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On the equivalence of the nilpotent elements of a
semi simple ring
by
Jakob Levitzki

Jerusalem

Introduction.

In the present note it is shown that cach class of equivalent
nilpotent elements of a semi simple ring ') can be characterised
by certain characteristic numbers; two nilpotent elements belong
to the same class if and only if their characteristic numbers
coincide. This is achieved by reducing each nilpotent element
to a certain normal form. As a consequence we find that the
number of classes is finite. Applying our results to square matrices
in a commutative or non commutative field we find that each
nilpotent matrix can be transformed into a Jordan form 2).
Essential use is made of the notion of the ,,rank’ (see I, 2)
which yields an interpretation of the rank of a matrix based on
the theory of the ideals in a simple ring. The convenience of this
interpretation is also shown by a few examples in the appendix
to this paper.

I. Notations and preliminary remarks.

1. If B, W,, ..., W, are r.h. (read: right hand) ideals of
a semi simple ring S, then we denote by (&;, W,, ..., W,,) the
r.h. ideal W which consists of all the elements of the form
X 1, 1€%,. If from X v, = 0, r,e; follows always 7; = 0,
i =1,...,mthen Wis called the direct sum of the W, and we

1) Two elements a and b of S are called equivalent if for a regular element 7
of S the relation r—ar = b holds.

a, 0 ...
2) The Jordan Form of a nilpotent matrix is ( 0a,. .. ) where each a; is
0£0...0 ‘0 . . .ap,
00e...0
a matrix of the form e ..... ], € being the unit of the field.
000...¢
000...0
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write =[], + W, +...+B,, or =" W,. If in I, W,
the W, are primitive (i.c. the W; are different from zero and
do not contain any subideals except %, and the zero ideal)
then the number m is called the length of ®; notation: [%3| =
length of . Similar notations are used for Lh. (read: left
hand) ideals. If %5 is the zero ideal, then || =o0.

2. LemMa 1. If acS, beS then |abS| <|aS|; |Sab| <|Sb|.

Proof. This is an immediate consequence of abS CaS and
Sab C Sb.

Lemma 2. If aeS, beS then |abS| =< |bS| and |Sab| =<|Sal.

Proof. Suppose bS = X" W, where the ¥, are primitive
r.h. ideals, ie. |bS|= m. Multiplying by a we obtain
abS = (aB,, aBW,, . . ., aBW,,). Fach aB; is (as easily seen) either
a primitive r.h. ideal or zero, i.e. [abS| <|bS|. Similarly follows
| Sab| <|Sal.

LeEMMA 3. If aeS and a*= a then |Sa| = |aS]|.

Proof. For a= 0 the lemma is trivial. For a0 let aS = Eznzl%i,
where the %8, are primitive r.h. ideals, i.e. |aS|=m. Let
a = E;-n:la,-, a; e, then from a?=a we obtain (by known argu-

ment) the relations aiak} :2_ it “* and hence Sa = X, Sa,,

i=h’
which implies |Sa| = |aS| since a; #0, i =1, ..., m. Similarly
follows the relation |aS| =|Sal, and hence |aS| =|Sal|.

THEOREM 1. If aeS then |aS| =|Sa|.

Proof. Suppose S =aS -+ LB, where B is a r.h. ideal. The
unit ¢ of S has a representation of the form e = ab + ¢’, where
¢'eBW and (as casily seen) (ab)? = ab; |abS| =|aS|. By lemma
8 we have therefore |abS| =|Sab|=|aS| and hence (by
lemma 2) |Sa| =|aS|. Similarly follows |aS| = |Sa| and hence
| Sa| =]|aS|, q.e.d.

NoraTioN: If aeS, then the common length of aS and Sa is
called the rank of ¢ and is denoted by Ial.

3. From 2 follows easily: Ifa,eS (i=1,...,m) and if
’/\2:’&:1 al)S == Zilais then also 52?:1% = Z?L:IS@Z-, In this case
we have the relation | X7 ;| = X" |a;| and we say that the
a; form a direct sum. Conversely from | XY a,| =X |a,| it
follows that the r.h. ideals @;S (resp. the Lh. ideals Sa;) form a
direct sum. Thus the sum of idempotent elements ¢; (i=1,...,m)

which form an orthogonal system (i.e. eiek} = g if l¢:) is direct.
i 1=
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4. From 2 and 8 it follows casily, that if &= X a,,
la| = £ ,|a;] and ab=0 (or ba =0) then a;b =0 (or resp.
ba; =0) for each 1 =1, ..., m.

