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On the equivalence of the nilpotent elements of a
semi simple ring

by

Jakob Levitzki

Jerusalem

Introduction.

In the present note it is shown that each class of équivalent
nilpotent elements of a semi simple ring 1) can be characterised
by certain characteristic numbers; two nilpotent elements belong
to the same class if and only if their characteristic numbers

coincide. This is achieved by reducing each nilpotent element
to a certain normal form. As a conséquence we find that the

number of classes is finite. Applying our results to square matrices
in a commutative or non commutative field we find that each

nilpotent matrix can be transformed into a Jordan form 2).
Essential use is made of the notion of the "rank" (see 1, 2)
which yields an interpretation of the rank of a matrix based on
the theory of the ideals in a simple ring. The convenience of this
interpretation is also shown by a few examples in the appendix
to this paper.

I, ivotations and preliminary remarks.

1. If Ul, e2, ..., SBm are r. h. (read: right hand) ideals of
a semi simple ring S, then ive denote by (U,, U,, - - ., e,,,) the
r.h. ideal SB which consists of all the éléments of the form

EM ri, ri e i8,. If from lm ri = o, ri e %j follows always ri = 0,
i . = 1, ..., m then 38 is called the direct sum of the %; and we

1) Two elements a and b of S are called équivalent if for a regular élément r
of S the relation r-lar = b holds.

a, 0 ... 

2) The Jordan Form of a nilpotent matrix is 0 a2 .... were each aA is

0 E 0 ... 00 e 0 ... 0 
00 E...O

a matrix of the form ......., , e being the unit of the field.

000...£000...0
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write SB =SBi +382 + ... +S8.. or SB = 2 38,. If in En i=l uj
the SB are primitive (i.e. the ID3i are different from zero and

do not contain any subideals except ei and the zero ideal)
then the number m is called the length of SB; notation: SB
length of 38. Similar notations are used for I.h. (read: left

hand) ideals. If S8 is the zero ideal, theii lu | 0.

2. LEMMA 1. If aES, bES then | abS|  laS/; Sab | Sb
Proof. This is an immédiate consequence of abS C aS and

Sab C Sb.
LEMMA 2. If a E S, b E S then , abS | and Sab |  Sa | .
Proof. Suppose bS = lm--,Ui, where SBi are primitive

r.h. ideals, i.e. Multiplying by cc we obtain

abS = (aSB1, aSB1, ..., aSBm). Each aSBi is (as easily seen) either
a primitive r.h. ideal or zero, i.e. 1 abS 1  1 bS 1. Similarly follow

LEMMA 3. if u E S and a2 = a then 1 Sal = 1 aS 1.
Proof. For a= 0 the lemma is trivial. For a#0 let aS = Emi -1SBi

where the S8i are primitive r.h. ideals, i.e. 1 aS 1 = m. Let

a = SBmi =1 ai, ajeei, then from a2 = a ive obtain (by known argu-
nient) the relations ai ak } ai if i =k and hence Sa = SBmi-1 Sai,i = k

which implies Sa 1 &#x3E; 1 aS 1 since ai ~0, i = 1, ..., m. Similarly
follows the relation 1 aS 1 &#x3E; |Sa|, and hence 1 aS Sa
THEOREM 1. If a E S then aS | 1 Sa 1.
Proof. Suppose S = aS -j- S8, where % is a r.h. ideal. ’the

unit e of S has a representation of the form e = ab + e’, where

eSS and (as casily seen ) (ab)2 == ab; abs ] = 1 aS 1. By lemma
3 we have therefore abS 1 = 1 Sab - 1 aS I and hence (by
lemma 2) Sa 1 &#x3E; 1 aSI. . Similarly follows ) 1 aSI 1 Sa l and hence

NOTATION: If a E S, then the common length of aS and Sa is
called the rank of a and is denoted by la 1 .

