppe einer Erzeugenden und sonst (0); die andere ist die Bettische Gruppe von R^* mod R^* , also immer (0). Deswegen brauchen aber die zugehörigen Zyklosen und Alexandroffschen Zahlen keineswegs uninteressant zu sein.

51. Satz 6: Ist $\Gamma_{kn}\Delta_{kn}\Gamma_{kn}^*\Delta_{kn}^*$ J für jedes n sehr brauchbar, so ist $\mathfrak{B}_1^{d^*-1}(a;R^*)$ isomorph der J-Charakteregruppe von $\mathfrak{B}_2^d(a;R)$ und, falls die Bedingungen aus 21 erfüllt sind, auch umgekehrt.

Der Satz folgt unmittelbar aus Hauptsatz IX und Satz 4 (47). Aus Satz 3 (47) schließt man, indem man $U_n = V_n$ setzt:

⁷⁷) Siehe hierzu ⁶⁵) und ⁶⁶).

 $^{^{77}a})$ Es ist also ganz gleichgültig, ob man mit $\mathfrak B$ oder $\mathfrak B^*$ (letzter Absatz von $^{38}))$ arbeitet.

Satz 7: Genügen die $\Delta_{kn}\Delta_{kn}^*$ der Bedingung (**) aus 22, so sind $\mathfrak{B}_2(a; R^*)$, $\mathfrak{C}_1(a; R^*)$, $\mathfrak{C}_2(a; R^*)$ innere topologische Invarianten von R.

52. Satz 6': Sind die $\Gamma_{kn}\Delta_{kn}\Gamma_{kn}^*\Delta_{kn}^*$ J sehr brauchbar, so gilt für die Alexandroffschen Zahlen, falls sie realisierbar sind,

$$\mathfrak{p}_1^d(a; R) = \mathfrak{p}_1^{d^*-1}(a; R^*),$$

 $\mathfrak{p}_2^d(a; R) = \mathfrak{p}_2^{d^*-1}(a; R^*).$

Dieser Satz wird genauso wie Satz 2' (48) bewiesen; nur wird hier Hauptsatz VII* und VII** (45) verwendet.

Folgerung: Verschwindet $\mathfrak{p}_1^d(a;R)$, so verschwindet unter den Voraussetzungen des Satzes auch $\mathfrak{p}_2^{d^*-1}(a;R^*)$ und umgekehrt.

Diese Folgerung ist deswegen interessant, weil $\mathfrak{p}_1^d(a;R) = 0$ nichts Anderes ist als der Zusammenhang im Kleinen von R im Punkte a, wie aus Hauptsatz VII und VII* ohne weiteres folgt. Man könnte die dazu duale Relation im Außenraum mit demselben Namen belegen.

Satz 7': Unter den Bedingungen von Satz 7 sind

$$\mathfrak{p}_{1}^{d^{*}-1}(a; R^{*}) \ und \ \mathfrak{p}_{2}^{d^{*}-1}(a; R^{*})$$

innere topologische Invarianten von R.

Das ist analog Satz 7 zu beweisen.

53. Schließlich können wir noch die Dualitätseigenschaften des Auf- und des Isotypus untersuchen.

SATZ 6": $\Gamma_{kn}\Delta_{kn}\Gamma_{kn}^*\Delta_{kn}^*$ J mögen sehr brauchbar sein. Die Koeffizientenbereiche mögen auf und absteigende Folgen bilden. Ist dann $\mathfrak{C}_2^d(a;R)$ vom Auf- bzw. Isotypus, so ist $\mathfrak{C}_1^{d^*-1}(a;R^*)$ vom Iso- bzw. Auftypus, und umgekehrt (aber dann rein algebraisch). Ist $\mathfrak{C}_2^{d^*-1}(a;R^*)$ vom Auf-bzw. Isotypus, so ist $\mathfrak{C}_1^d(a;R)$ vom Isobzw. Auftypus, und umgekehrt (aber dann rein algebraisch). Beim Schluß vom Isotypus auf den Auftypus hat man jedoch darauf zu achten, daß die Fortsetzungsbedingung erfüllt ist.

Der Beweis ist nach dem Vorangehenden klar; man verwendet den 6. Dualitätssatz (21a).

Ist $\mathfrak{C}_1(a; R)$ gleichzeitig vom Auf- und Isotypus, so sind wir wieder bei Satz 6' angelangt, d.h. $\mathfrak{p}_1(a; R)$ verschwindet.

Ist $\mathfrak{C}_2(a;R)$ vom Isotypus, so haben wir das, was P. Alexandroff ^{77b} Kondensationsfreiheit in a nennt; ist $\mathfrak{C}_2(a;R^*)$ vom Auftypus, so haben wir das, was er Erreichbarkeit in a nennt. ^{77c})

⁷⁷b) Annals of Math. (2) 36 (1935), 1—35.

^{77c}) Realisierbarkeit vorausgesetzt (die aber für die von Alexandroff behandelten Koeffizientenbereiche vorliegen dürfte).