5. LemmA 1. Let S be a semi simple ring and T, | primitive
r.h. resp. Lh. ideals. If | - B 5~ O then the subring W of S is a field.

Proof. Suppose 7,1, - 75l, = 0, where 7,¢ B, l;el, i =1, 2. Then
either rl; or r,l, is zero, since otherwise it would follow from
[W£0and from the primitivity of Wand [ that [W=(Sry;)(r,l,S)=
S(rlir4l,)S = 0. The ring aSa has, therefore, no divisors of
zero. From [ £ 0 follows also by similar argument for 7%,
lel, 71 4 0 the relation 71 - Wl = WY, i.e. each equation rl - x =1,
r'el, U'el in W has a solution which is unique, since TW! has no
divisors of zero. Similarily, each equation -7l =17'l" can be
uniquely solved, i.e. Il is a field.

Lemma 2. If A is a finite or infinite set of elements of a semi
simple ring S then the subring ASA is either nilpotent or it contains
a principal idempotent element ¢ and has a representation ASA =
eSe + N where eSe is a semi simple ring and N is the radical
of ASA.

Proof. Let 2 and ! be a r.h. and a L.h. primitive subideal
of AS and SA respectively. If the ring I is nilpotent for each
W and [, then also ASA4 is nilpotent. If now for certain 28 and |
the ring B! is not nilpotent, then as in lemma 1 it follows that
W is a field since in this case W =£0; hence ASA contains
idempotent elements. Let now e be an idempotent element of
highest rank which lies in ASA4, and suppose AS =eS + T,
SA = Se + 1 where  and 1 are chosen such that ¢%® = [e = 0.
Then [TW = 0; in fact, suppose ITW # 0 then there exists a pri-
mitive Lh. ideal [ and a primitive r.h. ideal 2 such that (T8 0;
ICT; WCW. Hence (Lemma 1) WI is a field and has a unit
e’. Since elW =[We =0 we have e¢’ =¢’e=0 and therefore
|e+e'| =|e| +|e’| which contradicts the assumption that ¢
is an idempotent of highest rank as e+ ¢’ is an idempotent
which lies in AS4 and has the rank |e| +1. From % =0
follows that the ring N = ¢S+ WSe + B! is a nilpotent ideal
in ASA which together with AS4A =eSe + N completes the
proof.

Remark. If % and | are different from zero and if e, and e*
are units of I and { respectively, then e¥e; = 0. We set e,—e* —e,e*,
then e, is also a unit of {and ASA = eSe + ¢,SA + ASe,, where
e, €;, €, are orthogonal.
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6. Lemma 3. If |a+b| =|a| + |b] and ab = ba =0,
a0, b#0 then two orthogonal elements «, f§ can be found such
that a = aax, b = pbp.

Proof. Since aS and bS form a direct sum we may write
S =aS +bS + W where W is a r.h. ideal in S. If E is the unit
of S we have E = ¢, 4+ e, + e¢; where ¢,a =a; e;b =b; ;B =

0 jp 17K Similarly considering the Lh. ideals Sa

e ! i=k"

i = .
0 .,t#k
.lfizk’

and eiek} =
and Sb, we find ¢, and €, such that e, =a, be,=b and Eiék} =

From ab=ba =0 follows further &e, ==¢e; = 0. If now e is
a principal idempotent in the ring aSa (in case aSa is nilpotent
we set e =0), then from aSab = baSa = 0 and eS C aS Se C Sa
follows eb — be — 0 and e;e —e. Setting ¢’ —e, —ee,;; ¢, —e +e
we have e'e =ee' =0, e;e;, =¢,, €;a = a where ¢, ¢; are idempotent.
Similarly we find €;, & such that e¢' =¢'e= 0, ¢,¢; =¢,, a¢, = a.
If we set aSa = eSe+eSe'+e'Se+e'Se’ then (see 5) €'e¢’=0,
hence the element o =e-e'+ (e'—ee’) is idempotent and
oaa = ao = aae. Since now b =bx =0 if we substitute for x
any of the elements e, ¢, €, it follows that ab = ba =0, i.e.
the element b lies in the ring (E—a)S(E—a), which completes
the proof as we may set f=F — a.

LemMA 4. If a = 27" a;, |a|= X" ,|a;| and a;a;, =0 for i #k,
then there exists an orthogonal system of elements o; (i=1, ..., m)
such that a; = d,a;0;.