3. From 2 follows easily: If ai ES (i == 1, ..., in) and if

ai S them also SYm ai = E, Sai. In this case
we have the relation 1 l’,ai 1 = Z’, 1 ai 1 and wc say that the
ai form a direct sum. Conversely from 1 Y-m,a, 1 = Y-nll a,,’ it
follows that the r.h. ideals ai S (resp. the l.h. ideals Sai) form a
direct sum. Thus the sum of idempotent elements ei (i=l, ..., rn)
which form an orthogonal system i.e. eje, 1 = ’ if is direct.ei i = k)
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4. From 2 and 3 it follows casily, that if a=: lm=lai,
1 al E,=llail  and ab =O (or ba=O) then aib === 0 (or resp.

baz = 0 ) for each i = l, ..., in.

5. LEMMA 1. Let S be a semi simple ring and ID3, f primitive
r.h. resp. l.h. ideals. If 1 · U 0 then the subring Uf of S is a field.

Proof. Suppose r1l1. r2l2 = o, where riE e, liE f, i = 1, 2. Then
either rIl1 or r2l2 is zero, since otherwise it would follow from

IID3¥=Oandfrom theprimitivity ofID3 and 1 that IU=(Sr,ll)(r2llS)
5(r1l1r2l2)5 = 0. The ring aSa has, therefore, no divisors of

zero. From IU:A 0 follows also by similar argument for rEe,
lEI, rl =F 0 the relation rl Uf == el, i.e. each equation rl x = r’l’,
r’e%, l’el in Vf has a solution which is unique, since 38t has no
divisors of zero. Similarily, each equation x - rl = r’ l’ can be

uniquely solved, i.e. 7llil is a field.

LEMMA 2. If A is a finite or infinite set of elements of a semi
simple ring S then the subring A SA is either nilpotent or it contains
a principal idempotent element e and has a representation A SA =
eSe + N where eSe is a semi simple ring and N is the radical

of ASA.
Proof. Let 38 and 1 be a r.h. and a l.h. primitive subideal

of A S and SA respectively. If the ring SBt is nilpotent for each
38 and f, then also A SA is nilpotent. If now for certain 38 and 1
the ring ID3f is not nilpotent, then as in lemma 1 it follows that
7llil is a field since in this case le :A 0; hence A SA contains
idempotent elements. Let now e be an idempotent element of
highest rank which lies in ASA, and suppose AS = eS + 38,
SA = Se + 1 where 38 and 1 are chosen such that ee = r e = 0.
Then Î38==0; in fact, suppose Ï ID3 =F 0 then there exists a pri-
mitive I.h. ideal f and a primitive r.h. ideal ID3 such that IU:A 0;
1 CI; 38(=;38. Hence (Lemma 1) U f is a field and has a unit

e’. Since e 1 = lUe = 0 we have ee’ = e’e = 0 and therefore

1 e + e’ 1 === 1 el ] + 1 e’ ] which contradicts the assumption that e
is an idempotent of highest rank as e + e’ is an idempotent
which lies in ASA and has the rank e +1. From ïw == 0
follows that the ring N === e5ï + ID55e +ï is a nilpotent ideal
in A SA which together with ASA = ese +N completes the

proof.
REMARK. If ID3 and 1 are different from zero and if e1 and e*

are units of 7lli and Ï respectively, then e*e1 === 0. We set e2=e* -ele*,
then e2 is also a unit of Î and ASA = eSe + e1SA + ASe2’ where
e, el, e2 are orthogonal.
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6. LEMMA 3. If 1 a + b 1 = 1 a 1 + 1 b 1 and ab == ba == 0,
a:A 0, b"* 0 then two orthogonal elements «, fl can be found such
that a == «a«, b = Pbfl.

Proof. Since aS and bS form a direct sum we may write

S = aS + bS + ID3 where ID5 is a r.h. ideal in S. If E is the unit

of S we have E = el -f-- e2 + e3 where ela = a; e2b = b; gSB = S8
and eiek = if =kk. Similarly considering the l.h. ideals Sa

ci i=k 
0 i#kand Sb, we f ind é1 and ë2 such that aë1 = a, bé2 = b and êiîk = 0 if i=-k*ei 2=k

