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Bilinear formulas in the theory of the
transformation of Laplace?)

by
Einar Hille

New Haven (Conn.)

1. Introduction. In the theory of linear integral equations
the term bilinear formula refers to the expansion of a symmetric
kernel in terms of its characteristic functions. But it can be used
more loosely about any expansion of the form

(1.1) K(s, t) ~ 2,1 9,(5) wa(t)

which may be associated with the kernel. This is the sense given
to the term bilinear formula in the present note. We shall bes
concerned with the kernel of the transformation of Laplace
(1.2) fe)=Q[Fl = e=vF(u)du.

0
Any expansion of the form

(1.3) e B0 0u(w) v,(2)

in which {(pn(u)} is an orthonormal system for the interval
(0, ©), gives rise to a pair of associated expansions

(1.4) Fu) ~ 3, a, ¢, (u),
(1.5) f@) ~ X2 a,p.(2).

Under suitable restrictions the second formula gives an ab-
solutely convergent expansion of a Laplace transform in the
right half-plane in terms of a system of Laplace transforms
which constitute an orthogonal system on the imaginary axis,
the a, being the corresponding Fourier coefficients. Formula
(1.4) is then to be regarded as an inversion formula for such
Laplace integrals. Conversely, if F(u) is given by its Fourier

1) An abstract of the present paper was presented to the American Mathe-
matical Society, October 28, 1936.
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series (1.4), then the corresponding Laplace transform f(z) is
given by the convergent series (1.5).

The present note is devoted to a study of the relations between
the systems {g,(u)} and {y,(z)}, the associated expansions (1.4)
and (1.5), and the transformation of Laplace. For the sake of
simplicity we restrict ourselves to the case of quadratically in-
tegrable functions.

2. The associated systems. Let {p,(u)} be an orthonormal
system of real functions complete in L,(0, o). Put

~

Pu(e) = 8pad = | e, (u) du,
0 ¥

where z = + iy, > 0. These functions are holomorphic for
2 > 0. Since .

Yo (@+1iy) = f e~ Ve g, (u) du,
0

we see that for a fixed 2 > 0, y,(2+1y) equals /27 times the
Fourier transform of e~**®,(u), where @, (u) = ¢,(u) for u =0
and =0 for w < 0. Let us define

(2.2) yaliy) = Lim. [ 00, (u) du,

—a

where L.i.m. denotes the limit in the mean of order two as ¢ — 0.
Then by the Plancherel theorem ¥

| Tentatiy)Pdy=2m ] e g, )] du
— o 0

(2.8) §'2nf | @ (w)]® du = 2
0

=) It Pay,
’ and

fmlwn(w—kiy) —p,(iy)|" dy =

— o0

2nf [1—e==¥]%| g, ()| du—0 as & — 0.
0

It follows that y,(iy) is the boundary function of u,(z) on
the imaginary axis in the sense of convergence in the mean.
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Formula (2.8) shows that p,(z) belongs to the class H,(0) in
the terminology of Hille and Tamarkin. 2)
Let us define

(2'4) Q—n(u) = (Dn(_u)’ 1/"»n("’y) = 1pn('_”:y) , n=1,23,...

It is then easily seen that (2.2) holds for all values of n. Let
@, denote the system {®,(u)}, n =1, and ®_ the system {&_, (u)},
n=1; put =0, 4 d_, and let the letters ¥,, ¥_, and ¥
have similar significance for the functions y,(¢y). The system
@, is closed in L,(0, c0), hence @_ is closed in Ly(— o0, 0), and
@ is closed in L,(— o0, c0). Since a Fourier transformation pre-
serves orthogonality and closure, we conclude that ¥ is an
orthogonal system closed in L,(— o0, o).

We have consequently shown that ¥, is an orthogonal system,
i.e., that the functions v,(2) are orthogonal to each other on
the imaginary axis. The system is of course not complete in
L,(— o0, 00), but we shall see in § 8 that it is closed with respect
to boundary functions of the class H,(0).

