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Bilinear formulas in the theory of the
transformation of Laplace1)

by

Einar Hille

New Haven (Conn.)

1. Introduction. In the theory of linear integral equations
the term bilinear formula refers to the expansion of a symmetric
kernel in terms of its characteristic functions. But it can be used

more loosely about any expansion of the form

which may be associated with the kernel. This is the sense given
to the term bilinear formula in the present note. We shall best
concerned with the kernel of the transformation of Laplace

Any expansion of the form

in which {C(Jn(u)} is an orthonormal system for the interval

(0, oo ), gives rise to a pair of associated expansions

Under suitable restrictions the second formula gives an ab-
solutely convergent expansion of a Laplace transform in the
right half-plane in terms of a system of Laplace transforms
which constitute an orthogonal system on the imaginary axis,
the an being the corresponding Fourier coefficients. Formula

(1.4) is then to be regarded as an inversion formula for such
Laplace integrals. Conversely, if F(u) is given by its Fourier

1) An abstract of the present paper was presented to the American Mathe-
matical Society, October 28, 1936.
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series (1.4), then the corresponding Laplace transform f(z) is

given by the convergent series (1.5).
The present note is devoted to a study of the relations between

the systems {Pn(u)} and {1J’n(z)}, the associated expansions (1.4)
and (1.5), and the transformation of Laplace. For the sake of
simplicity we restrict ourselves to the case of quadratically in-
tegrable functions.

2. The associated systelns. Let {Pn(u)} be an orthonormal
system of real functions complete in L2(o, oo). Put

where ---- x + iy, x &#x3E; 0. These functions are holomorphic for
x &#x3E; 0. Since 

we see that for a f ixed x &#x3E; 0, "Pn(ae+iy) equals V2n times the
Fourier transform of e-xu(/Jn(u), where (jjn(u) = Pn(u) for u &#x3E; 0
and = 0 for u  0. Let us define

where l.i.m. denotes the limit in the mean of order two as a - oo.
Then bv the Plancherel theorem 

and

It follows that 1Jln(iy) is the boundary function of 1Jln(z) on
the imaginary axis in the sense of convergence in the mean.
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Formula (2.3) shows that 1J’n(Z) belongs to the class H2(0) in
the terminology of Hille and Tamarkin.2)
Let us define

It is then easily seen that (2.2) holds for all values of n. Let
CP+ denote the system {l/Jn(u)}, n &#x3E; 1, and tP- the system {l/J-n(u)},
n &#x3E; 1 ; put l/J = tP+ + (/J-, and let the letters W+ , P-, and W
have similar significance for the functions "Pn(iy). The system
W+ is closed in L2(ol oo ), hence OE_ is closed in L2( - 00, 0), and
(/J is closed in L2( - 00, oo). Since a Fourier transformation pre-
serves orthogonality and closure, we conclude that W is an

orthogonal system closed in L2( - 00, oo ).
We have consequently shown that 1Jf + is an orthogonal system,

i.e., that the functions "Pn(z) are orthogonal to each other on
the imaginary axis. The system is of course not complete in
L2( - 00, oo ), but we shall see in § 3 that it is closed with respect
to boundary functions of the class H2(U).
We have now the bilinear formula

Here u &#x3E; 0 and 9î(z) &#x3E; 0. For a fixed z, the series is the Fourier
series of e-zu in the system 0, since e-ue L2(o, (0). Hence by
the closure relation

But (2.5) is a biorthogonal series since the functions ’lJln(z)
form an orthogonal system on the imaginary axis. It is not a

Fourier series in the system P" +, however, since e-zu does not
belong to any Lebesgue class on the imaginary axis or on any
vertical line. Nevertheless, it is easy to see that it is the derived
series of such a Fourier series, the differentiation being with
respect to u. Formal integration gives

This series is absolutely convergent for x &#x3E; 0 by virtue of (2.6)
and the relation

2) On the theory of Laplace integrals [Proc. Nat. Acad. Sci. 19 (1933), 908-
912]. Cf. the introduction to § 3 below.
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which is a consequence of the closure relation for the system
0+. On the imaginary axis the right hand side is the Fourier

series in Y+ of the function on the left.