From ab = ba = 0 follows further éle, = e2e1 = 0. If now e is

a principal idempotent in the ring aSa (in case aSa is nilpotent
we set e = 0), then from aSab = basa = 0 and eS C aS Se C Sa
follows eb = be = 0 and ele = e. Setting e’ = e1- eel; e1= e’+ e
we have e’e = ee’== 0, e1el e 15 e1a = a where e’, ei are idempotent.
Similarly we find éi, é’ such that eé’ = é’e= 0, élei = él, aéi = a.
If we set aSa = e.Se + eSê’ + e’Se + e’Si5’ then (see 5 ) -ê’e’ = 0,
hence the element «=e+e’+(%’-e’é’) is idempotent and
«a == aoc::= «a«. Since now xb = b0153 == 0 if we substitute for x

any of the elements e, e’, e’, it follows that «b = b« = 0, i.e.

the element b lies in the ring (E - oc)S (E - oc), which completes
the proof as we may set P --- E - oc.
LEMMA 4. If a=l" i=l ai, lal=l’llail i= ai f and aja k=o for i -# k,

then there exists an orthogonal system of elements ai (i =1, ..., m )
such that ai = èl..iaioci.

Proof. We prove by induction. For ni = 2 the lemma is true

according to lemma 3. For m &#x3E; 2 we set b lm ai, then al and b
satisfy the condition of lemma 3, hence, there exist two idem-
potents a, and P such that al = oclalocl, b = flbfl, xlfl = f30Cl = 0.
For the elements ai (i = 2, ..., m) of the semi simple ring
f3Sf3 we may assume the validity of the lemma (since the number
of the elements in this system is less than m), hence there exists
a system of orthogonal elements «2, ..., OCm satisfying together
with oc, the relations in question.

II. Reduction to the normal form.

LEMMA 5. Let S be a simple ring and Ci,k (i, k= 1, ..., n ) an

arbitrary matric-basis of S. Suppose CES; c = £Dic, ; ) c - 1 ;
CiCk - ° if Z . Then the element c is equivalent to Xl £Î i c.Cick 0 

if 
k = i+l . 

en the element c is equival ent to LJÂ=l &#x3E;

Proof. The r.h. ideal Ci+lS and the l.h. ideal Sei satisfy the
conditions of lemma l, hence, there exists an idempotent ë’i+1,i+l
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whieh is the unit of the field Ci+1SCi and therefore ciëi+1,i+1 ci;
ëi+1,i+1 Ci+1  Ci+i , i = 1, . - - , rn - 1. From CiCk == 0, k * 1£ + l
follows further Ci i Ck k = 0, i # k.

If c* resp. c* is an arbitrary l.h. unit resp. r.h. unit

of c,S resp. Sc then we set -C = C* - C* Y’. z, il, - .., c +i =of cxS resp. SCm then we set cx, 1 = ci 1-- C:t,l k.Ji=2Ci,i’ Cm+1,m+1-
C*+l +1 - i= M+I,M+l and thus obtain an orthogonalem+1, m-I-1 Em 2èi,iC* ,m , and thus obtain an orthogonal
system Ci,i’ i = l, ..., m + 1. Setting further c2, 2+1= Ci, Ci,i+it =

c CHe’ then the ëi, i+ ; ’ (i = 1, ..., m, À = 1, ° ° ° ’ m - i -+-1 )
are different from zero as a consequence of ci = l, and CiCi+1 *°
as in this case we have cici+,S =: ciS and therefore in general

IIÂ-L 0 ci +,0 S = CiS =1= 0; we complete now the ëi,k (i  lc, i, k =

1, in+ 1) (by known argument) to a matric basis Ci, k
(i, k = l, ..., n ) of S. According to a theorem. of Artin 3) there
exists a regular element r which satisfies the relations

r-1 c2 k T - ci , 2, k = 1, ..., n. Since a = 
M - 

2+1 we obtainCi, k I. = Î5i, k, k = 1 , ..., n. Since a = i==l Ci,i+l we obtain

1’-1 (Yim, Ci,i+1) l’ =a, q.e.d.

