Compositio Mathematica

C. E. WEATHERBURN
 On certain useful vectors in differential geometry

Compositio Mathematica, tome 4 (1937), p. 342-345
http://www.numdam.org/item?id=CM_1937__4_342_0
© Foundation Compositio Mathematica, 1937, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques http://www.numdam.org/

On certain useful vectors in differential geometry

by
C. E.. Weatherburn

Perth W.A.

1. Definitions. We propose to consider briefly a set of vectors, by means of which some of the formulae and proofs of elementary Differential Geometry of a surface in Euclidean 3 -space are considerably simplified. The position vector \mathbf{r} of the current point on the surface is a function of two parameters, u and v. Let suffixes 1,2 denote differentiations with respect to u, v respectively. Thus

$$
\mathbf{r}_{1}=\frac{\partial \mathbf{r}}{\partial u}, \quad \mathbf{r}_{2}=\frac{\partial \mathbf{r}}{\partial v}
$$

and the unit normal vector \mathbf{n} to the surface at the point considered is such that $\mathbf{n}=\frac{\mathbf{r}_{1} \times \mathbf{r}_{2}}{H}$, where $H^{2}=E G-F^{2}, E, F, G$ being fundamental magnitudes of the first order for the surface. Then the scalar triple product

$$
\left[\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{n}\right]=H \mathbf{n} \cdot \mathbf{n}=H
$$

and the reciprocal system of vectors ${ }^{1}$) to $\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{n}$ is the system

$$
\frac{\mathbf{r}_{2} \times \mathbf{n}}{H}, \quad \frac{\mathbf{n} \times \mathbf{r}_{1}}{H}, \quad \frac{\mathbf{r}_{1} \times \mathbf{r}_{2}}{H} .
$$

The third of these is clearly \mathbf{n}. The first and second we shall denote by \mathbf{p} and \mathbf{q}. Thus

$$
\left\{\begin{array}{l}
H^{2} \mathbf{p}=\mathbf{r}_{2} \times\left(\mathbf{r}_{1} \times \mathbf{r}_{2}\right)=G \mathbf{r}_{1}-F \mathbf{r}_{2} \tag{1}\\
H^{2} \mathbf{q}=\left(\mathbf{r}_{1} \times \mathbf{r}_{2}\right) \times \mathbf{r}_{1}=E \mathbf{r}_{2}-F \mathbf{r}_{1}
\end{array}\right.
$$

and these vectors are, of course, tangential to the surface. It is casily verified that

$$
\begin{equation*}
\mathbf{p}^{2}=\frac{G}{H^{2}}, \quad \mathbf{q}^{2}=\frac{E}{H^{2}}, \quad \mathbf{p} \cdot \mathbf{q}=-\frac{F}{H^{2}}, \tag{2}
\end{equation*}
$$

[^0]while from their definitions it follows that
\[

\left\{$$
\begin{array}{c}
\mathbf{p} \cdot \mathbf{r}_{1}=\mathbf{1}, \quad \mathbf{q} \cdot \mathbf{r}_{2}=\mathbf{1} \tag{3}\\
\mathbf{0}=\mathbf{p} \cdot \mathbf{r}_{2}=\mathbf{q} \cdot \mathbf{r}_{1}=\mathbf{p} \cdot \mathbf{n}=\mathbf{q} \cdot \mathbf{n}
\end{array}
$$\right.
\]

2. Derivatives of Vectors. In terms of \mathbf{p} and \mathbf{q} the derivatives ${ }^{2}$) of \mathbf{n} with respect to u, v are given very compactly by the equations

$$
\left\{\begin{array}{l}
\mathbf{n}_{1}=-L \mathbf{p}-M \mathbf{q} \tag{4}\\
\mathbf{n}_{2}=-M \mathbf{p}-N \mathbf{q}
\end{array}\right.
$$

L, M, N being the fundamental magnitudes of the second order. The second derivatives of \mathbf{r} with respect to u and v, when expressed in terms of $\mathbf{n}, \mathbf{r}_{1}, \mathbf{r}_{2}$, involve as coefficients certain functions usually denoted by the Christoffel symbols. In terms of the reciprocal system of vectors, however, these derivatives may be simply expressed

$$
\left\{\begin{array}{l}
\mathbf{r}_{11}=L \mathbf{n}+\frac{1}{2} E_{1} \mathbf{p}+\left(F_{1}-\frac{1}{2} E_{2}\right) \mathbf{q} \tag{5}\\
\mathbf{r}_{12}=M \mathbf{n}+\frac{1}{2} E_{2} \mathbf{p}+\frac{1}{2} G_{1} \mathbf{q} \\
\mathbf{r}_{22}=N \mathbf{n}+\left(F_{2}-\frac{1}{2} G_{1}\right) \mathbf{p}+\frac{1}{2} G_{2} \mathbf{q}
\end{array}\right.
$$

To prove the first of these we observe that the coefficient of \mathbf{p} in the expression for \mathbf{r}_{11} must, in virtue of (3), have the value

$$
\mathbf{r}_{11} \cdot \mathbf{r}_{1}=\frac{1}{2} \frac{\partial}{\partial u}\left(\mathbf{r}_{1}^{2}\right)=\frac{1}{2} E_{1}
$$

Similarly the coefficient of \mathbf{q} must have the value

$$
\mathbf{r}_{11} \cdot \mathbf{r}_{2}=\frac{\partial}{\partial u}\left(\mathbf{r}_{1} \cdot \mathbf{r}_{2}\right)-\frac{1}{2} \frac{\partial}{\partial v}\left(\mathbf{r}_{1}^{2}\right)=F_{1}-\frac{1}{2} E_{2}
$$

and likewise for the others. The above formulae (5) should be compared with the usual ${ }^{3}$)

$$
\left\{\begin{array}{l}
\mathbf{r}_{11}=L \mathbf{n}+l \mathbf{r}_{1}+\lambda \mathbf{r}_{2} \tag{6}\\
\mathbf{r}_{12}=M \mathbf{n}+m \mathbf{r}_{1}+\mu \mathbf{r}_{2} \\
\mathbf{r}_{22}=N \mathbf{n}+n \mathbf{r}_{1}+\nu \mathbf{r}_{2}
\end{array}\right.
$$

whose coefficients $l, m, n, \lambda, \mu, \nu$, when expressed in terms of E, F, G, are much less simple than those in (5).