3. Functions of H2(O). Let f(z) E H2(0), i.e., f(z) is holo-

morphic for 9î(z) &#x3E; 0 and there exista a constant M such that

Such a function admits of boundary values on the imaginary
axis, f(iy) E L2( - co, oo), and

Moreover

These properties together with the Plancherel theory of Fourier
transforms and the simplest properties of orthogonal series
suffice for the subsequent discussion. 3)
Now let the Fourier series of f(iy) in the P-system be ç

and form the inverse Fourier transform of

.

i.e.,

By (2.3)

so that defining

3) For the properties of functions of the classes Hv)(0) consult E. HILLE and
J. D. TAMARKIN, On the absolute integrability of Fourier transforms [Fundaplenta
Math. 25 (1935), 329-352], esp. § 2. 
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we have

The function RN( u) E L2( - 00, oo ) and

The right-hand side is known to tend to zero as N -&#x3E; oo, hence
the same is true of the left. It follows that

is the Fourier series of F(u) in 0.
By a theorem of N. Wiener 4) F(u) = 0 for u  0. Since

we conclude that un = 0 for n  0. Consequently

are the Fourier series of f (iy ) in W+ and of F (u ) in f/J + resp.
By virtue of (3.5) we have also

Let us now form

This function belongs to H2(o) and by (3.1)

and as N - oo the last member tends to zero. It follows that

rN(x+iy) converges in the mean of order two to the limit zero.
On the other hand using (2.6) and the convergence of S lanl2,
we see that fN(z) converges absolutely and uniformly to a. limit
in the half-plane ae &#x3E; t5 &#x3E; 0. It follows that rN(ae+iy) converges

4) The operational calculus [Math. Annalen 95 (1926), 5572013584] 580.
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to zero in the ordinary sense as well as in the mean. Hence

where the series converges absolutely for ffi(z) &#x3E; 0 and uniformly
for ffi(z) &#x3E; 5 &#x3E; o. On the imaginary axis it reduces to the Fourier
series of the boundary function.

Putting 

we note that FN(U) converges to F(u) in the mean as N - oo.
But by (2.1)

and letting N -&#x3E; oo gives

Thus f(z) is the Laplace transform of F (u ), a function which
belongs to L2( - 00, (0).
On the other hand, if we start with a y-series 

then it converges absolutely and uniformly in every half-plane
9î(z) &#x3E; Õ &#x3E; 0 to a function f(z) holomorphie in the right half-
plane. Denoting the Nth partial sum of the series by fN(z), we
first observe that fN(z),E H2(O) for every N. Further for fixed

x &#x3E; 0

whence it follows that fv (x + iy) converges in the mean to f(x + iy),
uniformly in x, and that

Consequently f(z),E H2(o ) and is the Laplace transform of

a function in L2(o, oo ).

Finally, if we start with an arbitrary function F(u) in L2(0, oo )
whose 99-series is given by (3.9) with lO lanl2  oo, we see im-

mediately that its Laplace transform is the y-series (3.8) which
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is absolutely convergent for lJl(z) &#x3E; 0 and, by the above ar-

gument, represents a function in H2(0).
We have consequently proved the
T heorem. The following three classes of analytical f unctions are

identical (I) H2(0), (II) the set of all y-series

and (III) the set of Laplace transforms of all 99-series

Remark. Class (III) is of course identical with the class
of Laplace transforms of L2(ol oo ). That the latter class is iden-
tical with H2(0) was proved by Paley and Wiener 5).

4. Special cases. The best known orthogonal system in

L2(o, oo ) is perhaps

where Ln(u) is the nth polynomial of Laguerre. Here

In this case it is easy to see directly that the system Y’ is closed
in L2( - 001 oo ). Indeed, the transformation z = 2 t tan 2 t carries
the imaginary axis of the z-plane into the interval (-n, n) on
the real axis of the t-plane and takes the system W into the
system 4

The latter is evidently closed in L2( -’Jl, n), Hence P is closed
in L2( - 00, 00) so that çp + is closed in L2(0, oo). This is offered
as an alternative proof of the closure of the system of Laguerre
functions.

To this system çp + corresponds the following pair of associated
expansions

5) Fourier transforms in the complex domain [Amer. Math. Soc. Colloquium
Publ. XIX (New York, 1934)], p. 8. See also HILLE &#x26; TAMARKIN, On moment
functions [Proc. Nat. Acad. Sci. 19 (1933), 902-908]. 