Proof. We prove by induction. For m = 2 the lemma is true
according to lemma 3. For m > 2 we set b= X" ,a;, then a; and b
satisfy the condition of lemma 38, hence, there exist two idem-
potents «, and § such that a; = oya,0,, b = b, o, = fo; = 0.
For the elements a; ({=2,...,m) of the semi simple ring
BSp we may assume the validity of the lemma (since the number
of the elements in this system is less than m), hence there exists
a system of orthogonal elements ay, . . ., «, satisfying together
with «; the relations in question.

II. Reduction to the normal form.

LemMA 5. Let S be a simple ring and c; ; (i, k=1,...,n) an

arbitrary matric-basis of S. Suppose ceS; ¢ = X" i |ci|=1;
=0.,k#i+1 . . m

cick} 0 lfk=i+1 . Then the element c is equivalent to 2}_:1"1,“1'

Proof. The r.h. ideal ¢;;;S and the Lh. ideal Se¢; satisfy the
conditions of lemma 1, hence, there exists an idempotent €;.1,:41
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which is the unit of the field ¢;,;S¢; and therefore ¢;C;i1 ;1= ¢;;
Cit1,i41Ci41 = Civ1s © =1, ,m—1. From c¢;¢;, =0, k#1141
follows further c, il = 0, i # k.

If ¢f, resp. ¢}, 41 is an arbitrary Lh. unit resp. r.h. unit

m

of ¢,S resp. Sc,, then we set &, ; = ¢f; — ¢y Xy 2C; 50 Cmit,mis =
ot me1 — Zﬁzﬁi,ic;'; FLm41o and. thus obtain an ortPOgonal
system ¢ 1=1,..., m+1. Setting further ¢; ;= ¢;; €544, =
Hg 0Cito> then the ¢; ;. ; (i=1,...,m, A=1, m—1i-+1)
are different from zero as a consequence of |¢;| = 1 and €;C; 170
as 1n thls case we have ¢;c;.;S =¢;S and therefore in general
He 0CitoS = ¢;S#0; we complete now the ¢;; ‘(ié'k,'i, k=
1, ,m-41) (by known argument) to a matric basis ¢;
(2, k:I, ..., n) of S. According to a theorem of Artin 3) there
exists a regular element r which satisfies the relations
rle; xr=7¢ 4,5 k=1,...,n Since a= 2 1€ 441 We obtain

rt (Z:’;l Ci,i+1)"' =a, q.e.d.

THEOREM 2. Let S be a simple ring and c;; (i, k=1,...,n)

an arbitrary matric basis of S. Supposc further aeS, a = X;_, a;,

. = _ . A
la| = 2i_; ] a4, a :Z:’:lt“, |t; .| =1, and 1, , “,} Ozfgi):i.

n,+n, +1
Then a ts equivalent to Ea L1 61T 2 =n, Yo Capr T T
nyt+. +n +q 1
+ Zl=n1+...+nq_l+q c}.,,1+1 *

Proof. The proof follows immediately by combining lemma
4 and lemma 5.

THEOREM 8. If S is a semi simple ring and a is a nilpotent
element of index m 41 %) then there exists an orthogonal system
d; (i=1,...,4q), each d; being of rank 1 such that

(1) aS =% a'd, S + ;2 ald,S + ...+ E?;laid,qs,

<
atd }7&0 f}“ jind (c=1,..,q¢ and m=n, =n, = ...
>Ng

Y

ng)-

Proof. From Sa?*1C Sa* follows easily Sa**1C Sa” if A = m
since Sa*tl — Sqg’ 1mphes Sa**te = Sa* for each 0, hence a®#0
for each o which contradicts a™+! = 0. If I/1 ; denotes the set
of all elements I;_, such that [ 1e5a7' and I,_,a =0, then
[,_, is evidently a Lh. ideal \Vthh is different from zero in case

3) E. ArtiN, Zur Theoric der hyperkomplexen Zahlen [Hamb. Abh. 5 (1927),
251—260].
4) The index is m 41 if a™t' =0 and a*£0 for k <m.
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A= m-+1since a™eSar~1, a™el;_;, and a™# 0. From Sa*~1D Sa*
follows I;_, 21}, 2=1, ..., m+1. Setting Sa™=1,, + [/, then ob-
viously ImﬁO (smce am+1=:0) We further set Sam 1-I RS Y
then obviously {,,_, 0, and if [, ;a=0, [, ;el, , then
lpyy=0. From Sam2DSaem1 follows Sa™ 221, ;,. From
m_,,—l—lm =05 L el o3 b, 1€l follows I, _ 2a—l—l _1a=0,
and since I,,_,a =0 we have l,,_;a = 0 which implies 1, ; =0,
and hence also lm_z_o, in other words, the ideals Im_z and
[,,—1 form a direct sum.