[^1]The derivatives of \mathbf{p} and \mathbf{q} with respect to u, v are given by

$$
\left\{\begin{array}{l}
H^{2} \mathbf{p}_{1}=(G L-F M) \mathbf{n}-H^{2}(l \mathbf{p}+m \mathbf{q}) \tag{7}\\
H^{2} \mathbf{p}_{2}=(G M-F N) \mathbf{n}-H^{2}(m \mathbf{p}+n \mathbf{q}) \\
H^{2} \mathbf{q}_{1}=(E M-F L) \mathbf{n}-H^{2}(\lambda \mathbf{p}+\mu \mathbf{q}) \\
H^{2} \mathbf{q}_{2}=(E N-F M) \mathbf{n}-H^{2}(\mu \mathbf{p}+\nu \mathbf{q})
\end{array}\right.
$$

To verify these take, for instance, the coefficient of \mathbf{p} in the first. In virtue of (3) this must have the value

$$
\mathbf{p}_{1} \cdot \mathbf{r}_{1}=\frac{\partial}{\partial u}\left(\mathbf{p} \cdot \mathbf{r}_{1}\right)-\mathbf{p} \cdot \mathbf{r}_{11}=-l
$$

by (6) and similarly for the others.
3. Differential Invariants. In terms of \mathbf{p} and \mathbf{q} the surface gradient ${ }^{4}$) $\nabla \varphi$, of a scalar point-functions φ, is simply

$$
\begin{equation*}
\nabla \varphi=\mathbf{p} \frac{\partial \varphi}{\partial u}+\mathbf{q} \frac{\partial \varphi}{\partial v} \tag{8}
\end{equation*}
$$

and the surface divergence and rotation ${ }^{5}$) of a vector h are

$$
\left\{\begin{array}{l}
\operatorname{div} \mathbf{h}=\mathbf{p} \cdot \mathbf{h}_{1}+\mathbf{q} \cdot \mathbf{h}_{2} \tag{9}\\
\operatorname{rot} \mathbf{h}=\mathbf{p} \times \mathbf{h}_{1}+\mathbf{q} \times \mathbf{h}_{\mathbf{2}}
\end{array}\right.
$$

As an illustration of the use of these we observe that they give immediately, in virtue of (4),

$$
\operatorname{div} \mathbf{n}=\frac{(2 F M-E N-G L)}{H^{2}}=-J, \quad \operatorname{rot} \mathbf{n}=0
$$

where J is the first curvature of the surface. Also the surface Laplacian of \mathbf{r}, (or the differential parameter of \mathbf{r} of the second order), is ${ }^{6}$)

$$
\nabla^{2} \mathbf{r}=\frac{\mathbf{1}}{H} \frac{\partial}{\partial u}(H \mathbf{p})+\frac{\mathbf{1}}{H} \frac{\partial}{\partial v}(H \mathbf{q})=\mathbf{p}_{1}+\mathbf{q}_{2}+\frac{\mathbf{1}}{H}\left(H_{1} \mathbf{p}+H_{2} \mathbf{q}\right)=J \mathbf{n}
$$

in virtue of (7).
Again, if a vector \mathbf{F} is expressed as a sum of components in the directions of $\mathbf{p}, \mathbf{q}, \mathbf{n}$ in the form $\mathbf{F}=P \mathbf{p}+Q \mathbf{q}+R \mathbf{n}$, it is easily verified that

$$
\begin{equation*}
\mathbf{n} \cdot \operatorname{rot} \mathbf{F}=\frac{1}{H}\left(Q_{1}-P_{2}\right) \tag{10}
\end{equation*}
$$

${ }^{4}$) D. G., 223.
$\left.{ }^{5}\right)$ D. G., 225, 228.
$\left.{ }^{6}\right)$ D. G., 231.

This leads to a short proof of the Circulation Theorem ${ }^{7}$) for a closed curve on the surface, viz.

$$
\begin{equation*}
\iint \mathbf{n} \cdot \operatorname{rot} \mathbf{F} d S=\oint \mathbf{F} \cdot d \mathbf{r} \tag{11}
\end{equation*}
$$

where the surface integral is taken over the enclosed region of the surface, and the line integral round the boundary. For the first member of (11) has the value

$$
\iint\left(Q_{1}-P_{2}\right) d u d v=\oint Q d v+\oint P d u
$$

as in the writer's Differential Geometry, Vol 1, 243; and this may be written

$$
\oint(P \mathbf{p}+Q \mathbf{q}+R \mathbf{n}) \cdot\left(\mathbf{r}_{1} d u+\mathbf{r}_{2} d v\right)=\oint \mathbf{F} \cdot d \mathbf{r}
$$

as required.
(Received November 30th, 1936.)
${ }^{7}$) D. G. 243.

[^0]: ${ }^{1)}$ Cf. the writer's Elementary Vector Analysis [Bell and Sons 1921], 65.

[^1]: ${ }^{2}$) Cf. the writer's Differential Geometry, Vol. 1, 61 [Cambridge University Press 1927]. This book will be indicated briefly by D. G.
 ${ }^{3}$) D. G., 90.