54. Wir wollen hier noch eine etwas speziellere Betrachtung anknüpfen.

Wir setzen voraus, daß $\mathfrak{C}_2^d(a;R)$ für alle a gleichmäßig vom Auf- und Isotypus ist. Das soll heißen: Zu jedem $a \in R$ lassen sich Umgebungen U_a und V_a , $U_a \in V_a$, folgendermaßen bestimmen: zu jedem $b \in U_a$ gibt es beliebig kleine Umgebungen U' und V', $U' \in V'$, $U' \in U_a$, $V' \in V_a$, derart daß der natürliche Homomorphismus von

$$\mathfrak{B}_2^d(RR) \bmod R \setminus V_a$$
, $R \setminus U_a$ in $\mathfrak{B}_2^d(RR) \bmod R \setminus V'$, $R \setminus U'$ ein topologischer "Isomorphismus auf" ist.

Diese beiden Gruppen sind dann natürlich in wohlbestimmter Weise topologisch isomorph mit $\mathfrak{B}_2^d(a;R)$, und, sobald R zusammenhängend ist, sind auch die $\mathfrak{B}_2^d(a;R)$ für alle a untereinander topologisch isomorph. Wir werden nun zeigen, daß sich diese ganz abstrakten Isomorphien der $\mathfrak{B}_2^d(a;R)$ untereinander in ganz bestimmter Weise konkretisieren lassen: wir werden eine im Kleinen eindeutige Übertragung der $\mathfrak{B}_2^d(a;R)$ längs R konstruieren.

Seien a_1 und a_2 zwei Punkte und U_{a_1} , V_{a_1} , U_{a_2} , V_{a_2} , die zugehörigen Umgebungen entsprechend der Voraussetzung! Wenn U_{a_1} und U_{a_2} einen Punkt b gemeinsam haben, so kann es vorkommen, daß die zu b in seiner Eigenschaft als Punkt von U_{a_1} gehörenden U_1' , V_1' verschieden sind von den zu b in seiner Eigenschaft als Punkt von U_a gehörenden U_2' , V_2' . Wir zeigen aber, daß, wenn überhaupt $U_2' \subset U_{a_1}$ und $V_2' \subset V_{a_1}$ ist, sich U_1' , U_2' im Sinne der Voraussetzung auch als Umgebungen von b in seiner Eigenschaft als Punkt von U_{a_1} eignen, d.h. daß auch der natürliche Homomorphismus von

$$\mathfrak{B} \bmod R \diagdown V_{a_1}, \, R \diagdown U_{a_1} \text{ in } \mathfrak{B} \bmod R \diagdown V_2', \, R \diagdown U_2'$$
78)

ein topologischer "Isomorphismus auf" ist.

Wir betrachten die Gruppen

$$\begin{split} \mathfrak{B}_{\boldsymbol{\nu}} &= \mathfrak{B} \bmod R \diagdown V_{a_{\boldsymbol{\nu}}}, \ R \diagdown U_{a_{\boldsymbol{\nu}}}, \quad \boldsymbol{\nu} = 1, \, 2, \, 3, \, 4, \\ \mathfrak{B}_{\boldsymbol{\nu}}' &= \mathfrak{B} \bmod R \diagdown V_{\boldsymbol{\nu}}', \quad R \diagdown U_{\boldsymbol{\nu}}', \quad \boldsymbol{\nu} = 1, \, 2, \, 3, \, 4. \end{split}$$

Dabei soll $U_3' \subset U_1' \wedge U_2'$, $V_3' \subset V_1' \wedge V_2'$, $U_3' \subset V_3'$ und $U_4' \subset U_3'$, $V_4' \subset V_3'$, $U_4' \subset V_4'$ sein. Ferner soll, was sich auf Grund der Voraussetzung erreichen läßt, der natürliche Homomorphismus von \mathfrak{B}_1 in \mathfrak{B}_3' ein topologischer "Isomorphismus auf" sein, ebenso der von \mathfrak{B}_2

⁷⁸⁾ Wir lassen bequemlichkeitshalber das Argument RR usw. weg.

in \mathfrak{B}_{4}' . Dieselbe Eigenschaft haben bereits die von \mathfrak{B}_{1} in \mathfrak{B}_{1}' und von \mathfrak{B}_{2} in \mathfrak{B}_{2}' . Dann ist auch der Übergang von \mathfrak{B}_{1}' zu \mathfrak{B}_{3}' und ebenso der von \mathfrak{B}_{2}' zu \mathfrak{B}_{4}' ein topologischer "Isomorphismus auf" (also überhaupt alle Übergänge, bei denen sich die Parität des Index nicht ändert).

Nun ist der natürliche Homomorphismus von \mathfrak{B}_2' in \mathfrak{B}_3' wegen

$$\mathfrak{B}_{2}^{\prime}\rightarrow\mathfrak{B}_{3}^{\prime}\rightarrow\mathfrak{B}_{4}^{\prime}$$

ein stetiger "Isomorphismus in" und wegen

$$\mathfrak{B}_1 \to \mathfrak{B}_2' \to \mathfrak{B}_3'$$

ein stetiger "Homomorphismus auf", also ein stetiger "Isomorphismus auf". Dann ist weiter der Übergang von \mathfrak{B}_1 zu \mathfrak{B}_2' wegen

$$\mathfrak{B}_1 \to \mathfrak{B}_2' \to \mathfrak{B}_3'$$

ein stetiger "Isomorphismus in" und wegen

$$\mathfrak{B}_{2}^{\prime} \rightarrow \mathfrak{B}_{3}^{\prime} \rightarrow \mathfrak{B}_{1}^{\prime}$$

ein topologischer "Isomorphismus auf", was wir beweisen wollten.