We set Sam2=1 _ 4+l . +1, , and [, s=1, 41, ;, then
Sam? =1, _,+1,_,, and it is easily seen that from I,,_,a =0,
lpsel, o follows 1, , =0, further, [, ,21, ;. Thus by in-
duction we obtain the decompositions

(2) S“l:I}F{"I}n L Chs Ih+1g& (A=1,...,m)

where each relation lza—_— 0, l;el, implies [; = 0. We now set
O=0.,+15 (Z-—l ., m); then [, =0*  and we have
Sa? =1, + X7~ olis in partlcular Sa=1 + X" ¥ If we set

t=1"
S=Sa-+1, and E =e¢, + Xi-,ef +¢ where E is the unit of

S, and ejel;, efelf, cel, then (as it is well known) we have
e =e;, ef =¢f and eef =efe, = efef =0 for i #j.

The element
(3) €, = Xy ef

1=A"1
is a unit of I,v and we have ¢¢; =¢;¢; =0, and for A =1, the
relations eje; = e, ¢;=e¢,. If further ¢, denotes any Lh. unit of I,
then from e,¢; = 0 follows also ¢,¢; = 0 since ¢,el; and 1, = Se;.

Suppose now
(4) =10+

where lﬂ.etl’ ll€ I}» Then a,}”'eel = (ll+g + ll_*_e)el = (l}.+ee}.+9 -+
+ l/1+eel+e)el = U040 = Gioiro = Gug T lig)hro =
alt QeHe, hence

(5) a* ey =dltee) .

e

From alez,‘ = (l, + l}_)e* and l}_e Se, follows 1, ez,‘ =0, hence
ale;“ = liez,‘ = lﬁe&e =3 e ep ie.:
(6) atef =0 if g<A.

Since |a*| = |;| + |13 it follows from I, 8 that
(7) a*S =1,S +1;S.
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Multiplying (4) by a we obtain a**!= [;a since l3a =0; there-
fore a**1S = 1;aS = ;S %). From (4) we obtain (in view of (3))
atej = l;ey =1, and hence
(8) atS = d?*1S + ke S, |ates| =|¢].

From (8) follows easily
(9) a*S=d*e)S +atte; S+ ... +ame,S (A=1,...,m).

Using (9) for 2 = 1 and (8) we further obtain

(10) aS=37 aeXS+ T tate S+ ...+ 25 d'e*S+ aerS

Not all the r.h. ideals which appear in the right side of (10)
are necessarily different from zero, since some of the e may
vanish. We denote by ¢,, ..., ¢, those e;-" which are different
from zero, and may assume that ¢, =e} since e* =¢ 0.
Then m; = m, and we have

(11) aS =X aie,S + X2 atc,S + . .. + XM, a'c,S
where we may assume m = m, >my, > ...>m,. The ¢, satisfy

the relations

10 ik 1 = .. A>m;
(12) cick}_c,lfi:k’ a Ci}¢01f,1§m,-’

We now reprcsent each ¢;S as a direct sum of primitive r.h.
ideals: ¢;S = X% ¢S where the ¢/ are chosen such that
;, , 0 .p 070’
;= Zgh e, e } = o it 7 .
From c;c;; = 0 for 25 2’ follows further ¢{?c¢{7? =0 if 1£ 4,
and we obtain from (12):

(67) A(0) A=A, 0=0" ©) >ny
(13) SO Y } O feltherl;él oro#ao’’ and a* ) 01f1<n;,.

From (11) and the second part of (8) we now obtain
(14) aS=X" DNEN atelS + Xhe (202 a AOS ..+
. Z'gtlzl ateS.

Setting for the sake of simplification ¢{? = d,, ¢/ = dy t..p,_+o
we obtain

(15)  aS=2X aid,S + X2,a'd,S + . .. + X}, ald,S

5) The last equality is a consequence of l;.asgl;.s and |La| = |1;| (see
the definition of /;).
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where m; = My tpyb., 1o A=1,...,p; Po=0. Since (according
to (18)) the d; form an orthogonal system, and since from the
primitivity of the ¢S follows |d;| =1, the relations (15)
and (18) complete the proof of the theorem.