We have now the bilinear formula

(2.5) et B0 (1) 9y (3) -

Here v = 0 and R(z) > 0. For a fixed z, the series is the Fourier
series of e—** in the system @, since e—** e L,(0, cv). Hence by
the closure relation

(2.6) S yaletiy)|* =5, @>o0.

But (2.5) is a biorthogonal series since the functions v,(2)
form an orthogonal system on the imaginary axis. It is not a
Fourier series in the system ¥,, however, since e—** does not
belong to any Lebesgue class on the imaginary axis or on any
vertical line. Nevertheless, it is easy to see that it is the derived
series of such a Fourier series, the differentiation being with
respect to . Formal integration gives

(2.7) L] =22, pu(e) [ palt)di.
0

This series is absolutely convergent for # > 0 by virtue of (2.6)
and the relation

U= 2:=1 {J-u‘pn(t)dt}z’
0

2) On the theory of Laplace integrals [Proc. Nat. Acad. Sci. 19 (1933), 908 —
912]. Cf. the introduction to § 8 below.
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which is a consequence of the closure relation for the system
@.. On the imaginary axis the right hand side is the Fourier
series in ¥, of the function on the left.

3. Functions of H,(0). Let f(z) e Hy(0), i.e., f(z) is holo-
morphic for R(z) >0 and there exists a constant M such that

[" |ty =M, a>o0.

-— 0

Such a function admits of boundary values on the imaginary
axis, f(iy) e Ly(— o0, 0), and

[ | f@-tiy) — flin) dy—>0 as 2—o.

— 0

Moreover

(8.1) f | fa+iy)[* dy éf | fiy)['dy, x>o0.
These properties together with the Plancherel theory of Fourier

transforms and the simplest properties of orthogonal series
suffice for the subsequent discussion. 3)

Now let the Fourier series of f(ty) in the ¥-system be
fliy) ~ B2, anp,(iy),
1 (® .
(3.2) a,=5-| S vy,
and form the inverse Fourier transform of

rn(iy) = f(iy) — fu(iy) = fliy) — Z{N a,vp,(ty),

ie.,
) 1 (@ _
Ry(uw) =lim. o J;:N(y) et dy
By (2.8)
@, () = Lim. = [y, (iy)etw dy
27 Y ’
so that defining

(3.3) F(u) = Lim. % [ “fiy) et dy

3) For the properties of functions of the classes H,(0) consult E. HiLLe and
J. D. TAMARKIN, On the absolute integrability of Fourier transforms [Fundamenta
Math. 25 (1935), 329—352], esp. § 2.
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we have
Ry(u) = V2 F(u) — =" v a, @, (u)] .
The function Ry(u)e Ly(— o0, co) and
| IRy du= [ |reiy) dy.

The right-hand side is known to tend to zero as N — oo, hence
the same is true of the left. It follows that

F(u) ~ Zfoo a, (pn(u’)

is the Fourier series of F(u) in @.
By a theorem of N. Wiener ¢) F(u) =0 for u < 0. Since

[" Ry du = 222740, [*—0,

—

we conclude that a, =0 for n < 0. Consequently
(8.4) fay) ~ Iy a,v,(iy),
(8:5) F(u)~ %) a, pu(u)

are the Fourier series of f(¢y) in ¥, and of F(u) in &, resp.
By virtue of (8.5) we have also

(3.6) a,= [ " Flu) g, () du.

¥

Let us now form
rn(z) = f(z) — fu(x) =F() — Iy apyale), R(E)>0.
This function belongs to H,(0) and by (8.1)

[“irstetip)Pay < [ [ryti) dy

= [ )Py — 225 |4,

and as N — oo the last member tends to zero. It follows that
ry(z+1iy) converges in the mean of order two to the limit zero.
On the other hand using (2.6) and the convergence of X |a,|%
we see that fy(z) converges absolutely and uniformly to a limit
in the half-plane 2 =6 > 0. It follows that ry(z-4y) converges

4) The operational calculus [Math. Annalen 95 (1926), 557 —584], 580.
7
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to zero in the ordinary sense as well as in the mean. Hence
(8.7) f(z) =2y a,v,(2),

where the series converges absolutely for R(z) > 0 and uniformly
for R(z) = 6 > 0. On the imaginary axis it reduces to the Fourier
series of the boundary function.