THEOREM 2. Let S be a simple ring and Ci, k (i, k = l, ..., n )
an arbitrary niatrie basis of S. Suppose futher a E S, a = ai,
1 a 1 = £1=1 1 a ’ , ai = Xl?i it, à , 1 ti,,, 1 1 and t t 0 a § ) § N .
Then a is equivalent to £?L CA@; +x -I- ynl+n 2+1 C) +i + ... +
+ nl+...+n,+q-1 c 

ent to k.Jit=l Cit,}. +1 it=nl +2 C;., it +1 
... +

+ £§J°°Ô’c  . 
1 

+ - ... - na-1-i-- q C,, , -i-1 ’
Proof. The proof follows immediately by combining lem ma

4 and lemma 5.

THEOREM 3. If S is a semi simple ring and a is a nilpotent
element of index m + 1 4) then, there exists an orthogonal systen2
di (i =1, ..., q), each di being of Tank 1 such that

Proof. From SaJ’+I C SaÀ follows easily SaÂ+l C Sa). if J. £ »i
since SaÂ+1 === Sa} implies SaÂ+Q === SaÂ for each u, hence aG # 0
for each a which contradicts am+1 ==0. If 1) denotes the set
of all éléments l_1 such that l-l E Sa)-l and 1;-1 a == 0, then
1)_ is evidently a 1,h, ideal which is différent from zéro in case

3 ) E. ARTiN, Zur Théorie der hyperkomplexen Zahlen [Hamb. Abh. 5 (1927),
251-260].

4 ) The index is m+1 if am+1 = 0 and ak #o for 1;  in.
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Im-l form a direct sum.
We set Sam-2 == I.-2+1m.-t +Ïm-t and -,=-1+1, then

duction we obtain the decompositions

( 2 ) SaÂ == 1;.. + 1;’, lÁ+1 ç: l;v’ 1; +1 1;’ ( À # i , ... , %l )

where each relation lÀa == 0, lÀ E 1) implies l).. === o. We now set

11 - IÍ+l + I! (,1 == 1, ..., m); then I:n = I;, and we have

Safd === le + =e Ii; in particular sa = ii + zDi il . If we set

S = Sa + 1, and E = e1 + £$Î- e§/ + e where E is the unit of

S, and ei e li , ete lt, e e l, then (as it is well known ) we have

The element

is a unit of 1) , and we have e ,e ee == 0, and for Â 1:, the
relations e’ e-, e-, e. e If further eA denotes any l.h. unit of I.,
then from e e= 0 follows also e ee. = 0 since e E fi and fi Sex.
Suppose now

Since it follows from 1, 3 that
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Multiplying (4) by a we obtain aÀ+1 == lÀ a since 1£a = 0; there-
fore aÀ+1s = lÀ aS = 1AS 5). From (4) we obtain (in view of (3))
a eÂ = lie’ = 1) and hence

From (8) follows easily

Using (9) for Â = 1 and (3) we further obtain

Not all the r.h. ideals which appear in the right side of (10)
are necessarily different from zero, since some of the e* may
vanish. We denote by cl’..., Ct those e,* which are different

from zero, and may assume that c1 = e* since em* = e’ :A 0.
Then m1 = m, and we have

where we may assume m = m1 &#x3E; m2 &#x3E; . .. &#x3E; me. The ci satisfy
the relations

We now represent each cÀ5 as a direct sum of primitive r.h.
ideals: cÀ5 === Xl§c£S where the ciO’) are chosen such that

cA Cf-O’

From cÂcÀ/ = 0 for À =F À’ follows further CCf) c1/) = 0 if À# À’,
and we obtain from (12):

From (11) and the second part of (8) we now obtain

Setting for the’sake of simplification
we obtain

5) The last equality is a consequence of l;.aS ç I;.S and Il;.ar = Il;.1 (see
the definition of ’À)’ 

-
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where mi = npl +P2+" ,Pi-l +Â’ Â = l,..., Pú Po =: 0. Since ( according
to (13)) the di form an orthogonal system, and since from the
primitivity of the c S follows I d2 = 1, the relations (15)
and (13) complete the proof of the theorem.