N BLIOTHEO 
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While these formulas figure already in a note by S. Wigert,
interest in them has been revived by the récent work of D. V.
Widder, F. Tricomi, 1B1. Picone and others. 6) The credit of having
first called attention to the ilnportance of formula (4.4) as an
inversion formula for the Laplace intégral is due to Tricomi.

Picone settled the case P(u) E L2(0, oo ), whereas Widder showed
that the formally integrated series inverted the Laplace-Stieltjes
integral when f(z) is completely monotonie on the positive real
axis. It should be noted that the system {lJ’n(z)} is closed not 

merely with respect to the class H2(0) but with respect to all
functions analytic in the right half-plane. It is obvious that

every such function can be expanded in one and only one way
in a y-series which is absolutely convergent for ?(2) &#x3E; 0. The

coefficients are not necessarily given by formula (3.2) whieh
may cease to have a sense, bllt an is obviously a linear form in
f(t), f’(t),...,fn&#x3E;(t) with rational coefficients.

As a second example let us take

where Xn(t) denotes the normalized Legendre polynomial for the
interval (0, 1). Here

Expansions in terms of the latter system are a special case of
the interpolation series studied by R. Lagrange ?) It follows
from his investigations that any function bounded and holo-
morphic in the right half-plane can be represented there by a
convergent y-series. In particular, one concludes that every
function belonging to a class Hp(0), p &#x3E; 1, admits of such a
representation. 8) On the other hand, fairly simple calculations
show that a function representable by a 1p-series, convergent
in some half-plane, has to be of finite order with respect to z

6) S. VYIGERT, Contributions à la théorie des polynomes d’Abel-Laguerre
[Arkiv f. Mat. 15 (1921), No. 25]. D. V. WIDDER, An application of Laguerre
polynomials [Duke Math. Journal 1 (1935), 126-136]. F. TRICOMI, Trasfor-
mazione di Laplace e polinomi di Laguerre [Rendiconti Atti Accad. Naz. Lincei
(6) 21 (1935), 232-239]. 1B1. PICONE, Sulla trasformazione di Laplace [ibid.,
306-313].

7) Mémoire sur les séries d’interpolation [Acta Math. 64 (1935), 1- 80 ], Ch. VI.

8) Such a function is bounded in every half-plane x &#x3E; ô &#x3E; 0.
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in such a half-plane, so that the class of representable functions
is fairly limited in the present case.
Let A (u ) be of bounded variation in (0, oo), A(0) = 0, and

consider

1;hich is absolutely convergent in ffi(z) h 0. A simple calculation
shows that

where

A more delicate analysis proves that

the series being convergent for all values of u. This is essentially
one of Hausdorff’s solutions of the moment problem for a finite
interval. 9)

There are numerous other possibilities. We could replace the
Laguerre polynomials by general Laguerre polynomials in (4.1)
and the Legendre polynomials by Jacobi polynomials in (4.5).
The transformation t = e- u applied to the system {e271int} leads
to interesting y-functions expressible in terms of the incomplete
gamma function. Further examples can be had from the theory
of Bessel functions, Hermitian polynomials etc.

5. Generalizations. In the general discussions of § 3 we

restricted ourselves to functions of the class H2(0). But it is

clear that interesting expansion problems are associated with
functions of other classes, e.g., the classes Hp(0), the class of
bounded functions, the class of convergent Laplace integrals etc.
These problems can be attacked when suitable restrictions are
imposed on the system 0.
The method would seem to be capable of further applications

to other transformations than that of Laplace. As an example

9) F. HAUSDORFF, Momentprobleme für ein endliches Intervall [Math. Zeit-
schrift 16 (1923), 220-248], especially 2272013231.
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we may mention the transformation of GauB-WeierstraB depending
upon the kernel exp [ - (z - u)2]. Here we have the bilinear

formula

which links the Hermitian polynomials with the powers of z and
gives rise to associated expansions. 10)

(Received November 19th, 1937.)

10) See E. HILLE, A class of reciprocal functions [Annals of Math. (2) 27 (1926),
4272013464].