Nach dem Überdeckungssatz dürfen wir annehmen, daß unter den Paaren U_a , V_a der Voraussetzung nur endlich viel verschiedene auftreten.

Wir betrachten nun das System aller Paare U', V' gemäß der Voraussetzung. Wir dürfen dann annehmen, daß sie alle so klein gewählt sind, daß für je zwei Paare U'_1 , V'_1 , U'_2 , V'_2 mit nichtleerem $U'_1 \wedge U'_2$ ein Paar U_a , V_a existiert mit $U_a \supset U'_v$, $V'_a \supset V'_v$ (v=1,2).

Für je zwei Punkte a und b eines selben U' können wir einen topologischen Isomorphismus von

$$\mathfrak{B}_2(a; R)$$
 auf $\mathfrak{B}_2(b; R)$

erklären, der durch den identischen Isomorphismus von

$$\mathfrak{B} \mod R - V'$$
, $R - U'$

auf sich induziert sei. Wir bezeichnen den definierten Isomorphismus symbolisch mit ba^{-1} . Seine Umkehrung ist übrigens ab^{-1} .

Wir zeigen, daß ba^{-1} (außer von dem System U', V') nur von den Punkten a, b abhängt. Seien nämlich U'_1, V'_1, U'_2, V'_2 zwei Paare, für die beide $a, b \in U'_v$ (v = 1, 2) gilt! Dann könnte ba^{-1} verschieden aussehen, je nachdem für welches Paar U'_v, V'_v es berechnet wird. Das ist aber nicht der Fall, denn es gibt dann ja ein Paar U_c , V_c mit $U_c \supset U'_v$, $V_c \supset V'_v$, und aus der Bedeutung

der U, U', V, V' folgt, daß ba^{-1} sich auch induzieren läßt durch den identischen Isomorphismus von

$$\mathfrak{B} \mod R - V_c$$
, $R - U_c$,

also unabhängig von v.

 ba^{-1} hängt aber auch von der etwas willkürlichen Wahl des Systems der U', V' nicht ab. Man darf nämlich, wenn zwei verschiedene solche Systeme vorliegen, voraussetzen, daß jedes Paar U', V' des einen ganz in einem geeigneten Paar des anderen liegt, und für diesen Fall ist diese Unabhängigkeit evident.

Ist R zusammenhängend, so können wir nach dem Überdekkungssatz eine endliche Kette $a=a_0,\,a_1,\,\ldots,\,a_k=b$ zwischen je zwei Punkten a und b finden, so daß je zwei aufeinanderfolgende Punkte in einem selben U' liegen. Wir setzen dann $ba^{-1}=(a_ka_{k-1}^{-1})(a_{k-1}a_{k-2}^{-1})\ldots(a_1a_0^{-1})$. Für je zwei Punkte a,b ist dann ba^{-1} als topologischer Isomorphismus von

$$\mathfrak{B}_2(a; R)$$
 auf $\mathfrak{B}_2(b; R)$

definiert. Diese Definition ist, wie man ohne weiteres sieht, topologisch invariant. Aber natürlich ist sie im Allgemeinen nicht wegunabhängig, aber gerade das macht sie interessant. Besonders interessant sind die Automorphismen, die $\mathfrak{B}_2^d(a;R)$ erfährt, das sind die Produkte $(aa_{k-1}^{-1})(a_{k-1}a_{k-2}^{-1})\dots(a_1a^{-1})$. Diese Automorphismen sind dann (und im Allgemeinen und Wesentlichen nur dann) die identischen, wenn alle a_{\varkappa} der Kette mit a im selben U' liegen.

SATZ 8: Ist R kompakt und zusammenhängend und $\mathbb{G}_2^d(a;R)$ gleichmäßig vom Auf- und Isotypus, so gibt es in R eine wohlbestimmte im Kleinen eindeutige topologisch isomorphe Übertragung der $\mathfrak{B}_2^d(a;R)$. Jedem Punkt a von R wird durch diese Übertragung eine Gruppe von Automorphismen von $\mathfrak{B}_2^d(a;R)$ zugeordnet, die "Orientierungsgruppe" 79) d-ter Dimension von R, die bis auf Isomorphismen von a unabhängig und ein homomorphes Bild der Wegegruppe von R ist.

Die letzte Aussage werden wir in 57, wo wir uns mit der Wegegruppe beschäftigen, erläutern.

Dasselbe, was wir soeben mit $\mathfrak{B}_2^d(a; R)$ getan haben, können wir natürlich fast wörtlich ebenso mit $\mathfrak{B}_1^d(a; R^*)$ tun. Die Forderung der Gleichmäßigkeit wird auch fast genauso formuliert. Wir haben dann

⁷⁹) Sinngemäßer, aber umständlicher wäre "Nichtorientierbarkeitsgruppe".

Satz 9: Ist R abgeschlossene Teilmenge der Mannigfaltigkeit E und zusammenhängend, so gibt es in R eine wohlbestimmte im Kleinen eindeutige topologisch isomorphe Übertragung der $\mathfrak{B}_1^d(a; R^*)$ mit denselben Eigenschaften wie die Übertragung aus Satz 8. Die zugehörige Gruppe heißt die "Einseitigkeitsgruppe" von R.