Putting

Fy(u) =X a, (),

we note that Fy(u) converges to IF(u) in the mean as N — co.
But by (2.1)

fne) = | e Fy(u)du,
0
and letting N — o0 gives

f(z) = jwe-w F(u)du, R(z)>0.

0

Thus f(z) is the Laplace transform of F(u), a function which
belongs to L,(— o0, o).
On the other hand, if we start with a yp-series

(8.8) 3; ana(z) with 277 |a,[* <o,

then it converges absolutely and uniformly in every half-plane
R(z) =6 >0 to a function f(z) holomorphic in the right half-
plane. Denoting the Nth partial sum of the series by fy(z), we

first observe that fy(z) € Hy(0) for every N. Further for fixed
x>0

" ftatiy) — fulatin)Pdy < [ | fulin) — fuliv)dy.

whence it follows that fy(z+7y) converges in the mean to f(z+y),
uniformly in 2, and that

| "\ fatiy)fdy < "1 #ti|ay -

Consequently f(z) e Hy(0) and is the Laplace transform of
(3.9) Fu)~Z a, @n(u),
a function in L,(0, o).

Finally, if we start with an arbitrary function F(u) in Ly(0, )

whose @-series is given by (8.9) with X |a,|? < o, we see im-
mediakely that its Laplace transform is the y-series (8.8) which

Ha
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is absolutely convergent for R(z) >0 and, by the above ar-
gument, represents a function in H,(0).

We have consequently proved the

Theorem. The following three classes of analytical functions are
identical (1) H,(0), (II) the set of all w-series

30 a, pa(2) with ) |a,|* < oo and >0,
and (III) the set of Laplace transforms of all g-series
2 a, @, (w) with X, |a,|? < .

Remark. Class (III) is of course identical with the class
of Laplace transforms of L,(0, c0). That the latter class is iden-
tical with H,(0) was proved by Paley and Wiener %).

4. Special cases. The best known orthogonal system in
L,(0, o) is perhaps

(4.1) pa(u) =¢ * L,(u),

where L,(u) is the nth polynomial of Laguerre. Here
=—3)"

4.2 n\B) = ———51 -

(42) W) = e

In this case it is easy to see directly that the system ¥ is closed

. . 7 t .
in Ly(— o0, ). Indeed, the transformation z = --tan-- carries

the imaginary axis of the z-plane into the interval (—=, %) on
the real axis of the ¢-plane and takes the system ¥ into the
system 4

e~(k+d)it p—o0, 41,42, ...

The latter is evidently closed in L,(—=, ). Hence ¥ is closed
in Ly(— o0, o0) so that @, is closed in L,(0, o). This is offered
as an alternative proof of the closure of the system of Laguerre
functions.

To this system @, corresponds the following pair of associated
expansions
© (z—3)"
n=0%n —y

_u
2

(4.4) F(u)~Z,_oa,Ly(u)e

(4.3) fz)=2

%) Fourier transforms in the complex domain [Amer. Math. Soc. Colloquium
Publ. XIX (New York, 1934)], p. 8. See also HiLLE & TAMARKIN, On moment

functions [Proc. Nat. Acad. Sci. 19 (1933), 902—908]. V\OTHE,
\ D
6\3 905
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While these formulas figure already in a note by S. Wigert,
interest in them has been revived by the recent work of D. V.
Widder, F. Tricomi, M. Picone and others. ¢) The credit of having
first called attention to the importance of formula (4.4) as an
inversion formula for the Laplace integral is due to Tricomi.
Picone settled the case F(u) e L,(0, o), whereas Widder showed
that the formally integrated series inverted the Laplace-Stieltjes
integral when f(z) is completely monotonic on the positive real
axis. It should be noted that the system {wn(z)} is closed not
merely with respect to the class H,(0) but with respect to all
functions analytic in the right half-plane. It is obvious that
every such function can be expanded in one and only one way
in a y-series which is absolutely convergent for $(z) > 0. The
coefficients are not necessarily given by formula (3.2) which
may cease to have a sense, but a, is obviously a linear form in
f&), f(3), ..., f™(}) with rational coefficients.
As a second example let us take