THEOREM 4. If S is a semi simple ring and a is a nilpotent
element of index m + 1, then a can be represented in the form

a=X;_,a; where |a| = Z_, |a;| and aay =0 if i #4'. Further,
each a; has the form a; = X" r; . where
K £k 41

(16) |a,| = ZpLi| 7wl 7ol =1, rz',k"i,k’} 0if ) p 5

Tixlow =0 if 15449, and m = ny =ny, = =n,.

Proof. From (15) it follows that a can be represented in the form

(17) a=21ar® £ X7 airl 4 ...+ X il
where ried;S, |a*r{)| =1, and hence |a| =TI n,.

We multiply both sides of (17) right hand by afr P,
then: o™ =1 alr@ i) 4+ ...+ Ez 1479 &r. Since

a0 e dd,S; ar(’) a’rf{)ga’d S and since the ideals a*d,S
form a direct sum it follows in case 7“"1 that qi+1? r}.” =0
(see (18)) and therefore a’r® air® =0 for each i, o, 1; in case
j<mn, we obtain a’“rﬁ’) = a’“r(’“’ a’r(’)#o whlle a r(“afr;”—o

for each 4 j+1. Thus by setting 7, ,,, ,=a™ " (n

7 o s @ =2ply T g
we have in addition to |7, ;| =1 the relatlons

a n, e e,
(18)  a=2X; qa,a, =2} 7 5, T x Ty =0 if 447,

0 1f K ;HH_I

Le. aay =0 if 44" and "i,k’i,k'} # =k+1

e.d.

DerinITION. If S is a simple ring, then the representation (18)
is called the normal representation of the nilpotent element a
of S, and the numbers n,, n, . .., n, the characteristic of a.

Above definition is justified by the following

THEOREM 5. Two nilpotent elements of a simple ring are equi-
valent if and only if their characteristic numbers coincide.

Proof. The proof follows easily from theorems 2 and 4.

CoroLLARY. The number of the different classes of equivalent
nilpotent elements of a semi simple ring is finite.

REMARK. It is easily seen how lemma 5 in II, theorem 2, the
above definition and theorem 5 should be modified in case S
is semi simple.
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III. Application to matrices.

a ...a
Let ( ...... ) be a matrix in an arbitrary field F. If for

SRR

1<rsm 1<s; <8< ... <8, =m,and fsq, fss, . . ., f5,, [8;€F
where fs; 0 at least for one 4, the relations X._, fs.ai:
(k=1,...,n) hold, then the r rows afs,...,as (i=1,...,7)
are called left hand (in short: 1.Lh.) dependent. Otherwise these
rows are called Lh. independent. Similarly the right hand (in
short: r.h.) dependence of the rows, as well as the 1L.h. and the
r.h. dependence and independence of the columns is defined.

DeriniTiON. The maximal number of Lh. independent rows
of a matrix is called the L.h. rank of the rows. Similarly the r.h.
rank of the rows as well as the L.h. rank and the r.h. rank of the
columns is defined.

In general, the r.h. rank of the rows (columns) is different
from the Lh. rank of the rows (columns). Moreover, the following
theorem can be easily proved: If the r.h. rank of the rows (columns)
of each matriz of second order is equal to the l.h. rank of the rows
(columns), then the field F is commutative.

As to the 1.h. rank of the rows (columns) and the r.h. rank of
the columns (rows) it will be shown in present paragraph that

they are always equal to each other.
Oy e ow

1 al

We now consider the set S of all square matrices a = ( L ")
oF ..ol

of order n (a shorter notation: a = (of)). Defining equality,

sum and product as follows
() = (Be) if o = Bis (o) + (BR) = (k) if o + B = vis
(af)(Br) = (8F) if 8 =Xy offffy (i k=1,...,m),

we obtain, as it is well known, a simple ring of length n.

THEOREM 6. If aeS, then the length of Sa is equal to the l.h.
rank of the rows of a and the length of aS is equal to the r.h. rank
of the columns of a.