SATZ 10: Sind $\Gamma \Delta \Gamma^* \Delta^* J$ sehr brauchbar und ist die Fortsetzungsbedingung erfüllt, so ist mit $\mathfrak{C}_1^d(a;R^*)$ auch $\mathfrak{C}_2^d(a;R)$ gleichmäßig vom Auf- und Isotypus und umgekehrt (rein algebraisch). Orientierungsgruppe d-ter Dimension und Einseitigkeitsgruppe (d^*-1) -ter sind dann isomorph. Unter noch allgemeinereren Voraussetzungen (siehe 47, Satz 3) ist die Einseitigkeitsgruppe jedenfalls eine innere topologische Invariante von R.

Der Beweis des Satzes ist nach dem Früheren klar.

Ist R eine Mannigfaltigkeit der Dimension d, so ist die Voraussetzung der Gleichmäßigkeit des Auf- und Isotypus natürlich immer erfüllt. Interessant ist dann die Orientierungsgruppe d-ter Dimension und die entsprechende Einseitigkeitsgruppe (beide sind dann sicher isomorph). Diese Gruppen sind, wie man leicht sieht, direkte Produkte von Gruppen der Ordnung 2. Einseitigkeit (Nichtorientierbarkeit) bzw. einseitige Lage äußern sich dann durch das Nichtverschwinden dieser Gruppen. Insbesondere zeigt Satz 10, daß eine orientierbare Mannigfaltigkeit in E niemals einseitig liegen kann.

- 55. Ganz kurz bemerken wir noch im Anschluß an 43, daß man ohne Mühe auch Dualitätssätze für F_{σ} -, $F_{\sigma\delta}$ -, $F_{\sigma\delta\sigma}$ -... und O_{δ} -, $O_{\delta\sigma}$ -, $O_{\delta\sigma\delta}$ -, ...-Mengen angeben kann. Wir wollen sie aber nicht explizit formulieren.
- 56. Noch garnicht beschäftigt haben wir uns mit den Bettischen Gruppen unendlicher Polyeder, die zich von unsern dadurch unterscheiden, daß als Komplexe auch unendliche Linearformen zugelassen sind. Es hat auch nicht den Anschein, als ob sich diese Gruppen aus den bisher untersuchten ohneweiteres ableiten ließen. Dagegen ist es natürlich möglich, einen großen Teil unserer Hauptsätze auch für diese Gruppen auszusprechen. Wir beschränken uns auf die Definition und einige kurze Angaben.

Wir können gleich etwas allgemeiner verfahren: Wir betrachten einen im Kleinen kompakten Raum, definieren das abstrakte Simplex wie in 35 und einen Komplex als eine unendliche Linearform ⁸⁰), deren Ecken sich nirgends häufen. Die andern Begriffe

⁸⁰⁾ Wir folgen hier S. LEFSCHETZ a.a.O. 49), Ch. VII.

aus 35 werden wesentlich genauso übernommen. Das früher definierte $\mathfrak{B}_{\varepsilon\eta}$ ist in kompakten Räumen ein Spezialfall des nun definierten, da wegen des Sich-Nichthäufens der Ecken doch keine unendlichen Linearformen auftreten können. Man kann nun Bettische Gruppen usw. von R_n -adischen Folgen usw. definieren, hat aber darauf zu achten, daß bei allen Abbildungen die Urbildmenge jeder kompakten Teilmenge kompakt sein muß. Die Abbildungsprinzipien (36), Hauptsatz III, IV (39), III*, IV* (42), VII, VIII*, VIII, VIII* (45) und die Betrachtungen über die Enden (44) lassen sich ohne weiteres übertragen. Wir verzichten auf die explizite Formulierung.

57. Schließlich bleibt uns noch als wichtiges Anwendungsgebiet der allgemeinen Theorie die Wegegruppe.

Ein ε -Weg in R mod M ist eine endliche Kette von Punkten in R, die im Abstande $\leq \varepsilon$ aufeinanderfolgen und deren erster und letzter in M liegen. Ein ε -Weg mod M heißt η -nullhomotop rel S mod N, wenn eine endliche Punktmenge a_{kl} in S existiert, die für jedes feste l einen ε -Weg mod M darstellt, für l=0 den gegebenen Weg und für ein geeignetes l einen Weg aus N; dabei sollen aber a_{kl} und $a_{k,l+1}$ um höchstens η auseinander liegen. Multiplikation und Division von Wegen werden wie üblich erklärt. Ebenso die ε - η -Wegegruppe, die wir diskret topologisieren und

$$\mathfrak{W}_{\varepsilon n}(RS) \mod MN$$

nennen.

Nun lassen sich Wegegruppen, Wegezyklosen, Alexandroffsche Zahlen R_n -adischer und R_n -aler Folgen und fester Räume, Wege-Orientierungsgruppen usw. einführen, überhaupt lassen sich alle Betrachtungen von 35-54 (einschließlich 54!) fast wörtlich wiederholen (natürlich mit Ausnahme der Dualitätsuntersuchungen).

Die übliche speziellere Definition der Wegegruppe ergibt sich aus unserer als W(RR) mod aa (wo a ein Punkt ist).