THEOREM 4. If S is a semi sirnple ring and a is a nilpotent
element of index m + 1, then a can be represented in the form
a = £§- ai where 1 a = £§_ 1 ai I and aiai’ = 0 if i # i’. Further,
each ai has the form ai = k= 1 ri , k where

Proof. From (15) it follows that a can be represented in the form

where rX)Ed;.S, 1 airii) =1, and hence a I = Xlf_ n, .
We multiply both sides of (17) right hand by airîB

then: : ai+lrX) == ÀlÎii airii) ai rf) + ... + £Îli airi) air1). Since

ai+1r) Eai+1d;.S; air) airX) eaid(JS and since the ideals akd6S
form a direct sum it follows in case i === n;. that aj+1 ’X) == 0
(see (13)) and therefore a,r§ a"rj = 0 for each i, a, Â; in case
1 n we obtain aj+1r(j) == ai+1r(j+l) ai 1’(j) -1- 0 while air(i)air(j) - 0fore 

A 

.. .+1 Thus by se tting. 

o ar ni-k (n.-k) 
a 

n. 
).-

for each 2 --1. Thus by setting ri, k+1--- a r2 Z , ai-==’k.Jklri,k’
we have in addition to 1 ri,kl I ==1 the relations 

i’

DEFINITION. If S is a simple ring, then the representation ( 18 )
is called the normal representation of the nilpotent element a
of S, and the numbers nl, n2’ ..., nq the characteristic of a.
Above definition is justified by the following
THEOREM 5. Two nilpotent elements of a simple ring are equi-

valent if and only if their characteristic numbers coincide.
Proof. The proof follows easily from theorems 2 and 4.

COROLLARY. The number of the di,,fferent classes of equivalent
nilpotent elements of a semi simple ring is finite.
REMARK. It is easily seen how lemma 5 in II, theorem 2, the

above definition and theorem 5 should be modified in case S
is semi simple.
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III. Application to rnatrices.

a1...........a1

Let .":..’: be a matrix in an arbitrary field F. If for
al ... an

1 1’  rn, 1 s,  s, : ... .  Sr  m, and fsl, fs2, ..., fsr, fsiEF
where fSi"* 0 at least for one i, the relations Y,"==lfsiasi
(k = 1, ..., n ) hold, then the r rows ali, ..., ani (i = l , ..., r )
are called left hand (in short: 1,h. ) dependent. Otherwise these
rows are called I.h. independent. Similarly the right hand (in
short: r.h.) dependence of the rows, as well as the I.h. and the
r.h. dependence and independence of the columns is defined.

DEFINITION. The maximal number of I.h. independent rows
of a matrix is called the 1.h, rank of the rows. Similarly the r.h.
rank of the rows as well as the I.h. rank and the r.h. rank of the

columns is defined.

In general, the r.h. rank of the rows (columns) is different

from the 1,h, rank of the rows (columns). Moreover, the following
theorem can be easily proved: If the r.h. i-ank of the rows (columns)
of each matrix of second order is equal Io the l.h. rank of the rows
(columns), then the field F is commutative.
As to the I.h. rank of thc rows (columns) and the r.h. rank of

the columns (rows ) it will be shown in present paragraph that
they are always equal to each other.

«i...«1
We now consider the set S of all square matrices a = . n... :

«1 ... etn
of order n (a shorter notation : a = (ce))). Defining equality,
sum and product as follows

WC obtain, as it is well known, a simple ring of length n.

THEOREM 6. If a E S, then the length of Sa is equal to the l.h.
rank of the rows of a and the length of aS is equal to the r.h. rank
of the columns of a.
Proof. We denote by a;. (À = i, ..., n ) the matrix, the Âth roW

of which coïncides with the a.th row of a while all the other
elements are zeros. We assume (for the convenience of notation)
that the r l.h. independent rows are the r first ones. From the
l.h. dependence of any r + 1 rows follows for each r + À, Â. = 1, ...,
n - r the existence of r elements f§+À (i = 1, ..., r), such that
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ak+Â = Xl§_ f[+ a£, k = 1, ..., n. If further br+l (À = 1, ..., n )
denotes the matrix the ( r -- , )th row of which is equal to

fr+A l ..., f+l, , 0... 0 then ar+Â = br+Â 2:;=1 ai (À== 1, ..., n-r) ,
and hence, the l.h. ideal Sa is a subset of (Sal, ..., Sar) (since
a == 2::=1 ai).
On the other hand, if ek denotes the matrix ail the elements

of which are zeros, except the élément in the kth row and kth
column which is equal to the unit of the field F, then eka = ak
and hence (Sa1’...’ Sar) S Sa; therefore (Sa1’...’ Sar) = Sa.
If further =1 siai == 0; Si E S, it follows from the l.h. independence
of the r first rows that all the elements of the ;}h column of s).
are zéros, and hence siai = 0 (i =1, ... r ); in other words, the