Proof. We denote by a; (A=1, ..., n) the matrix, the A" row
of which coincides with the A™ row of a while all the other
elements are zeros. We assume (for the convenience of notation)
that the r Lh. independent rows are the r first ones. From the
L.h. dependence of any 7 4 1 rows follows for each r 4 4, A=1, ...,
n —r the existence of 7 elements f;” (¢t=1,...,7), such that
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& =3 fit*d, k=1,...,n. If further b, (A=1,...,n)
denotes the matrix the (r4-1)™ row of which is equal to
firh L L fith 0, ., Othena,,, =b,,,X;_,a; (A=1,...,n—7),
and hence, the Lh. ideal Sa is a subset of (Sa,, ..., Sa,) (since
a = E?:l a;).

On the other hand, if ¢, denotes the matrix all the elements
of which are zeros, except the clement in the k™ row and k™
column which is equal to the unit of the field F, then ¢,a = a,
and hence (Sa,..., Sa,) C Sa; therefore (Say,..., Sa,)= Sa.
If further Z:=1 s,a;=0; s;€S, it follows from the L.h. independence
of the r first rows that all the elements of the 4™ column of s;
are zeros, and hence s,a; =0 (¢=1,...r); in other words, the
Sa; (¢=1,...,r) form a direct sum: Sa = Sa, + ... + Sa,.
Since finally (as easily verified) the Lh. ideals Sa; (1=1,...,7)
are primitive, the first part of the theorem is proved. The
second part follows similarly.

By I, 2 and theorem 6 we now obtain:

THEOREM 7. The L.h. rank of the rows of a matriz is equal to the
r.h. rank of the columns.

As to the r.h. rank of the rows and the L.h. rank of the columns
of a matrix a, their equality follows by considering the transpose
of a and applying the theorem just proved.

It is clear how the results of II should be applied to the
matrices of the ring S: Each nilpotent matriz can be transformed
to a Jordan form, the structure of which is interpreted by thecorems
4 and 2.

1V. Appendiz.

It might be of some interest to show the usefulness of the
interpretation of the rank stated in theorem 6 also by the
following examples. As in section ITI we denote by S the simple
ring of all matrices of n™ order in an arbitrary field F.

1. IfaeS and |a| =|S|, then a is called a regular matrix.
In this case we have Sa = aS = S. This implies for each beS
the relations Sab = Sb, baS = bS, and hence: |ab| = |ba| = |b]|.

2. IfaeS,beSthena) |a+b| =|a|+|b|; p) [a+b| =|a|—|b[;

?) Iabl}éll';,'.
In fact, « is an immediate consequence of (aS, bS) 2 (¢ +b)S.
To prove f we write a =a + b + (—e)b, where e is the unit

26
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of S; then by « and 1 we have |a| <|a+b| + |b|. Relations y
follow from abS CaS, SabC Sb.

8. If aeS, beS, ceS then |ab| + |be| < |b| 4 |abe] . )

In fact, since bS2bcS, we may write bS = beS + dS, where
deS, |d| =|b| —|be|. Multiplying by @ we obtain abS = (abcS, adS)
and therefore |ab| < |abc| +|ad| <|abc|+ |d|=|abc|+|b|—]|be|,
or |ab| + |be| <|abe| 4 |b], q.e.d.

Remark. Specialising the above inequality we obtain the ‘‘law
of nullity” of Sylvester: |ab| <|a|, |ab| <|b|, |ab|=|a|+|b]—|S|.

4. If aeS, a®*#£0 and s> |a|, then a! £ 0 for each natural
number ¢ Since aS2a2S2D...2a%S and since @S D aitlS
(¢=1,...,s—1) would involve |a|=s contradictory to the
assumption, it follows that for a certain ¢ (1 <7 <Cs) the relation
atS = a*+1S must hold, which by successive multiplication gives
(by induction) a'S = a*+kS for each k, and hence a0 for
each .

5. The theorem in 4 may be considered as a special case of the
following: If aeS, a;€S, b;eS, a;,=ab; (i=1, ...,8),a,-ay+--a,#0
and s > |a| then there exists an element ¢ of S and a naturel
number £ such that ¢ =¢; - ¢, -+ ¢, where the c¢; are elements
of the set a,, a,, . . ., a, and c¢* #£0 for each k7).

(Received July 20th, 1937.)

6) For matrices in a commutative field this was proved by Frosenius, Uber
den Rang einer Matrix [Sitzungsber. d. Akad. Berlin 1911, 20—29].

7) This follows easily from § 2 of the paper: J. Levirzki, Uber nilpotente
Unterringe [Math. Ann. 105 (1931), 620—627].