Auf etwas möchten wir noch hinweisen, um Mißverständnissen vorzubeugen. Wenn das kompakte R in eine R_n -adische Folge von Polyedern R_n entwickelt ist, so hat man analog zu Hauptsatz IV: $\lim \mathfrak{W}(R_nR_n) \mod a_na_n = \mathfrak{W}(RR) \mod aa \ (a_n = n$ -te

Koordinate von a). In den Polyedern ist die Wegegruppe, wie man weiß, von a_n unabhängig. Warum nicht auch im Limesraum? Das erklärt sich so: Die Unabhängigkeit der Wegegruppe vom Aufpunkt ist genauer zu verstehen als eine topologische Isomorphie

zwischen den einzelnen Wegegruppen. Die ist aber garnicht eindeutig festgelegt, sondern wird von einem die Punkte verbindenden Weg induziert und ist von diesem Wege abhängig. Beim Aufstieg von R_n zu R_{n+1} kann nun immer wieder der verbindende Weg verloren gehen und damit auch im Limesraum die Unabhängigkeit der Wegegruppe vom Aufpunkt.

Wir können jetzt den Beweis von Satz 8 (54) vervollständigen. Wir wählen $\varepsilon > 0$ so, daß sich jede Punktmenge in R vom Durchmesser $\leq \varepsilon$ in einem geeigneten V' unterbringen läßt (das geht, weil wir wegen der Kompaktheit von R schon mit endlich vielen V' auskommen). Jedem ε -Weg mod a entspricht dann ein Element der Orientierungsgruppe von a, jedem von ihnen, der ε -nullhomotop ist, die Identität der Orientierungsgruppe. Dadurch wird diese Gruppe homomorphes Bild von $\mathfrak{B}_{\varepsilon\varepsilon}(RR)$ mod aa, also auch von $\mathfrak{B}(RR)$ mod aa.

Wir bemerken zum Schluß noch, daß alles aus dieser Nr. (mit Ausnahme der letzten beiden Absätze) auch für die höheren Homotopiegruppen von W. Hurewicz ⁸¹) gilt.

Kap. VII.

Polyederentwicklungen und Dimensionstheorie.

58. Dimensionsstufe eines Polyeders (dim*) nennen wir vorläufig das, was man sonst seine Dimension nennt.

Ist das Polyeder P irreduzibel auf das Polyeder Q abgebildet, so ist dim* $Q \leq \dim^* P$. (Dieser Satz ergibt sich leicht, indem man Hilfssatz X aus 31 anwendet.) Daraus folgt:

In einer irreduziblen auf- R_n -adischen Polyederfolge P_n ist dim* P_n für fast alle n dasselbe oder wächst monoton über alle Grenzen.

Tiefer liegt bekanntlich der folgende Satz: Die identische Abbildung eines Simplexes auf sich ist irreduzibel. Wir beweisen ihn hier nicht.

59. Unter der Dimension dim R eines kompakten Raumes verstehen wir mit P. Alexandroff 82) die kleinste Zahl $d=\dim R$ mit der Eigenschaft: für jedes positive ε läßt sich R ε -abbilden 82 α) in ein Polyeder P mit dim $P \ge d$. Gibt es solch ein d nicht, so setzen wir dim $R = \infty$.

⁸¹⁾ Proceedings Amsterdam 38 (1935), 112-119.

⁸²⁾ a.a.O. 13).

⁸²a) In diesem Kap. sollen wieder alle Abbildungen eindeutig stetig sein.

SATZ 1: Ein kompaktes R läßt sich in eine normale irreduzible auf- R_n -adische Polyederfolge Q_n entwickeln mit $\lim \dim Q_n = \dim R$.

Beweis: Nach der Dimensionsdefinition gibt es eine positive Nullfolge ε_n , eine Folge von Polyedern P_n (lim dim $P_n=\dim R$) und von ε_n -Abbildungen $f_nR=P_n$. Unter Anwendung von Hilfssatz XIV (33) erhalten wir eine normale irreduzible auf- R_n -adische Polyederfolge Q_n mit R als Limes. Dabei ist $Q_n \subset P_n$, also lim dim $Q_n \leq \lim \dim P_n = \dim R$. Stände hier das Kleinerzeichen, so kämen wir im einen Widerspruch zur Dimensionsdefinition, da die Q_n aus R durch η_n -Abbildungen $(\eta_n \to 0)$ entstehen.

SATZ 2: Sind P_n und Q_n zwei normale irreduzible Polyederent-wicklungen von R, so ist $\lim \dim P_n = \lim \dim Q_n$.

Beweis: Der Austauschsatz (34) zusammen mit dem zweiten Absatz von 58 zieht nach sich, daß bei festem m für fast alle n gilt: dim $Q_n \ge \dim P_m$; ebenso bei festem n für fast alle m: dim $Q_n \le \dim P_m$. Daraus folgt die Behauptung.

SATZ 3: Für jede irreduzible auf- R_n -adische Polyederentwicklung P_n eines R gilt $\lim \dim P_n = \dim R$.

Beweis: Nach Hilfssatz XIV (33) dürfen wir annehmen, daß die Entwicklung normal ist; unser Satz folgt dann aus Satz 1 und 2.

