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On the argument functions of simple closed
curves and simple arcs

by

E. R. van Kampen
Baltimore, Maryland

I. In his papers on oriented line elements 1), Ostrowski

proved certain theorems about directions of tangents to plane
curves. In an additional paper 2 ), Hopf showed that a better
insight into the matter treated can be obtained by emphasizing
the directions of secants. The purpose of this note is to point
out the great advantage that can be obtained by considering
secants only, discarding, together with the tangents, the restric-
tive condition that the curves considered are differentiable.

After all, any theorem on the direction of tangents can be ob-
tained by a direct limiting process from a theorem on the direction
of secants. A good example of the simplification that is thus

sometimes obtained is Ostrowski’s theorem 1 (p. 178), since

this theorem does not state more than the existence of the function

99(s, t) of III below (i.e., of the function t(s1, s2), Hopf, l.c., p. 55).
In II we prove the ,,Umlaufsatz" for arbitrary simple closed

curves in essentially the same way as Hopf (p. 51). However,
slightly more care is necessary because no differentiability con-
dition is used. It should be noted that by fixing the orientation
of the curve in advance we eliminate the ambiguity in sign
usually occurring in the statement of this theorem.

In III we prove a theorem on argument functions of simple
arcs. The Rolle-Ostrowski theorem in its generalized form for
non-differentiable curves is now derived very easily in IV. In
V we state a modified version of Ostrowski’s theorem 2 (l.c., p.
178) and show how this may be used to give a second proof of
the theorem in III.

l) Three notes. Compositio Mathematica 2 (1935), 26-49, and 177-200.

2) Compositio Mathematica 2 (1935), 50-62. See these papers for further

references.
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II. In order to determine a positive direction on a simple
closed curve C, we construct three half lines li’ i = 1, 2, 3,
each li having in common with C only its endpoint Pi, and such
that no two li have a point in common. The half lines are num-
bered in such a way that the orientation of the plane 3) deter-
mined by the order l1, l2’ 13 is positive. We then determine the
positive orientation of C by the order Pl, P2, P 3.
The curve C can be determined by a continuous funtion P(s),

- oo  s  + oo, whose value corresponds to a point in the
plane. We suppose that P(s) = P(t), if and only if s - t (mod 1),
and that the orientation of C determined by inereasing s is the
positive orientation. Then we can find numbers ti, i = 1, 2, 3,
such that Pi = P(ti ) and t1 C t2  t3  t1 + 1.

It is easily seen 4) that vce can find a continuous function

qJ(s, l) defined for s  t  s + 1 and representing one of the

possible values for the argument of the oriented segment
P(s) P(t). We prove now.

The right hand side of (1) is obviously an odd multiple ouf n
and is independent of s and t, so that we only need to prove (1)
for fixed values of s and t. Replacing s and t in (1) by t and
8 + 1 and adding we find cp(s + l, t + 1) := cp(s, t) + 2n. This
formula gives the "Umlaufsatz" without any differentiability
condition for C.

Another conséquence of (1) is that the orientation of C is

independent of the particular half lines 1, used in its definition.
In order to prove (1), we remark that the difference cp(t1, t3)-

99(t,, t2 ) can be determined by letting the endpoint P of a segment
PtP move from P2 to P3 along any path in the plane that does
not meet the halfline l1. Similar remarks hold for ’T(t2l t3)
- 9(tl, t3) and cp(i2, tl -f -- 1) - cp(t2, t3). The three paths may be
chosen as polygons, with a total of not more than four sides.
Thus it is necessary to prove (1 ) only in case C is a quadrilateral 5 ).
The passage from a quadrilateral to a triangle is trivial, so that
the rest of the proof of (1) is evident.

3) It is clear that the ordered triple of half lines determines the same orien-
tation on every circle w-hich has the three endpoints in its interior.

1) A detailed proof is given bij Hopf in ,,Vorbemerkungen", I.C. p. 51.

5) It is also possible to reduce (1) to the case were C is one of the circles men-
tioned in 3).
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A continuation of this argument leads to a proof of the Jordan
curve theorem, closely related to the one given by E. Schmidt 6),
the main difference being that the curve is oriented a priori, so
that, for instance, the index of an interior point with respect
to the curve is + 1 instead of + 1. Now if the orientation of the
curve is known and the curve contains a line segment, it is possible
to decide which side of the line segment is interior and which
side is exterior to the curve. This will be used in III, c.

III. A simple arc D can be determined by a continuous
function P., 0 s  1, of which the values correspond to points
in the plane and such that P s * Pl whenever s t.
We can find 4) a continuous function 99(s, t), 0 s  t  1,

representing for given s and t a value of the argument of the
oriented segment PsPt. The following theorem (2) remains true
if the word "maximum" is replaced by "minimum". It imme-
diately implies the Rolle-Ostrowski theorem, as shown in IV.

(2 ) 1 f D is a simples arc determined by the continuous funetion
Ps, 0 8  1, and if cp(s, t), 0 s  t -:S 1, is ils argument
function, finally if q;( 0, 1) is a maximum f or both q;( 0, s) and
p(s, 1), then D is the line segment PüP1.

a. We assume that D is not the segment P, )Pl, that p(O, 1) = 0
and that 99(0, s ) and q;(s,l) never take a positive value. We
must then prove a contradiction.