Sai (i =1, ..., r) form a direct sum: Sa . = Sa1 + ... + Sa"..
Since finally (as easily verified) the I.h. ideals Sai (i= l, ..., r)
are primitive, the first part of the theorem is proved. The
second part follows similarly.
By 1, 2 and theorem 6 w e now obtain:

THEOREM 7. The l.h. rank of the rows of a matrix is equal to the
r.h. rank of the corumns.
As to the r.h. rank of the rows and the l.h. rank of the columns

of a matrix a, their equality follows by considering the transpose
of a and applying the theorem just proved.

It is clear how the results of II should be applied to the
matrices of the ring S : Each nilpotent matrix can be transformed
to a Jordan form, the structure of which is interpreted by theorems
4 and 2.

I v : Appc’ndiae.
It might be of some interest to show the usefulness of the

interpretation of the rank stated in theorem 6 also by the
following examples. As in section III we denote by 5 the simple
ring of all matrices of nth order in an arbitrary field F.

1. If a e s and 1 al = 1 SI, then a is called a regular matrix.
In this case we have Sa = aS = S. This implies for each b E S
the relations Sab = Sb, baS = bS, and hence : 1 ab 1 == 1 ba 1 == b 1.

2. If a E S, b ES then ex) [ a + b [  ] a ] + ] b ) ; fl ) [ a + b [ &#x3E; ] a ] - ] b ] ;

In fact, a is an immediate consequence of (aS, bS) D (a + b)S.
To prove f3 we write a == a + b + (- e) b, where e is the unit
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of S; then by oc and 1 we have lai  la+bl + Ibl. Relations y
follow from abS C aS, Sab C Sb.

3. If a E S, b E S, c E S then ab + 1 bc b + 1 abc .6)
In fact, since bS bcS, we may write bS = bcS -E- dS, where

dES, d == 1 b 1 - bel. Multiplying by a we obtain abS = (abcS, adS)
and therefore ab  1 abc 1 + 1 ad 1  1 abc 1 + 1 dl == 1 abc 1 + 1 b 1- 1 bc , ,
or 1 abl +Ibcj 1 label + 1 bi, , q.e.d.
Remark. Specialising the above inequality we obtain the "law

of nullity" of Sylvester: labllal, , ’ab/Ibl, ) ab ) &#x3E; ) a ] + ] b ] - ] S ] .
4. If a E S, aS e 0 and s &#x3E; 1 al, then a =/ 0 for each natural

number t. Since aSDa 2S D ... ;2 aSS and since ais D ai+lS

(i = l, ..., s -1 ) would involve 1 al &#x3E; s contradictory to the

assumption, it follows that for a certain i (1  i C s ) the relation
aiS == ai+1S must hold, which by successive multiplication gives
(by induction) aiS = ai+kS for each k, and hence at =1=- 0 for

each t.

5. The theorem in 4 may be considered as a special case of the
following: If ae S, aiE S, biE S, ai == abi (i==l, ..., s), al . a2... aS =1= 0
and s &#x3E; 1 al l then there exists an element c of ,S and a naturel
number t such that c = cl C2 ... et t where the ci are elements
of the set al, a2, ... , as and Ck # 0 for each k 7).

(Received July 20th, 1937.)

6) For matrices in a commutative field this was proved by FROSErrm’s, LUber
den Rang einer Matrix [Sitzungsber. d. Akad. Berlin 1911, 20-29].

7) This follows easily from § 2 of the paper: J. LEVITZKI, Über nilpotente
Unterringe [Math. Ann. 105 (1931), 620-627].