Satz 4: Die Dimension eines kompakten R ist dann und nur dann gleich der natürlichen Zahl d, wenn sich R in eine irreduzible normale auf- R_n -adische Folge von Polyedern der Dimensionsstufe d entwickeln lä βt . Die Dimension eines kompakten R ist dann und nur dann gleich d, wenn sich R für jedes positive ε irreduzibel auf ein Polyeder der Dimensionsstufe d ε -abbilden lä βt . Sie ist dann und nur dann ∞ , wenn die Dimensionsstufen der betr. Polyeder über alle Grenzen wachsen.

Beweis: Die erste Charakterisierung der Dimension folgt unmittelbar aus Satz 3. Für die zweite Charakterisierung folgt das "dann", indem man wie im Beweis von Satz 1 den Hilfssatz XIV (33) anwendet und die Irreduzibilität der Abbildungen berücksichtigt; das "nur dann" folgt aus Satz 2 unter Berücksichtigung von Hilfssatz V (30).

Der Beweis zeigt, daß sogar gilt:

Satz 5: Ist dim R = d, dim* P > d und fR = P, so ist f reduzibel.

SATZ 6 (Rechtfertigungssatz): Dimension und Dimensionsstufe eines Polyeders stimmen überein. (Folgt aus Satz 4 und 58, letzter Absatz.)

60. Die folgenden Sätze zeigen die Äquivalenz der Dimensionsdefinition aus 59 mit der Brouwer-Urysohn-Mengerschen (für kompakte Räume); es zeigt sich dabei sogar die Existenz einer d-dimensionalen Cantorschen Mannigfaltigkeit in einem d-dimensionalen kompakten Raum.

Satz 7: Sei dim $R \leq d$ und endlich. Zu jedem Punkt $a \in R$ gibt es beliebig kleine Umgebungen U mit dim $\Re(U) \leq d-1$.

Beweis: R liege in auf- R_n -adischer Entwicklung vor, wobei gemäß Satz I die R_n Polyeder P_n (dim $P_n=d$) und die einzelnen Abbildungen normal seien. a sei ein Punkt von R, a_n seine n-te Koordinate. V sei eine vorgegebene Umgebung von a in R, die wir als elementar (in bezug auf jene Entwicklung) voraussetzen dürfen. Es gibt also ein k und eine Umgebung V_k von a_k , deren Urbild in R mit V übereinstimmt. Die Vereinigungsmenge der Simplexe von P_k , die a_k enthalten, heiße M_k . Wir dürfen annehmen, daß die Teilung, in der P_k vorliegt, so fein gewählt ist, daß M_k ganz in V_k liegt. Das Urbild von M_k in P_n heiße M_n (k < n), es ist auch wieder aus vollen Simplexen zusammengesetzt (wegen der Simplizialität der Abbildungen). Die Menge der inneren Punkte von M_n heiße U_n , ihr Urbild in R heiße U^n , und die Vereinigung der U^n heiße U.

U ist offen, ist in dem vorgegebenen V enthalten und enthält a. Das Bild von U in R_n liegt in M_n , also auch das der abgeschlossenen Hülle von U. Sei r ein Randpunkt von U und r_n seine n-te Koordinate. Wäre r_n innerer Punkt von M_n , so wäre $r_n \in U_n$, also $r \in U^n \in U$. Also ist $r_n \in \Re(M_n)$. Demnach läßt sich $\Re(U)$ R_n -adisch in die Folge $\Re(M_n)$ entwickeln; das ist aber eine Folge von höchstens (d-1)-dimensionalen Polyedern. Nach Satz 3 ist, wie wir es wünschten, also dim $\Re(U) \leq d-1$.

SATZ 8: Sei dim $R \ge d$ und endlich. Dann gibt es einen Punkt $a \in R$ mit der Eigenschaft: für jede genügend kleine Umgebung U von a ist dim $\Re(U) \ge d-1$. Ja es gibt sogar eine abgeschlossenen Teilmenge M von R, die sich durch keine höchstens (d-2)-dimensionale abgeschlossene Teilmenge zerlegen läßt (eine Cantorsche Mannigfaltigkeit).

Beweis: Wir bilden R irreduzibel ab auf ein d-dimensionales Polyeder P, fR = P (Satz 1). T sei ein d-dimensionales Simplex von P. Die abgeschlossene Menge M von R habe die folgenden Eigenschaften: 1. Die Abbildung fM = T sei irreduzibel, 2. für jede Teilmenge M von M sei die Abbildung fM = T reduzibel. Wir beweisen, daß M die gesuchte Cantorsche Mannigfaltigkeit ist. Sei N eine abgeschlossene (d-2)-dimensionale Teilmenge von

M. Wir führen die Annahme, $M \setminus N$ sei nicht zusammenhängend, zum Widerspruch. $M \setminus N$ lasse sich also als Vereinigung zweier relativ fremder, relativ abgeschlossener Mengen schreiben, deren (in M) abgeschlossene Hüllen M_1 , M_2 heißen mögen. M_1 , M_2 sind echte Teilmengen von M, $M_1 \vee M_2 = M$, $M_1 \wedge M_2 \subset N$. Wir setzen $M_v \wedge N = N_v$.