(4.5) Pu(t) =T X, (),

where X, (¢) denotes the normalized Legendre polynomial for the
interval (0, 1). Here

(=) (ot

(+.6) Pl =V e G )
Expansions in terms of the latter system are a special case of
the interpolation series studied by R. Lagrange.?) It follows
from his investigations that any function bounded and holo-
morphic in the right half-plane can be represented there by a
convergent y-series. In particular, one concludes that every
function belonging to a class H,(0), p = 1, admits of such a
representation. 8) On the other hand, fairly simple calculations
show that a function representable by a y-series, convergent
in some half-plane, has to be of finite order with respect to 2

8) S. Wicert, Contributions a la théorie des polynomes d’Abel-Laguerre
[Arkiv f. Mat. 15 (1921), No. 25]. D. V. WipDER, An application of Laguerre
polynomials [Duke Math. Journal 1 (1935), 126—136]. F. Tricomi, Trasfor-
mazione di Laplace e polinomi di Laguerre [Rendiconti Atti Accad. Naz. Lincei
(6) 21 (1935), 232—239]. M. PiconNEg, Sulla trasformazione di Laplace [ibid.,
306 —313].

7) Mémoire sur les séries d’interpolation [Acta Math. 64 (1935), 1—80], Ch. VI.

8) Such a function is bounded in every half-plane 2 = ¢§ > 0.
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in such a half-plane, so that the class of representable functions
is fairly limited in the present case.

Let A(u) be of bounded variation in (0, w), 4(0) =0, and
consider

(47) Je) = [ esnadq),

0
which is absolutely convergent in $(z) = 0. A simple calculation
shows that
(z=4) -+ (3—n+})
E+3)(z+3) -+ (+n+])°

(4.8) fx) =27  a,V2n+1
where

(4.9) a,=[ X () dAw).
0
A more delicate analysis proves that

u t
(4.10) Aw) =27 oa, [ X () dt,
0
the series being convergent for all values of u. This is essentially
one of Hausdorff’s solutions of the moment problem for a finite
interval. ?)

There are numerous other possibilities. We could replace the
Laguerre polynomials by general Laguerre polynomials in (4.1)
and the Legendre polynomials by Jacobi polynomials in (4.5).
The transformation ¢ = e~* applied to the system {¢*""} leads
to interesting y-functions expressible in terms of the incomplete
gamma function. Further examples can be had from the theory
of Bessel functions, Hermitian polynomials etc.

5. Generalizations. In the general discussions of § 8 we
restricted ourselves to functions of the class H,(0). But it is
clear that interesting expansion problems are associated with
functions of other classes, e.g., the classes H,(0), the class of
bounded functions, the class of convergent Laplace integrals etc.
These problems can be attacked when suitable restrictions are
imposed on the system @.

The method would seem to be capable of further applications
to other transformations than that of Laplace. As an example

?) F. Hausporrr, Momentprobleme fiir ein endliches Intervall [Math. Zeit-
schrift 16 (1923), 220 —248], especially 227 —231.
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we may mention the transformation of Gauf3-Weierstra8 depending

upon the kernel exp [ —(z—u)?]. Here we have the bilinear
formula

.2 © 1
e22u—2 :EnzomHﬂ(u) m,

which links the Hermitian polynomials with the powers of z and
gives rise to associated expansions. 10)

(Received November 19th, 1937.)

10) See E. HiLLE, A class of reciprocal functions [Annals of Math. (2) 27 (1926),
427 —464].