The line PoP1 and the open segment POP1 we call m and 1
respectively. The open half line determined on m by Po and not
containing P, we call lo; the half line li is similarly defined. The
half plane containing all points S’ such that the argument of the
oriented segment RS, R on m, is between 0 and n we call oc,

the other half plane determined by m we call fl.
b.. If a point P, of D is not on m and the arc t  s  1 of D

does not meet lo, then - n  ç (0, t )  0, so that Pl is in f3
and cp(t, 1) is congruent mod 2n to a number between 0 and n.
Since 99(t, 1)  0, it follows that p(t, 1)  - n  cp(O, t). Simi-

larly we may prove that cp(t, 1) &#x3E; - Je &#x3E; p(0, t ) for certain

values of t sufficiently near to 0. Since both 99(s, 1) and 99(o, s)
are continuous, it follows that lp(O, s ) - p(s, 1) for certain

values of s.
Now if 9(0, s) = 99(s, 1) then P s is a common point of 1 and D.

On the other hand 99(0, s) = ç(s, 1) = 0 is impossible, since if

6) Sitz. Ber. Preuss. Akad. 1923, 318-329.
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this equality is true for P 8 and s is varied continuously in such
a way that p(O, s) becomes negative, then p(s, 1 ) becomes
positive.
Thus it follows that there exists a common point Pg of 1 and

D, such that q;(0, s ) is negative. The greatest value of s with
this property we call a, then q;(0, a) =- - 2nn  0.

c. The least parameter value s &#x3E; a for which Pg is on the
segment PaP, of m will be denoted by b and the arc PaPb of
D will be denoted by D’. The segment k = PaPb of m, together
with D’, forms a simple closed curve C. Since q;(0, a)  0 and

q;(0, b ) = 0, the index of Po with respect to C is not equal to zero,
and hence is equal to 1, so that 9’(0, a) = - 2n. Thus the positive
orientation on C is determined on D’ by the order PaPb, hence
on k by the order PbPa. It follows that a point Q in the half
plane a near interior points of k has index 0 with respect to C.
Since q;(0, b ) = 0, the points on D near Pb are in the half plane
fl, so that the point Q may be joined to Pi by a polygon in x
not meeting C. Thus Pl is either on C or exterior to C.

d. The last statement implies, in view of the Jordan curve
theorem, that there may be determined a continuous function

f(R) giving an argument of the segment RP1, where R is either
in the interior of C or on C (but not in P1 if b = 1) and f(PO) = 0.
Since q;(0, s ) = 0 for any common point Ps =F Pa of D’ and the
segment POPb, while always ç(o, s )  0, it is clear that f ( R ) is

defined, hence equal to 0, for any R on the segment PoPb.
It is clear that f(Pi) is the value of q;(t, 1) if no point Ps,

o  8 t, is exterior to C. Hence 99(c, 1) = 0, if Pc is the common
point of D and k which has the lowest parameter value. Unless
c = a, it follows that, for slightly lower values of s, we have

q;(8,I) &#x3E; 0. But, if c = a, then f(PI) = 99(t, 1) for 0  s C b,
while obviously f ( P t ) &#x3E; 0 for some points D of D’. So in both
cases we find values of s for which q;(8, 1) &#x3E; 0. This contradiction

proves (2).

IV. The Rolle-Ostrowski theorem can be derived from (2)
by a very simple argument. In our terminology it says:

(3) For any e &#x3E; 0 the range of q;(s, t) over s  t  s + 8
is equal to the total range o f p(s, t).

If this is not true, then two numbers and b, 0  a  b  1,
can be determined, such that 99(a, b) is either greater than or
less than any value of q;(s, t), for which s  t  8 + b - a.
This immediately contradicts (2).
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V. Let D be a simple arc determined by the function Ps,
o  s  1, let q:;(s, t), 0  s  t  1, be its argument function,
and let m be the line POP,. The second theorem in the second
note of Ostrowski (l. c. p. 178) is to the effect that D consists of
two spirals, one around each endpoint, if the following two con-
ditions are satisfied: (1) At any intersection of D and m the
curve D crosses the line m (except of course in Po and in Pl);
(II ) If P,. and Pu are two such intersections which are successive
on the arc D, then either q:;(u, 1) #- q:;(v, 1) or 99(0, u) =A 99(0, v).
It is easily seen that the statement remains true if (II) is modified
so as to concern intersections successive on the line m. In the

new form this theorem may be used to give a second proof of
the theorem in III. In fact, in proving (2) for an arbitrary arc D
we may replace the part of D for which a 8  b by the line
segment PaPb whenever the new curve is again a simple arc and
the change in value of 99(0, s ) and q:;(s, 1) is the same along the
line segment as along the arc. (If Pa or Pb is an endpoint, we may
drop the condition corresponding to that endpoint. ) For by such
a change the range of p(O, s ) and of q:;(s, 1) is never increased.

By a finite number of these changes we can reduce (2) to the
case of a polygon 1Ii which satisfies condition (I), except if

the original arc is a line segment. By a further finite number of
changes we can replace III by a polygon 1-12 that satisfies the
modified condition (II), so that II2 has the double spiral form
described by Ostrowski. Finally, by means of two more changes
of the type described, II2 may be replaced by a polygon 77g
which has exactly two sides. For 77g the statement of (2) is

trivial, so that (2) follows for arbitrary arcs.
The Johns Hopkins University.
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