Zu f bilden wir auf M_{ν} ($\nu=1,2$) die zulässige Abänderung g_{ν} , die irreduzibel sei (Hilfssatz IV, 30); dann ist wegen der Minimalitätsvoraussetzung über M, und weil M_{ν} echte Teilmengen von M sind, $g_{\nu}M_{\nu} \in \Re(T)$, und wegen der Dimensionsvoraussetzung über N und Satz 5 und Hilfssatz I aus 29 darf man annehmen: $g_{\nu}N_{\nu} \in Q$ (wo Q das aus den (d-2)-dimensionalen Simplexen von T zusammengesetzte Polyeder ist).

U sei eine genügend kleine Umgebung von N_2 in M_2 . Wir setzen g_1 auf $M_1 \lor U$ als irreduzible Abbildung und zulässige Abänderung von f fort (Hilfssatz I, 29. IV, 30). Dann darf man wegen der Voraussetzung über N und Satz 5 annehmen: $g_1N \subset Q$.

Die Abbildung h definieren wir so: Auf $M_{\nu} \setminus U$ stimme h mit g_{ν} überein (das ist möglich, weil $M_1 \setminus U$ und $M_2 \setminus U$ zueinander fremd sind); für jedes $a \in U$ ($\in M_2$) soll ha die Strecke von g_1a nach g_2a teilen im Verhältnis seiner Abstände von N und $M \setminus U$. Dann hat man stetigen Anschluß auf $\Re(M \setminus U)$; auf N hat man $h = g_1$, also auch stetigen Anschluß. Da $g_{\nu}N_2 \in Q$ war, weichen die Mengen $g_{\nu}U$ wenig von Q ab (wenn nur U genügend klein gewählt war), also weicht hU wenig von $\Re(T)$ ab. Da weiter $h(M \setminus U) \in \Re(T)$ ist, weicht auch die Menge hM wenig von $\Re(T)$ ab, h ist im Widerspruch zur Voraussetzung reduzibel.

Um unsern Satz zu beweisen, brauchen wir also nur eine abgeschlossene Menge M mit den beiden vorausgesetzten Eigenschaften zu konstruieren. Eine solche Menge M existiert nach dem Brouwerschen Irreduzibilitätssatz; um sie zu konstruieren, kann man aber auch so verfahren: Man denke sich R in eine auf- R_n -adische irreduzible Polyederfolge P_n entwickelt, derart daß (Hilfssatz XIV) alle Abbildungen normal sind. Man setze $P_1 = P$, $M_1 = T$. Man bestimme $M_2 \subset P_2$ so, daß die Abbildung $f_1^2M_2 = M_1$ irreduzibel ist und M_2 hinsichtlich dieser Eigenschaft minimal ist. Da M_2 notwendig aus ganzen Simplexen zusammengesetzt ist, ist das ein elementarer Prozeß. Analog bestimme man M_3, \ldots ; dann ist, wie man ohne weiteres sieht, auch die Abbildung $f_n^mM_m = M_n$ irreduzibel und M_m hinsichtlich dieser Eigenschaft minimal. Die M_n erzeugen auf- R_n -adisch eine Menge M von R, die die gewünschten Eigenschaften hat (Hilfssatz V, 30).

Anhang.

Beispiele.

1. Ein Beispiel einer R_n -adischen bzw. R_n -alen Folge ist jede ab — bzw. — aufsteigende Folge von Räumen. Der Limes der Folge ist nichts Anderes als ihr Durchschnitt bzw. ihre Vereinigung.

Wie man das Fundamentalquader des Hilbertschen Raumes auf- R_n -adisch aus einer Folge von Quadern cartesischer Räume erzeugen kann, ist in 32 zu sehen.

Bildet man in ähnlicher Weise eine auf- R_n -adische Folge cartesischer Räume, d.h. nimmt man für R_n den n-dimensionalen cartesischen Raum und bildet ihn durch Nullsetzen der letzten Koordinate auf den vorangehenden ab, so erhält man den unendlichdimensionalen cartesischen Raum, in dem Konvergenz und koordinatenweise Konvergenz zusammenfallen. Dagegen erzeugt die R_n -ale Folge cartesischer R_n , von denen jeder in den folgenden in natürlicher Weise abgebildet ist, einen konvergenzfreien Teilraum des Hilbertschen Raumes.

Allgemeiner kan man unendliche cartesische Produkt R_n -adisch oder R_n -al topologisieren: Ist F_n eine Folge von Räumen, so setze man $R_n = F_1 \times \ldots \times F_n$ und bilde im einen Fall R_{n+1} auf R_n ab durch Projektion (d.h. f_n^{n+1} $(a_1 \times \ldots \times a_{n+1}) = a_1 \times \ldots \times a_n$), im andern Fall durch Hineinlegen (d.h. f_{n+1}^n $(a_1 \times \ldots \times a_n) = a_1 \times \ldots \times a_n \times a_{n+1}$, wo a_{n+1} ein fester, von a_1, \ldots, a_n unabhängiger Punkt von F_{n+1} ist).

Analog kann man unendliche direkte Produkte topologischer Gruppen G_n -adisch oder G_n -al topologisieren.

Sind in einer R_n -adischen Folge alle R_n diskrete, aus endlich vielen Punkten bestehende Räume, so ist der Limesraum null-dimensional kompakt. Umgekehrt erhält man so jeden null-dimensionalen kompakten Raum.

Eine G_n -adische Folge endlicher Gruppen G_n erzeugt eine Cantorsche Gruppe; wie van Dantzig ⁸³) gezeigt hat, erhält man so die allgemeinsten Cantorschen Gruppen.

Torusgruppe heiße das direkte Produkt endlich vieler Exemplare der Additionsgruppe der reellen Zahlen mod 1. Eine G_n -adische Folge von Torusgruppen liefert das allgemeinste Solenoid 84) (vorausgesetzt, daß bei fast allen Homomorphismen f_n^{n+1} die Urbildmenge von e unzusammenhängend ist, — sonst wird

⁸³⁾ Compositio Math. 3 (1936), 408-426.

⁸⁴⁾ Definiert von D. van Dantzig 10).

der Limes wieder eine Torusgruppe endlicher oder unendlicher Dimension 85)). Allgemeiner erhält man alle kompakten zusammenhängenden Gruppen als G_n -adische Limites Liescher kompakter Gruppen und in ganz ähnlicher Weise alle kompakten zusammenhängenden Gruppen mit genügend vielen fastperiodischen Funktionen 85). Die so entstehenden Gebilde sind auch rein topologisch interessant, z.B. ist ein eindimensionales Solenoid im Wesentlichen das Brouwersche unzerlegbare Kontinuum.

2. G_n sei für jedes n die (diskrete) Additionsgruppe der ganzen Zahlen, $f_n^{n+1}(k) = 2k$. $G = \lim G_n = (0)$, aber der Typus der Folge ist keineswegs der der Folge $H_n = (0)$; der Typusrang der Folge G_n ist nämlich eins, der der Folge H_n ist null (Rang-Kriterium, 19).

 X^n sei die Charakteregruppe (J=mod 1) von G_n , also die Gruppe mod 1. Die G_n bilden eine G_n -adische, die X_n eine G_n -ale Folge (21), und zwar ist $\xi f_n^{n+1} = 2\xi$. Hier tritt in ganz natürlicher Weise eine nicht-Hausdorffsche Gruppe auf: $X' = \lim X^n$ (nicht einmal die einpunktigen Mengen sind abgeschlossen, die einzigen offenen Mengen sind die trivialen). Da die X^n Hausdorffsche Gruppen waren, haben wir hier ein Beispiel für die Nichtgültigkeit der Erhaltungssätze (7) in R_n -alen Fall. Sogar geometrisch läßt sich X' realisieren: als Bettische Gruppe mod 1 des Außenraumes eines Solenoids im euklidischen Raum.

Das Beispiel zeigt weiter, daß ohne einschränkende Bedingungen die Aussagen des vierten Dualitätssatzes (21) nicht zu gelten brauchen: X' ist keineswegs isomorph der J-Charakteregruppe von G.

3. Nun ein Beispiel dafür, daß (bereits bei einem Polyeder lim \mathfrak{B} co Γ_n und \mathfrak{B} co Γ ($\Gamma = \lim \Gamma_n$) nicht übereinzustimmen brauchen:

R sei die projektive Ebene, Γ_n die Additionsgruppe der natürlichen Zahlen (k), $f_n^{n+1}(k) = 3k$.

Dann ist $\lim \Gamma_n = (0)$, also auch \mathfrak{B} co $\Gamma = (0)$. Andererseits ist aber, wenn z einen eindimensionalen Zyklus bedeutet, $f_n^{n+1}(kz) = 3kz \sim kz$; also ist $\lim \mathfrak{B}$ co Γ_n eine Gruppe der Ordnung zwei.

4. Bei auf- R_n -adischer Entwicklung eines kompakten Raumes R in eine Polyederfolge R_n kann es sehr wohl geschehen, daß (für alle n) dim $R_n > \dim R$ ist. In unserm Beispiel werden die R_n zweidimensionale Polyeder sein, und wir werden von R_n zu

⁸⁵⁾ Siehe dazu: H. Freudenthal [Annals of Math. (2) 37 (1935), 46-56].

 R_{n+1} übergehen, indem wir R_n längs gewisser Strecken aufschlitzen (jeder Punkt des Schnittes zerfällt also in einen am einen und einen am andern Ufer). f_n^{n+1} ist dann das Zusammenkleben von R_{n+1} längs der in R_n ausgeführten Schnitte (so daß bei f_n^{n+1} aus R_{n+1} wieder R_n entsteht).

Für R_1 nehmen wir die ebene Punktmenge $(|\xi| \le 1, |\eta| \le 1)$. Beim Übergang von R_1 zu R_2 führen wir den Schnitt $(\xi = 0, -1 \le \eta < 0)$ aus; beim Übergang zu R_3 weiter die Schnitte $(\frac{1}{2} < |\xi| \le 1, \eta = -\frac{1}{2}), (-\frac{1}{2} < \xi < \frac{1}{2}, \eta = 0), (|\xi| = \frac{1}{2}, 0 \le \eta < \frac{1}{2}), (\xi = 0, \frac{1}{2} < \eta \le 1)$; und so verfahren wir fort (genau als ob wir nach Peano die Strecke auf das Quadrat abbilden wollten. Alle R_n sind der Kreisscheibe homöomorph, also dim $R_n = 2$, während der R_n -adische Limes der Strecke homöomorph ist, also dim R = 1.

(Eingegangen den 2. November 1935.)